

Math 241: Practice Problems for Exam 1

1. Consider the points $\mathbf{P} = (1, 1, 2)$, $\mathbf{Q} = (2, 1, 1)$, $\mathbf{R} = (1, 2, 1)$
 - (a) Find the symmetric equations of the line through the points \mathbf{P} and \mathbf{Q} .
 - (b) For the point \mathbf{R} find the closest point \mathbf{S} on the line from (a).
 - (c) Find the area of the triangle with the corners \mathbf{P} , \mathbf{Q} , \mathbf{R} .
 - (d) Find the volume of the tetrahedron with the vertices $(0, 0, 0)$, \mathbf{P} , \mathbf{Q} , \mathbf{R} .
 - (e) Find an equation $Ax + By + Cy = D$ for the plane through the points \mathbf{P} , \mathbf{Q} , \mathbf{R} .
 - (f) Find an equation $A'x + B'y + C'z = D'$ of the plane through the points P , Q which is orthogonal on the plane from (e).
2. Consider the position function $\mathbf{r}(t) = (\frac{1}{3}t^3, 2t, t^2)$.
 - (a) For the time $t = -1$ find the speed vector $\mathbf{v}_0 = \mathbf{v}(-1)$ and the acceleration vector $\mathbf{a}_0 = \mathbf{a}(-1)$.
 - (b) Find the decomposition $\mathbf{a}_0 = \mathbf{a}_{\text{par}} + \mathbf{a}_{\text{orth}}$ where \mathbf{a}_{par} is parallel to \mathbf{v}_0 and \mathbf{a}_{orth} is orthogonal on \mathbf{v}_0 . Use this to find the change of speed $V'(-1)$ and the curvature $\kappa(-1)$ (here $V(t)$ denotes the speed).
 - (c) Consider the curve given by $\mathbf{r}(t)$ for t between -1 and 1 and find the length of this curve.
3. Assume that the acceleration vector is $\mathbf{a}(t) = (1, t, -1)$. The initial position is $\mathbf{r}(0) = (1, 0, 0)$, the initial velocity is $\mathbf{v}(0) = (1, 0, 1)$. Find the position $\mathbf{r}(t)$.