Assignment \#1, due Wednesday, Sept. 14

1. Assume that the effective annual interest rate is 5%. For the next 15 years you will pay monthly $400 \$$ into this account (now, after 1 month,..., after 179 months). You then want to retire. What amount A can you then monthly withdraw from your account for the next 20 years (after 180 months,..., after 419 months)?
2.

(a) A bank gives you a loan of $1000 \$$ now. You have to make a payment of $500 \$$ after 6 months, and a payment of $600 \$$ after 12 months. What is the effective annual interest rate? (Solve a quadratic equation for β).
(b) A bank gives you a loan of $1000 \$$ now. You have to make a payment of $500 \$$ after 9 months, and a payment of $600 \$$ after 12 months. What is the effective annual interest rate? (Set up an equation for β and solve it with fzero in Matlab).
(c) A bank gives you a loan of $1000 \$$ now. You have to make payments of $100 \$$ after 4 months, 5 months, $\ldots, 8$ months. Then you have to make payments of $150 \$$ after 9 months, 10 months, 11 months, 12 months. What is the effective annual interest rate? (Set up an equation for β and solve it with fzero in Matlab).
3. We have a "biased coin" which shows "heads" 40% and "tails" 60% of the time. We toss this coin four times. Let Z_{j} be equal to 1 if the j th toss is "heads", and 0 if it is "tails". Note that $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are independent. Let $X_{0}=0$ and $X_{j}=Z_{1}+\cdots+Z_{j}$ for $j=1, \ldots, 4$.
(a) Find $P\left(X_{4}=x\right)$ for all possible values x. Use this to find $\mathrm{E}\left[X_{4}\right]$ and $\operatorname{Var}\left[X_{4}\right]$.
(b) Find $\mathrm{E}\left[Z_{1}\right]$ and $\operatorname{Var}\left[Z_{1}\right]$. Then write $\mathrm{E}\left[X_{4}\right]$ in terms of $\mathrm{E}\left[Z_{j}\right]$, and write $\operatorname{Var}\left[X_{4}\right]$ in terms of $\operatorname{Var}\left[Z_{j}\right]$. If we toss the coin m times, what would be $\mathrm{E}\left[X_{m}\right]$ and $\operatorname{Var}\left[X_{m}\right]$?
(c) Find the conditional expectation $\mathrm{E}\left[X_{4} \mid X_{1}=1\right]$.

