Assignment \#2, due Wed, Oct. 12

1. Consider stock prices $S_{0}, S_{1}, S_{2}, S_{3}$ described by a binomial tree with $S_{0}=8, u=\frac{3}{2}, d=\frac{1}{2}$. Let $\rho=20 \%$. We consider options with maturity $T=t_{N}$ with $N=3$.
(a) Find the price of a "lookback put option" with payoff $V_{3}=\left(7-\min \left\{S_{0}, \ldots, S_{3}\right\}\right)^{+}$. Hint: This payoff is path dependent, hence you have to use the full tree with $1,2,4,8$ possibilities at times $t_{0}, t_{1}, t_{2}, t_{3}$.
(b) Show that you can replicate the payoff V_{3} from (a) with an investment strategy $\left(x_{0}, x_{1}, x_{2}\right)$: At time t_{j} (after we know the value of S_{j}) we choose a portfolio with x_{j} stocks and an amount y_{j} in the bank account, for $j=0,1,2$. Label each node in the tree with the number x_{j} (see "Delta-hedging" in the notes). For the case $\left(S_{0}, S_{1}, S_{2}, S_{3}\right)=(8,4,2,1)$ give the values x_{j}, y_{j} for $j=0,1,2$ and the value of the portfolio U_{j} for $j=0,1,2,3$.
(c) Find the price of a European put option with strike $K=7$. Hint: The payoff in (c), (d) depends only on S_{3} (path independent). Use the binomial tree with $1,2,3,4$ possibilities at times $t_{0}, t_{1}, t_{2}, t_{3}$ (as shown in the class notes).
(d) Find the price of an American put option with strike $K=7$. Use the binomial tree.
(e) Compare the option prices in (a),(c),(d): Which is smallest, which is largest? Explain the reason for this.
(f) Extend the tree from (d) by using one additional V_{3}^{4} and one additional value V_{3}^{-1} below. Explain how V_{0}^{1} and V_{0}^{-1} give option prices for t_{0} with $S_{0}=8$, but with different strikes.
(g) Find the price of a European call option with strike $K=7$ for all nodes in the tree from (c) by using the put-call parity.
2. Consider stock prices described by a binomial tree with $S_{0}=10, u=1.1, d=0.9$. Let $\rho=1 \%$.We consider options with maturity $T=t_{N}$ with $N=12$. Use the m -file xbinom_eu_call.m and modify it for the other cases. Pick m so that the smallest \tilde{S}_{0} is <4 and the largest \tilde{S}_{0} is >25.
(a) Consider a European put option with strike $K=11$: plot the option price vs. initial stock price s, together with function $(1+\rho)^{-N} K-s$. Also make a plot of option price vs. strike.
(b) Consider a European call option with strike $K=11$: plot the option price vs. initial stock price s, together with function $s-(1+\rho)^{-N} K$. Also make a plot of option price vs. strike.
(c) Consider a American put option with strike $K=11$: plot the option price vs. initial stock price s, together with the payoff function $H(s)$. Also make a plot of option price vs. strike. Compare with the European put option.
(d) Consider a American call option with strike $K=11$: plot the option price vs. initial stock price s, together with the payoff function $H(s)$. Also make a plot of option price vs. strike. Compare with the European call option.
