Assignment #2, due Wed, Oct. 12

- **1.** Consider stock prices S_0, S_1, S_2, S_3 described by a binomial tree with $S_0 = 8$, $u = \frac{3}{2}$, $d = \frac{1}{2}$. Let $\rho = 20\%$. We consider options with maturity $T = t_N$ with N = 3.
 - (a) Find the price of a "lookback put option" with payoff $V_3 = (7 \min\{S_0, \ldots, S_3\})^+$. *Hint:* This payoff is **path dependent**, hence you have to use the full tree with 1, 2, 4, 8 possibilities at times t_0, t_1, t_2, t_3 .
 - (b) Show that you can replicate the payoff V_3 from (a) with an investment strategy (x_0, x_1, x_2) : At time t_j (after we know the value of S_j) we choose a portfolio with x_j stocks and an amount y_j in the bank account, for j = 0, 1, 2. Label each node in the tree with the number x_j (see "Delta-hedging" in the notes). For the case $(S_0, S_1, S_2, S_3) = (8, 4, 2, 1)$ give the values x_j, y_j for j = 0, 1, 2 and the value of the portfolio U_j for j = 0, 1, 2, 3.
 - (c) Find the price of a European put option with strike K = 7. *Hint:* The payoff in (c), (d) depends only on S_3 (path independent). Use the binomial tree with 1, 2, 3, 4 possibilities at times t_0, t_1, t_2, t_3 (as shown in the class notes).
 - (d) Find the price of an American put option with strike K = 7. Use the binomial tree.
 - (e) Compare the option prices in (a),(c),(d): Which is smallest, which is largest? Explain the reason for this.
 - (f) Extend the tree from (d) by using one additional V_3^4 and one additional value V_3^{-1} below. Explain how V_0^1 and V_0^{-1} give option prices for t_0 with $S_0 = 8$, but with different strikes.
 - (g) Find the price of a European call option with strike K = 7 for all nodes in the tree from (c) by using the put-call parity.
- 2. Consider stock prices described by a binomial tree with $S_0 = 10$, u = 1.1, d = 0.9. Let $\rho = 1\%$. We consider options with maturity $T = t_N$ with N = 12. Use the m-file xbinom_eu_call.m and modify it for the other cases. Pick m so that the smallest \tilde{S}_0 is < 4 and the largest \tilde{S}_0 is > 25.
 - (a) Consider a European put option with strike K = 11: plot the option price vs. initial stock price s, together with function $(1 + \rho)^{-N}K s$. Also make a plot of option price vs. strike.
 - (b) Consider a European call option with strike K = 11: plot the option price vs. initial stock price s, together with function $s (1 + \rho)^{-N} K$. Also make a plot of option price vs. strike.
 - (c) Consider a American put option with strike K = 11: plot the option price vs. initial stock price s, together with the payoff function H(s). Also make a plot of option price vs. strike. Compare with the European put option.
 - (d) Consider a American call option with strike K = 11: plot the option price vs. initial stock price s, together with the payoff function H(s). Also make a plot of option price vs. strike. Compare with the European call option.