Assignment \#2, due Wed, Oct. 12

1. Consider stock prices $S_{0}, S_{1}, S_{2}, S_{3}$ described by a binomial tree with $S_{0}=8, u=\frac{3}{2}, d=\frac{1}{2}$. Let $\rho=20 \%$. We consider options with maturity $T=t_{N}$ with $N=3$.
For (a) $-(\mathrm{g})$: We have $\beta=(1+\rho)^{-1}=\frac{5}{6}, \quad q=\frac{1+\rho-d}{u-d}=0.7$
(a) Find the price of a "lookback put option" with payoff $V_{3}=\left(7-\min \left\{S_{0}, \ldots, S_{3}\right\}\right)^{+}$. Hint: This payoff is path dependent, hence you have to use the full tree with $1,2,4,8$ possibilities at times $t_{0}, t_{1}, t_{2}, t_{3}$.

$$
S_{0}=8, V_{0}=.9080\left\{\begin{array} { l }
{ S _ { 1 } = 1 2 , V _ { 1 } = 0 . 3 9 5 8 }
\end{array} \left\{\begin{array} { l }
{ S _ { 2 } = 1 8 , V _ { 2 } = 0 } \\
{ S _ { 2 } = 6 , V _ { 2 } = 1 . 5 8 3 3 }
\end{array} \{ \begin{array} { l l }
{ S _ { 3 } = 2 7 , } & { V _ { 3 } = 0 } \\
{ S _ { 3 } = 9 , } & { V _ { 3 } = 0 }
\end{array} \} \begin{array} { l l }
{ S _ { 3 } = 9 , } & { V _ { 3 } = 1 } \\
{ S _ { 3 } = 3 , } & { V _ { 3 } = 4 }
\end{array} ~ \left(\begin{array}{ll}
S_{3}=9, & V_{3}=3 \\
S_{2}=6, V_{2}=2.75 \\
S_{3}=3, & V_{3}=4
\end{array}\right.\right.\right.
$$

(see m-file a2plab.m)
(b) Show that you can replicate the payoff V_{3} from (a) with an investment strategy (x_{0}, x_{1}, x_{2}): At time t_{j} (after we know the value of S_{j}) we choose a portfolio with x_{j} stocks and an amount y_{j} in the bank account, for $j=0,1,2$. Label each node in the tree with the number x_{j} (see "Delta-hedging" in the notes). For the case $\left(S_{0}, S_{1}, S_{2}, S_{3}\right)=(8,4,2,1)$ give the values x_{j}, y_{j} for $j=0,1,2$ and the value of the portfolio U_{j} for $j=0,1,2,3$.
The investment strategy is given by $U_{0}=.9080$ and $x_{0}, x_{1}, x_{2}, x_{3}$ given by

For the path $\left(S_{0}, S_{1}, S_{2}, S_{3}\right)=(8,4,2,1)$ our portfolio develops as follows:
time t_{0} : initial fortune is $U_{0}=.9080$, buy $x_{0}=-.2891$ stocks, put remaining amount $y_{0}:=$ $U_{0}-x_{0} S_{0}=3.2205$ in bank account.
time t_{1} : fortune is now $U_{1}:=(1+\rho) y_{0}+x_{0} S_{1}=2.7083$. Change number of stocks to $x_{1}=-.4167$, put remaining amount $y_{1}:=U_{1}-x_{1} S_{1}=4.3750$ in bank account.
time t_{2} : fortune is now $U_{2}:=(1+\rho) y_{1}+x_{1} S_{2}=4.4167$. Change number of stocks to $x_{2}=-.5$, put remaining amount $y_{2}:=U_{2}-x_{2} S_{2}=5.4167$ in bank account.
time t_{3} : fortune is now $U_{3}:=(1+\rho) y_{2}+x_{2} S_{3}=6$.
(see m-file a2p1ab.m)
(c) Find the price of a European put option with strike $K=7$. Hint: The payoff in (c), (d) depends only on S_{3} (path independent). Use the binomial tree with $1,2,3,4$ possibilities at
times $t_{0}, t_{1}, t_{2}, t_{3}$ (as shown in the class notes).

Compute option price with Matlab:

```
H = @(s) max(7-s,0) % payoff for put option with strike K=7
V0 = binom_eu(.2,8,1.5,.5,3,H)
```

(d) Find the price of an American put option with strike $K=7$. Use the binomial tree..

Compute option price with Matlab:

```
H = @(s) max(7-s,0) % payoff for put option with strike K=7
V0 = binom_am(.2,8,1.5,.5,3,H)
```

(e) Compare the option prices in (a),(c),(d): Which is smallest, which is largest? Explain the reason for this.
We have $V_{0}^{\text {lookback }}>V_{0}^{E P}$ and $V_{0}^{E P}<V_{0}^{A P}$.
The payoff in (a) is $V_{3}^{\text {lookback }}=\left(7-\min \left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}\right)_{+}$, the payoff in (c) is $V_{3}^{E P}=\left(7-S_{3}\right)_{+}$. We have $V_{3}^{\text {lookback }}\left(\omega_{j}\right) \geq V_{3}^{E P}\left(\omega_{j}\right)$ for all 8 outcomes $\omega_{j} \in \Omega$, and $V_{3}^{\text {lookback }}\left(\omega_{j}\right)>V_{3}^{E P}\left(\omega_{j}\right)$ for some of the outcomes. By the comparison principle we therefore must have $V_{0}^{\text {lookback }}>V_{0}^{E P}$. If we have an American option we can choose the exercise strategy "always exercise at maturity t_{N}. Therefore we must have $V_{0}^{A P} \geq V_{0}^{E P}$. We saw in (d) that in some cases it is advantageous to exercise early. Therefore we have $V_{0}^{A P}>V_{0}^{E P}$.
(f) Extend the tree from (d) by using one additional V_{3}^{4} and one additional value V_{3}^{-1} below. Explain how V_{0}^{1} and V_{0}^{-1} give option prices for t_{0} with $S_{0}=8$, but with different strikes.
We obtain

$$
\begin{gathered}
V_{3}^{-1}=6.67, V_{2}^{-1}=\max \{5.167,6.333\}, V_{1}^{-1}=\max \{4.5,5.667\}, V_{0}^{-1}=\max \{3.167,4.333\} \\
\\
\left.V_{3}^{1}=0, V_{2}^{1}=\max \{0,0\}\right\}, V_{1}^{1}=\max \{0,0\}, V_{0}^{1}=\max \{.0625,0\}
\end{gathered}
$$

Here $a=u / d=3$. As explained in section 4.20 in the course notes:
For $S_{0}=8$ and strike $K=3 \cdot 7=21$ the American put option price is $V_{0}^{A P}=3 \cdot V_{0}^{-1}=13$
For $S_{0}=8$ and strike $K=\frac{1}{3} \cdot 7=\frac{7}{3}$ the American put option price is $V_{0}^{A P}=\frac{1}{3} \cdot V_{0}^{1}=.020833$
(g) Find the price of a European call option with strike $K=7$ for all nodes in the tree from (c) by using the put-call parity.
Put-call-parity gives $V_{j}^{E C}=S_{j}-\tilde{K}+V_{j}^{E P}$ where $\tilde{K}:=(1+\rho)^{j-N} K$ is the discounted strike price.
For t_{3} we have $\tilde{K}=K=7$, hence $V_{3}^{k, E C}=S_{3}^{k}-7+V_{3}^{k, E P}, k=0,1,2,3$.
For t_{2} we have $\tilde{K}=K=\beta \cdot 7=\frac{5}{6} \cdot 7$, hence $V_{2}^{k, E C}=S_{2}^{k}-\frac{5}{6} \cdot 7+V_{2}^{k, E P}, k=0,1,2$
For t_{1} we have $\tilde{K}=K=\beta^{2} \cdot 7=\left(\frac{5}{6}\right)^{2} \cdot 7$, hence $V_{1}^{k, E C}=S_{1}^{k}-\left(\frac{5}{6}\right)^{2} \cdot 7+V_{1}^{k, E P}, k=0,1$
For t_{0} we have $\tilde{K}=K=\beta^{3} \cdot 7=\left(\frac{5}{6}\right)^{3} \cdot 7$, hence $V_{0}^{0, E C}=S_{0}^{0}-\left(\frac{5}{6}\right)^{3} \cdot 7+V_{0}^{0, E P}$

