A Convex Separation Theorems

Notation: For vectors $\vec{x}, \vec{y} \in \mathbb{R}^{M}$ let $\vec{x} \cdot \vec{y}=x_{1} y_{1}+\cdots+x_{M} y_{M}$ denote the inner product; let $\|\vec{x}\|:=(\vec{x} \cdot \vec{x})^{1 / 2}$ denote the Euclidian norm.

We first state the basic convex separation theorem:
Theorem 6. Assume that the set $\mathcal{C} \subset \mathbb{R}^{M}$ is closed, convex, and does not contain the origin $\overrightarrow{0}$. Then there exists $\vec{y} \in \mathbb{R}^{M}$ and $\alpha>0$ such that

$$
\vec{y} \cdot \vec{x} \geq \alpha \quad \text { for all } \vec{x} \in \mathcal{C}
$$

Proof. Idea: Step 1: Choose \vec{y} as the point in \mathcal{C} which is closest to the origin.
Step 2: Show: For $\vec{x} \in \mathcal{C}$ we have $\vec{y} \cdot(\vec{x}-\vec{y}) \geq 0$ and hence $\vec{y} \cdot \vec{x} \geq\|\vec{y}\|^{2}>0$.

Step 1: Consider the ball $B_{r}:=\left\{\vec{x} \in \mathbb{R}^{M} \mid\|\vec{x}\| \leq r\right\}$ and pick r such that $X:=\mathcal{C} \cap B_{r}$ is nonempty. This set is closed and bounded, hence compact. Therefore the function $\vec{x} \mapsto\|\vec{x}\|$ attains its minimum at a point $\vec{y} \in X$. For $\vec{x} \notin B_{r}$ we have $\|\vec{x}\| \geq r \geq\|\vec{y}\|$. For $\vec{x} \in \mathcal{C} \cap B_{r}$ we also have $\|\vec{x}\| \geq\|\vec{y}\|$. Hence

$$
\begin{equation*}
\forall \vec{x} \in \mathcal{C} \quad\|\vec{x}\| \geq\|\vec{y}\| \tag{66}
\end{equation*}
$$

Step 2: For $\vec{x} \in \mathcal{C}$ all the points on the line segment connecting \vec{x} and \vec{y} are in \mathcal{C} since it is convex set:

$$
\begin{equation*}
\forall t \in[0,1] \quad \vec{y}+t(\vec{x}-\vec{y}) \in \mathcal{C} \tag{67}
\end{equation*}
$$

From (66), (67) we get by multiplying out

$$
\begin{aligned}
\|\vec{y}+t(\vec{x}-\vec{y})\|^{2} & \geq\|\vec{y}\|^{2} \\
\|\vec{y}\|^{2}+2 t \vec{y} \cdot(\vec{x}-\vec{y})+t^{2}\|\vec{x}-\vec{y}\|^{2} & \geq\|\vec{y}\|^{2} \\
\forall t \in(0,1) \quad 2 \vec{y} \cdot(\vec{x}-\vec{y})+t\|\vec{x}-\vec{y}\|^{2} & \geq 0
\end{aligned}
$$

Hence $\vec{y} \cdot(\vec{x}-\vec{y}) \geq 0$, i.e.,

$$
\forall \vec{x} \in \mathcal{C}: \quad \vec{y} \cdot \vec{x} \geq\|\vec{y}\|^{2}>0
$$

We will use the following corollary:
Theorem 7. Assume that \mathcal{V} is a subspace of \mathbb{R}^{M}, and that the set $\mathcal{K} \subset \mathbb{R}^{M}$ is convex, closed, and bounded. If $\mathcal{V} \cap \mathcal{K}=\emptyset$ there exists $\vec{y} \in \mathbb{R}^{M}$ and $\alpha>0$ such that

$$
\begin{array}{ll}
\vec{y} \cdot \vec{z}=0 & \text { for all } \vec{z} \in \mathcal{V} \\
\vec{y} \cdot \vec{z} \geq \alpha & \text { for all } \vec{z} \in \mathcal{K} \tag{69}
\end{array}
$$

Proof. Let $\mathcal{C}=\mathcal{K}-\mathcal{V}=\{x-y \mid x \in \mathcal{K}, y \in \mathcal{V}\}$. This set is convex. Since \mathcal{V} is closed and \mathcal{K} is closed and bounded the set \mathcal{C} is closed.
[Note: We need that \mathcal{K} is bounded. The sum of two closed sets is not always closed! Consider e.g. $\mathcal{K}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq e^{x}\right\}$ and $\mathcal{V}=\{(x, 0) \mid x \in \mathbb{R}\}$.]

Since $\mathcal{V} \cap \mathcal{K}=\emptyset$ we have $\overrightarrow{0} \notin \mathcal{C}$. By Theorem 6 there exists $\vec{y} \in \mathbb{R}^{M}$ and $\alpha>0$ such that $\vec{y} \cdot \vec{z} \geq \alpha$ for all $\vec{z} \in \mathcal{C}$. Hence

$$
\forall \vec{x} \in \mathcal{K}, \quad \forall \vec{z} \in \mathcal{V}: \quad \vec{y} \cdot(\vec{x}-\vec{z}) \geq \alpha
$$

By taking $\vec{z}=\overrightarrow{0}$ we obtain (69). Now let $\vec{x} \in K$ and use $\lambda \vec{z}$ instead of \vec{z} with $\lambda \in \mathbb{R}$. This yields

$$
\forall \lambda \in \mathbb{R}: \quad \lambda(\vec{y} \cdot \vec{z}) \leq \vec{y} \cdot \vec{x}-\alpha
$$

Therefore we must have $\vec{y} \cdot \vec{z}=0$ and we obtain (68).

