
A Convex Separation Theorems

Notation: For vectors ~x, ~y ∈ R
M let ~x · ~y = x1y1 + · · · + xMyM denote the inner product ; let

‖~x‖ := (~x · ~x)1/2 denote the Euclidian norm.
We first state the basic convex separation theorem:

Theorem 6. Assume that the set C ⊂ R
M is closed, convex, and does not contain the origin ~0.

Then there exists ~y ∈ R
M and α > 0 such that

~y · ~x ≥ α for all ~x ∈ C

Proof. Idea: Step 1: Choose ~y as the point in C which is closest to the origin.
Step 2: Show: For ~x ∈ C we have ~y · (~x− ~y) ≥ 0 and hence ~y · ~x ≥ ‖~y‖2 > 0.
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Step 1: Consider the ball Br := {~x ∈ R
M | ‖~x‖ ≤ r} and pick r such that X := C ∩ Br is

nonempty. This set is closed and bounded, hence compact. Therefore the function ~x 7→ ‖~x‖
attains its minimum at a point ~y ∈ X. For ~x /∈ Br we have ‖~x‖ ≥ r ≥ ‖~y‖. For ~x ∈ C ∩ Br we
also have ‖~x‖ ≥ ‖~y‖. Hence

∀~x ∈ C ‖~x‖ ≥ ‖~y‖ . (66)

Step 2: For ~x ∈ C all the points on the line segment connecting ~x and ~y are in C since it is
convex set:

∀t ∈ [0, 1] ~y + t(~x− ~y) ∈ C (67)

From (66), (67) we get by multiplying out

‖~y + t(~x− ~y)‖2 ≥ ‖~y‖2

‖~y‖2 + 2t~y · (~x− ~y) + t2 ‖~x− ~y‖2 ≥ ‖~y‖2

∀t ∈ (0, 1) 2~y · (~x− ~y) + t ‖~x− ~y‖2 ≥ 0

Hence ~y · (~x− ~y) ≥ 0, i.e.,
∀~x ∈ C : ~y · ~x ≥ ‖~y‖2 > 0

We will use the following corollary:

Theorem 7. Assume that V is a subspace of RM , and that the set K ⊂ R
M is convex, closed, and

bounded. If V ∩ K = ∅ there exists ~y ∈ R
M and α > 0 such that

~y · ~z = 0 for all ~z ∈ V (68)

~y · ~z ≥ α for all ~z ∈ K (69)
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Proof. Let C = K − V = {x − y | x ∈ K, y ∈ V}. This set is convex. Since V is closed and K is
closed and bounded the set C is closed.

[Note: We need that K is bounded. The sum of two closed sets is not always closed! Consider

e.g. K = {(x, y) ∈ R
2 | y ≥ e

x} and V = {(x, 0) | x ∈ R}.]
Since V ∩ K = ∅ we have ~0 /∈ C. By Theorem 6 there exists ~y ∈ R

M and α > 0 such that
~y · ~z ≥ α for all ~z ∈ C. Hence

∀~x ∈ K, ∀~z ∈ V : ~y · (~x− ~z) ≥ α

By taking ~z = ~0 we obtain (69). Now let ~x ∈ K and use λ~z instead of ~z with λ ∈ R. This yields

∀λ ∈ R : λ(~y · ~z) ≤ ~y · ~x− α

Therefore we must have ~y · ~z = 0 and we obtain (68).
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