A Convex Separation Theorems

Notation: For vectors $\vec{x}, \vec{y} \in \mathbb{R}^M$ let $\vec{x} \cdot \vec{y} = x_1 y_1 + \cdots + x_M y_M$ denote the *inner product*; let $\|\vec{x}\| := (\vec{x} \cdot \vec{x})^{1/2}$ denote the *Euclidian norm*.

We first state the basic convex separation theorem:

Theorem 6. Assume that the set $\mathcal{C} \subset \mathbb{R}^M$ is closed, convex, and does not contain the origin $\vec{0}$. Then there exists $\vec{y} \in \mathbb{R}^M$ and $\alpha > 0$ such that

$$\vec{y} \cdot \vec{x} \ge \alpha$$
 for all $\vec{x} \in \mathcal{C}$

Proof. Idea: Step 1: Choose \vec{y} as the point in C which is closest to the origin. Step 2: Show: For $\vec{x} \in C$ we have $\vec{y} \cdot (\vec{x} - \vec{y}) \ge 0$ and hence $\vec{y} \cdot \vec{x} \ge ||\vec{y}||^2 > 0$.

Step 1: Consider the ball $B_r := \{\vec{x} \in \mathbb{R}^M \mid ||\vec{x}|| \leq r\}$ and pick r such that $X := \mathcal{C} \cap B_r$ is nonempty. This set is closed and bounded, hence compact. Therefore the function $\vec{x} \mapsto ||\vec{x}||$ attains its minimum at a point $\vec{y} \in X$. For $\vec{x} \notin B_r$ we have $||\vec{x}|| \geq r \geq ||\vec{y}||$. For $\vec{x} \in \mathcal{C} \cap B_r$ we also have $||\vec{x}|| \geq ||\vec{y}||$. Hence

$$\forall \vec{x} \in \mathcal{C} \qquad \|\vec{x}\| \ge \|\vec{y}\|. \tag{66}$$

Step 2: For $\vec{x} \in C$ all the points on the line segment connecting \vec{x} and \vec{y} are in C since it is convex set:

$$\forall t \in [0,1] \qquad \vec{y} + t(\vec{x} - \vec{y}) \in \mathcal{C}$$
(67)

From (66), (67) we get by multiplying out

$$\begin{aligned} \|\vec{y} + t(\vec{x} - \vec{y})\|^2 &\geq \|\vec{y}\|^2 \\ \|\vec{y}\|^2 + 2t\vec{y} \cdot (\vec{x} - \vec{y}) + t^2 \|\vec{x} - \vec{y}\|^2 &\geq \|\vec{y}\|^2 \\ \forall t \in (0, 1) \qquad 2\vec{y} \cdot (\vec{x} - \vec{y}) + t \|\vec{x} - \vec{y}\|^2 &\geq 0 \end{aligned}$$

Hence $\vec{y} \cdot (\vec{x} - \vec{y}) \ge 0$, i.e.,

$$\forall \vec{x} \in \mathcal{C} : \qquad \vec{y} \cdot \vec{x} \ge \|\vec{y}\|^2 > 0$$

We will use the following corollary:

Theorem 7. Assume that \mathcal{V} is a subspace of \mathbb{R}^M , and that the set $\mathcal{K} \subset \mathbb{R}^M$ is convex, closed, and bounded. If $\mathcal{V} \cap \mathcal{K} = \emptyset$ there exists $\vec{y} \in \mathbb{R}^M$ and $\alpha > 0$ such that

$$\vec{y} \cdot \vec{z} = 0 \qquad \text{for all } \vec{z} \in \mathcal{V}$$

$$\tag{68}$$

$$\vec{y} \cdot \vec{z} \ge \alpha \qquad \text{for all } \vec{z} \in \mathcal{K}$$

$$\tag{69}$$

Proof. Let $C = \mathcal{K} - \mathcal{V} = \{x - y \mid x \in \mathcal{K}, y \in \mathcal{V}\}$. This set is convex. Since \mathcal{V} is closed and \mathcal{K} is closed and bounded the set C is closed.

[Note: We need that \mathcal{K} is bounded. The sum of two closed sets is not always closed! Consider e.g. $\mathcal{K} = \{(x, y) \in \mathbb{R}^2 \mid y \ge e^x\}$ and $\mathcal{V} = \{(x, 0) \mid x \in \mathbb{R}\}.$] Since $\mathcal{V} \cap \mathcal{K} = \emptyset$ we have $\vec{0} \notin \mathcal{C}$. By Theorem 6 there exists $\vec{y} \in \mathbb{R}^M$ and $\alpha > 0$ such that

 $\vec{y} \cdot \vec{z} \ge \alpha$ for all $\vec{z} \in \mathcal{C}$. Hence

$$\forall \vec{x} \in \mathcal{K}, \quad \forall \vec{z} \in \mathcal{V}: \qquad \vec{y} \cdot (\vec{x} - \vec{z}) \ge \alpha$$

By taking $\vec{z} = \vec{0}$ we obtain (69). Now let $\vec{x} \in K$ and use $\lambda \vec{z}$ instead of \vec{z} with $\lambda \in \mathbb{R}$. This yields

$$\forall \lambda \in \mathbb{R} : \qquad \lambda(\vec{y} \cdot \vec{z}) \le \vec{y} \cdot \vec{x} - \alpha$$

Therefore we must have $\vec{y} \cdot \vec{z} = 0$ and we obtain (68).