AMSC 424, Fall 2016

Practice problems for Exam \#1

(No calculators allowed for exam)

1.

(a) Let ρ denote the monthly interest rate and $\beta:=\frac{1}{1+\rho}$. Give a formula for β in terms of (i) $r_{\text {eff }}$, (ii) r_{c}. Here $r_{\text {eff }}$ denotes the yearly effective interest rate, and r_{c} denotes the yearly interest rate for continuous compounding.
(b) You get a loan of $1000 \$$ now. You make a payment P at the end of month 8 , month 9 , month 10. At the end of month 12 you make a final payment of $200 \$$. Assume you know β and find the payment P in terms of β.
2. We use a biased coin which gives "heads" with probability $\frac{2}{3}$ and "tails" with probability $\frac{1}{3}$. We toss the coin twice. You win the amount X where X is the number of "tails".
(a) Find $E[X]$ and $\operatorname{Var}[X]$.
(b) Let A denote the event "at least one coin shows heads". Find the conditional expectation $E[X \mid A]$.
3. At time t_{0} the price of a European call option with strike 10 is V_{0}, and the price of a European call option with strike 15 is \tilde{V}_{0}. Both options have the same maturity $t_{N}=N \Delta t$, the interest rate is ρ per period of Δt. Prove an inequality $V_{0} \leq \tilde{V}_{0}+\cdots$ using the comparison principle.
Hint: Investment 1: At time t_{0} buy a call option with strike 10. Investment 2: at time t_{0} buy a call option with strike 15 and put a certain amount z in the bank account.
4. The interest rate is $\rho=50 \%$ per period Δt. A stock has at time t_{0} the price $S_{0}=4$ and follows a binomial tree model with $u=2$ and $d=\frac{1}{2}$. We consider options with maturity at t_{2} and strike $K=4$.
(a) Find the initial price $V_{0}^{E P}$ of a European put option. Give the answer as a fraction.
(b) Find the price $V_{0}^{A P}$ of an American put option. Give the answer as a fraction. Describe the optimal exercise strategy.

