AMSC 424, Fall 2016

Practice problems for Exam #1

(No calculators allowed for exam)

1.

- (a) Let ρ denote the monthly interest rate and β := 1/(1+ρ). Give a formula for β in terms of (i) r_{eff},
 (ii) r_c. Here r_{eff} denotes the yearly effective interest rate, and r_c denotes the yearly interest rate for continuous compounding.
- (b) You get a loan of 1000\$ now. You make a payment P at the end of month 8, month 9, month 10. At the end of month 12 you make a final payment of 200\$. Assume you know β and find the payment P in terms of β.
- **2.** We use a biased coin which gives "heads" with probability $\frac{2}{3}$ and "tails" with probability $\frac{1}{3}$. We toss the coin twice. You win the amount X where X is the number of "tails".
 - (a) Find E[X] and Var[X].
 - (b) Let A denote the event "at least one coin shows heads". Find the conditional expectation $E[X \mid A]$.
- **3.** At time t_0 the price of a European call option with strike 10 is V_0 , and the price of a European call option with strike 15 is \tilde{V}_0 . Both options have the same maturity $t_N = N\Delta t$, the interest rate is ρ per period of Δt . Prove an inequality $V_0 \leq \tilde{V}_0 + \cdots$ using the comparison principle. **Hint:** Investment 1: At time t_0 buy a call option with strike 10. Investment 2: at time t_0 buy a call option with strike 15 and put a certain amount z in the bank account.
- **4.** The interest rate is $\rho = 50\%$ per period Δt . A stock has at time t_0 the price $S_0 = 4$ and follows a binomial tree model with u = 2 and $d = \frac{1}{2}$. We consider options with maturity at t_2 and strike K = 4.
 - (a) Find the initial price V_0^{EP} of a European put option. Give the answer as a fraction.
 - (b) Find the price V_0^{AP} of an American put option. Give the answer as a fraction. Describe the optimal exercise strategy.