AMSC 424, Fall 2016

Practice problems for Exam \#1

(No calculators allowed for exam)

1.

(a) Let ρ denote the monthly interest rate and $\beta:=\frac{1}{1+\rho}$. Give a formula for β in terms of (i) $r_{\text {eff }}$, (ii) r_{c}. Here $r_{\text {eff }}$ denotes the yearly effective interest rate, and r_{c} denotes the yearly interest rate for continuous compounding.
Here we have $n=12$ periods per year, hence $1+r_{\text {eff }}=(1+\rho)^{n}=e^{r_{c}}$ and

$$
\beta=\left(1+r_{\mathrm{eff}}\right)^{-1 / n}=e^{-r_{c} / n}
$$

(b) You get a loan of $1000 \$$ now. You make a payment P at the end of month 8 , month 9 , month 10. At the end of month 12 you make a final payment of $200 \$$. Assume you know β and find the payment P in terms of β.
We get the equation

$$
1000=\left(\beta^{8}+\beta^{9}+\beta^{10}\right) P+\beta^{12} 200
$$

yielding

$$
P=\frac{1000-\beta^{12} 200}{\beta^{8}+\beta^{9}+\beta^{10}}
$$

2. We use a biased coin which gives "heads" with probability $\frac{2}{3}$ and "tails" with probability $\frac{1}{3}$. We toss the coin twice. You win the amount X where X is the number of "tails".
(a) Find $E[X]$ and $\operatorname{Var}[X]$.

We obtain (binomial distribution)

$$
\begin{equation*}
P(X=0)=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}, \quad P(X=1)=2 \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{4}{9}, \quad P(X=2)=\left(\frac{1}{3}\right)^{2}=\frac{1}{9} \tag{1}
\end{equation*}
$$

Hence

$$
\begin{aligned}
E[X] & =0 \cdot \frac{4}{9}+1 \cdot \frac{4}{9}+2 \cdot \frac{1}{9}=\frac{2}{3}, \quad E\left[X^{2}\right]=0^{2} \cdot \frac{4}{9}+1^{2} \cdot \frac{4}{9}+2^{2} \cdot \frac{1}{9}=\frac{8}{9} \\
\operatorname{Var}[X] & =E\left[X^{2}\right]-E[X]^{2}=\frac{8}{9}-\left(\frac{2}{3}\right)^{2}=\frac{4}{9}
\end{aligned}
$$

(b) Let A denote the event "at least one coin shows heads". Find the conditional expectation $E[X \mid A]$. Note that

$$
\text { number of heads } \geq 1 \Longleftrightarrow \text { number of tails }=0 \text { or } 1
$$

Hence we get using (1)

$$
E[X \mid A]=\frac{E\left[X \cdot 1_{A}\right]}{P(A)}=\frac{0 \cdot \frac{4}{9}+1 \cdot \frac{4}{9}+0 \cdot \frac{1}{9}}{\frac{4}{9}+\frac{4}{9}}=\frac{1}{2}
$$

3. At time t_{0} the price of a European call option with strike 10 is V_{0}, and the price of a European call option with strike 15 is \tilde{V}_{0}. Both options have the same maturity $t_{N}=N \Delta t$, the interest rate is ρ per period of Δt. Prove an inequality $V_{0} \leq \tilde{V}_{0}+\cdots$ using the comparison principle.
Hint: Investment 1: At time t_{0} buy a call option with strike 10. Investment 2: at time t_{0} buy a call option with strike 15 and put a certain amount z in the bank account.
Investment strategy 1: We have $U_{0}=V_{0}$ and $U_{N}=\left(S_{N}-10\right)_{+}$
Investment strategey 2: At time t_{0} we buy a call option with strike 15 and put $(1+\rho)^{-N} 5$ in the bank account. Hence we have $\tilde{U}_{0}=\tilde{V}_{0}+(1+\rho)^{-N} 5$. At time t_{N} we have $U_{N}=\left(S_{N}-15\right)_{+}+5$.
Note that for all $s \in \mathbb{R}$

$$
(s-10) \leq(s-15)_{+}+5
$$

(draw the graphs). Hence we have $U_{N} \leq \tilde{U}_{N}$. By the comparison principle we must have

$$
V_{0} \leq \tilde{V}_{0}+(1+\rho)^{-N} 5
$$

4. The interest rate is $\rho=50 \%$ per period Δt. A stock has at time t_{0} the price $S_{0}=4$ and follows a binomial tree model with $u=2$ and $d=\frac{1}{2}$. We consider options with maturity at t_{2} and strike $K=4$.
(a) Find the initial price $V_{0}^{E P}$ of a European put option. Give the answer as a fraction. We have the payoff function $H(S)=(4-S)_{+}$. The risk-neutral measure Q is given by

$$
q=\frac{1+\rho-d}{u-d}=\frac{1+\frac{1}{2}-\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{3}
$$

and $\beta:=(1+\rho)^{-1}=\frac{2}{3}$.

We obtain the initial option price $V_{0}^{E P}=\frac{4}{27}$.
(b) Find the price $V_{0}^{A P}$ of an American put option. Give the answer as a fraction. Describe the optimal exercise strategy.

We obtain the initial option price $V_{0}^{A P}=\frac{4}{9}$. An optimal strategy is to always exercise at time t_{1}. (If $S_{1}=8$ we could also exercise at time t_{2}).

