EXAM 1 AMSC 424, Fall 2016

NO CALCULATORS allowed.

You need to SHOW ALL YOUR WORK in order to get credit.

1. $(30 \mathrm{pts})$ You get a loan of $2000 \$$ now. You make a payment P at the end of month 5 , month $6, \ldots$, month 20.
We have

$$
\beta^{-12}=1+r_{\mathrm{eff}}, \quad 2000=P\left(\beta^{5}+\cdots+\beta^{20}\right)=P \beta^{5} \frac{1-\beta^{16}}{1-\beta}
$$

(a) (15 pts) Assume the yearly effective interest rate is $r_{\text {eff }}=5 \%$. Write a Matlab program which prints out the payment P.
$b=1.05^{\wedge}(-1 / 12) ; P=2000 *(1-b) / b^{\wedge} 5 /\left(1-b^{\wedge} 16\right)$
(b) (15 pts) Assume the payment is $P=130 \$$. Write a Matlab program which prints out the yearly effective interest rate $r_{\text {eff }}$.

```
g = @(b) 130*b^5*(1-b^16)/(1-b)-2000;
b = fzero(g,[0,.9999]);
reff = b^-12-1
```

2. (30 pts) The interest rate per period Δt is ρ. At time t_{0} we have the following prices for European call options with strike K :

- for maturity $T=t_{6}$ the price of the option is V_{0}
- for maturity $\hat{T}=t_{10}$ the prince of the option is \hat{V}_{0}
(a) (10 pts) Make a sketch showing the two graphs for the option prices V_{0}, \hat{V}_{0} as a function of the stock price S_{0}. What is the asymptotic behavior for large values of S_{0} ?

Here $K_{1}:=(1+\rho)^{-6} K, K_{2}:=(1+\rho)^{-10} K$.
For large values of S_{0} we have $V_{0} \approx S_{0}-K_{1}$ (blue dashed line), $\hat{V}_{0} \approx S_{0}-K_{2}$ (red dashed line).
(b) (20 pts) Use the comparison principle to prove the inequality $V_{0} \leq \hat{V}_{0}$. Hint: Consider the two investment strategies
strategy 1 with values \hat{U}_{j} : at time t_{0} buy 1 option with maturity $\hat{T}=t_{10}$.
strategy 2 with values U_{j} : at time t_{0} buy 1 option with maturity $T=t_{6}$. At time t_{6} you
get the payoff from the option. If the payoff is >0 buy 1 stock and put the remaining money in the bank account. If the payoff at time t_{6} is 0 your final amount at time t_{10} is zero.
Find the values $\hat{U}_{0}, \hat{U}_{10}, U_{0}, U_{10}$. Then apply the comparison principle.
strategy 1: $\hat{U}_{0}=\hat{V}_{0}, \hat{U}_{10}=\left(S_{10}-K\right)_{+}$
strategy 2: $U_{0}=V_{0}, U_{6}=\left(S_{6}-K\right)_{+}$
case 1: $S_{6}>K$. Then $U_{6}=S_{6}-K$, we buy 1 stock for S_{6} and put $-K$ into the bank account.
At time t_{10} we have $U_{10}=S_{10}-K(1+\rho)^{4}$.
case 2: $S_{6} \leq K$. Then $U_{6}=0$ and $U_{10}=0$.
We have

$$
\begin{aligned}
& \hat{U}_{10}=\left(S_{10}-K\right)_{+} \geq S_{10}-K \geq S_{10}-K(1+\rho)^{4} \\
& \hat{U}_{10}=\left(S_{10}-K\right)_{+} \geq 0
\end{aligned}
$$

Hence in both case 1 and case 2 we have $\hat{U}_{10} \geq U_{10}$. Now the comparison principle implies $\hat{U}_{0} \geq U_{0}$, i.e., $\hat{V}_{0} \geq V_{0}$.
3. (40 pts) The interest rate is $\rho=25 \%$ per period Δt. A stock has at time t_{0} the price $S_{0}=4$ and follows a binomial tree model with $u=\frac{3}{2}$ and $d=\frac{1}{2}$. We consider options with maturity at t_{2} and strike $K=4$.
(a) (20 pts) Find the initial price $V_{0}^{E P}$ of a European put option. Give the answer as a fraction. We have the payoff function $H(S)=(4-S)_{+}$. The risk-neutral measure Q is given by

$$
q=\frac{1+\rho-d}{u-d}=\frac{1+\frac{1}{4}-\frac{1}{2}}{\frac{3}{2}-\frac{1}{2}}=\frac{3}{4}
$$

and $\beta:=(1+\rho)^{-1}=\frac{4}{5}$.

We obtain the initial option price $V_{0}^{E P}=\frac{9}{25}$.
(b) (20 pts) Find the initial price $V_{0}^{A P}$ of an American put option. Give the answer as a fraction. Describe the optimal exercise strategy.

We obtain the initial option price $V_{0}^{A P}=\frac{13}{25}$. The optimal strategy is: if $S_{1}=2$ exercise at time t_{1}, otherwise exercise at time t_{2}.

