EXAM 1 AMSC 424, Fall 2016

NO CALCULATORS allowed. You need to SHOW ALL YOUR WORK in order to get credit.

 (30 pts) You get a loan of 2000\$ now. You make a payment P at the end of month 5, month 6,..., month 20.
 We have

$$\beta^{-12} = 1 + r_{\text{eff}}, \qquad 2000 = P(\beta^5 + \dots + \beta^{20}) = P\beta^5 \frac{1 - \beta^{16}}{1 - \beta}$$

(a) (15 pts) Assume the yearly effective interest rate is $r_{\text{eff}} = 5\%$. Write a Matlab program which prints out the payment *P*.

```
b = 1.05^{(-1/12)}; P = 2000*(1-b)/b^{5/(1-b^{16})}
```

(b) (15 pts) Assume the payment is P = 130. Write a Matlab program which prints out the yearly effective interest rate r_{eff} .

g = @(b) 130*b^5*(1-b^16)/(1-b)-2000; b = fzero(g,[0,.9999]); reff = b^-12-1

- 2. (30 pts) The interest rate per period Δt is ρ . At time t_0 we have the following prices for European call options with strike K:
 - for maturity $T = t_6$ the price of the option is V_0
 - for maturity $\hat{T} = t_{10}$ the prince of the option is \hat{V}_0
 - (a) (10 pts) Make a sketch showing the two graphs for the option prices V_0 , \hat{V}_0 as a function of the stock price S_0 . What is the asymptotic behavior for large values of S_0 ?

Here $K_1 := (1+\rho)^{-6}K, K_2 := (1+\rho)^{-10}K.$

For large values of S_0 we have $V_0 \approx S_0 - K_1$ (blue dashed line), $\hat{V}_0 \approx S_0 - K_2$ (red dashed line).

(b) (20 pts) Use the comparison principle to prove the inequality $V_0 \leq \hat{V}_0$. *Hint:* Consider the two investment strategies

strategy 1 with values \hat{U}_j : at time t_0 buy 1 option with maturity $\hat{T} = t_{10}$. strategy 2 with values U_j : at time t_0 buy 1 option with maturity $T = t_6$. At time t_6 you get the payoff from the option. If the payoff is > 0 buy 1 stock and put the remaining money in the bank account. If the payoff at time t_6 is 0 your final amount at time t_{10} is zero.

Find the values \hat{U}_0 , \hat{U}_{10} , U_0 , U_{10} . Then apply the comparison principle. **strategy 1:** $\hat{U}_0 = \hat{V}_0$, $\begin{bmatrix} \hat{U}_{10} = (S_{10} - K)_+ \end{bmatrix}$ **strategy 2:** $U_0 = V_0$, $U_6 = (S_6 - K)_+$ **case 1:** $S_6 > K$. Then $U_6 = S_6 - K$, we buy 1 stock for S_6 and put -K into the bank account. At time t_{10} we have $\begin{bmatrix} U_{10} = S_{10} - K(1 + \rho)^4 \end{bmatrix}$. **case 2:** $S_6 \leq K$. Then $U_6 = 0$ and $\begin{bmatrix} U_{10} = 0 \end{bmatrix}$. We have

$$\hat{U}_{10} = (S_{10} - K)_+ \ge S_{10} - K \ge S_{10} - K(1+\rho)^4$$
$$\hat{U}_{10} = (S_{10} - K)_+ \ge 0$$

Hence in both case 1 and case 2 we have $\hat{U}_{10} \geq U_{10}$. Now the comparison principle implies $\hat{U}_0 \geq U_0$, i.e., $\hat{V}_0 \geq V_0$.

- **3.** (40 pts) The interest rate is $\rho = 25\%$ per period Δt . A stock has at time t_0 the price $S_0 = 4$ and follows a binomial tree model with $u = \frac{3}{2}$ and $d = \frac{1}{2}$. We consider options with maturity at t_2 and strike K = 4.
 - (a) (20 pts) Find the initial price V_0^{EP} of a **European put option**. Give the answer as a fraction. We have the payoff function $H(S) = (4 S)_+$. The risk-neutral measure Q is given by

 $q = \frac{1+\rho-d}{u-d} = \frac{1+\frac{1}{4}-\frac{1}{2}}{\frac{3}{2}-\frac{1}{2}} = \frac{3}{4}$

and
$$\beta := (1 + \rho)^{-1} = \frac{4}{5}$$
.
9 $V_2^2 = H(9) = 0$
6 $V_1^1 = \frac{4}{5}(\frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 1) = \frac{1}{5}$
4 $V_0^0 = \frac{4}{5}(\frac{3}{4} \cdot \frac{1}{5} + \frac{1}{4} \cdot \frac{6}{5}) = \frac{9}{25}$
2 $V_1^0 = \frac{4}{5}(\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 3) = \frac{6}{5}$
1 $V_2^0 = H(1) = 3$
We obtain the initial option price $V_0^{EP} = \frac{9}{25}$

(b) (20 pts) Find the initial price V_0^{AP} of an American put option. Give the answer as a fraction. Describe the optimal exercise strategy.

time t_1 , otherwise exercise at time t_2 .