Summary of topics for exam 2 and final exam

Exam 2 covered the following topics:
e Central Limit Theorem
e Using geometric Brownian motion for stock prices
e [to calculus
The final exam will cover the following topics:
e topics of exam 1
e topics of exam 2

e option price V(t) = v(r, s), Ito formula applied to V' (¢), hedging

Central Limit Theorem

We consider random variables X, X5, ..., Xy where
e X, ..., Xy are independent
e Xi,..., Xy have the same distribution
e o := F[X;] and o := Var [X|] exist.

Then the sum Y := X + - - -+ Xy has the expectation p := E[Y] = Ny and the variance 02 := Var[Y] =
No?.

The central limit theorem states that Y has approximately normal distribution N(u,o?). Equivalently,
the normalized random variable

Z = ) Y=pu+o02
has approximately standard normal distribution N(0,1). Recall that the density function (pdf) is ¢(z) =
(2m)~1/2e="*/2 and the distribution function (cdf) is ®(z).
This means that
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and the difference between the left hand side and the right hand side goes to zero as N — oo.
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We also have for the random variable g(Y') the expectation

[e.9]
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Problems:

.03 with prob.

1. We have independent random variables X, ..., Xy with X; = { 01 th brob
—. with prob.

N = N|=

LetY::X1+~~+X100.

(a) Find an approximation for P(Y < 1.3) using ®(---).

(b) Assume we have stock prices Sy,..., S0 with Sp = 15 and log(S;/S;—1) = X;. Find an
approximation for E[Sjgo] as an integral with ¢(z). Hint: log (S100/S0) = X1 + - -+ + Xi100-

(c) The antiderivative of e%*¢(z) is e*’/2®(z — a). Use this to evaluate the integral from (b).



Using geometric Brownian motion for stock prices

Recall that standard Brownian motion gives for a given time 7" the random variable B(7') which has

B(T
distribution N(0,7T). Therefore Z = T(1/2) has N (0, 1) distribution, and B(T) = T/2Z.
In the Black-Scholes model stock prices are modeled by geometric Brownian motion: Under the real-
world measure P we have

S(t) = Spett+oB0

where p is the drift and o is the volatility.

An important result is: Under the risk-neutral measure () we have

S(t) — Soeth+UB(t)

where the volatility ¢ is the same as under P, but the drift is now
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Note that this does not depend on the original drift u.

It is important to understand whether to use P or Q:

e For probabilities and expectations corresponding to actual frequencies use P

e For option prices use Q:

Consider a European option with maturity 7" and payoff function H(S). Then the price of
the option at time 0 is given by

Vo = e "TE?[H(S(T))] (1)

Problems:

1. The interest rate with continuous compounding is » = 10%. Under the real-world measure P the
stock price is given by
S(t) = Spet+oP

with Sy = 15, drift 4 = .4 and volatility ¢ = .2.

(a) Find P (S(4) < 15¢e) using ®(-- ).
1 it S > 15e

0 if S <1be
(a so-called binary option). Write the option price Vj using an integral with ¢(z).

(b) We consider a European option with maturity T = 4 and payoff function H(S) =

(c) Evaluate the integral from (b) using ®(---).

Ito calculus

Let F(t,x) be a function of two variables ¢, z. We can then plug in B(t) for # and obtain the stochastic

process
Y(t) = F (t, B(t))

For example, geometric Brownian motion Spet*T?B® is obtained with F(t,x) := Spet*o®.



Unfortunately, the function B(t) is not differentiable Hence also Y'(t) is not differentiable, and the usual
fundamental theorem of calculus Y (T") — ft o Y'(t)dt does NOT make sense.

The problem is that the increment AB; := B(tjﬂ)—B( t;) has distribution N (0, At;) where At; :=t,;41—t;.
Therefore the standard deviation is (At;)'/2, and AB;/At; is of order (At;)~/? which blows up as At; — 0.

In this situation one has to use “Ito calculus” instead. This is based on two key facts:

1. Let X (¢) denote a stochastic process which depends only on past values of B(t) and not on future
values. We can interprete X (f) as a betting strategy where we bet on increments of B(t). Our
fortune U(T) at time T is given by the limit of

X(t;)AB; (2)

as the partition on the interval [0,7] gets finer and finer. One can show: the limit of the sum
exists and gives the so-called “Ito integral”

N-1 T
i=0 N

Ito integral

and the process U(T) = fio X(t)dB is a martingale. This makes sense since we are betting on
the increments of the martingale B(t), and we know that the discrete version (2) is a martingale.

2. Let f(t) be continuous. Then the sum of f(¢;)(AB;)? converges to a limit:
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Note that we can take the limit of > .7 f(¢;)At; and obtain the same limit. Therefore we can use

the following recipe:

Replace (AB;)?*by At;. Then take the limit At; — 0.

Now we consider the function
Y(t) = F(t,B(t))
and want to obtain a result of the form

T

Y(T) - Y(0) = / (777)
t=0
We use a partition 0 = ¢ty < t; < -+ < ty = T of the interval [0,7] and have with the increments

AY; =Y (tj) = V(L)
Y(T) = Y(0) = AYy + - + AYy_,

For the increment AY; := Y (¢j41) — Y (t;) = F(tj+1, Bj+1) — F'(t;, Bj) we can use the Taylor series:

OF OF 1 O*F

AY}ZW(%B) Atj+ — 2 (tj, Bj) - AB; + = - e Q(t B;) - (AB;)? + higher order terms



Now we take the sum AYy + -+ + AYy_; and obtain in the limit

Y(T) — Y (0) = /tog]; (t, B(t))dB +/ {%—f(t,B(t))Jr%-aaT];(t,B(t)) dt

t=0
.
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Ito integral (martingale) normal?ntegral

This is the Ito Lemma. We obtain that the process Y () is a martingale if and only if

2
oF B 1 0°F

E(t’ (t))+2 82(t B(t)) =0 for allt

OF O*F

0
We need that the partial derivatives E(t,x) e —(t,x), Fr) ——(t, ) exist and are continuous (I omit some
T

additional technical assumptions here).

RECIPE: How to use the Ito Lemma for Y (¢) = F' (¢, B(t))

F F ’F
1. Find the partial derivatives %—t(t,x) g (t,x), ?‘9 5 (t, ).

2. Use the Taylor expansion for the increment AY with terms of order At, AB, AB%:

OF OF 1 0*F ,
AY = 2 (t.B) - At (£, B) - AB + 5 - 2(1& B)-AB?+hot.

3. Replace AB? by At. The term (---) AB gives an Ito integral [(---)dB, the terms (---) At give a
normal integral [(---)dt.

4. The process Y (¢) is a martingale if and only if in the integral [(---)dt the integrand is zero.

Problems:
1. Consider Y (t) = B(t)%.

(a) Use the Ito Lemma to find a formula for Y(T") — Y(0).
(b) Determine c¢ such that B(t)* — ¢t is a martingale.

2. Consider geometric Brownian motion S(t) = Spet+oB®),

(a) Use the Ito Lemma to find a formula for S(7") — S(0).

(b) Consider the discounted stock price process S(t) = e~"S(t). Determine g such that S(t) is a
martingale.

3. Consider Y (t) = B(t)* + atB(t)* + bt? with constants a, b.

(a) Use the Ito Lemma to find a formula for Y(7") — Y (0).
(b) Determine a, b such that Y(¢) is a martingale.
(c) Use 3(b) and 1(b) to find a formula for E [B(t)].



Option price V(t) = v(7,s)

If the maturity of a European option is T" the option price Vy = V(0) at time ¢ = 0 is given by 1.

Now we consider a time ¢ < T. Let 7 := T — t denote the time to maturity, and s := S(¢) denote the
current stock price.

T:=T—1t, s :=8(t)

Assume that the stock price S(t) is given by geometric Brownian motion. Then we have under the risk-
neutral measure ()

S(T) = S(t)e“QT+”B(T) — gehoror!/?Z with a random variable Z ~ N(0,1)

Hence we obtain for the option price V(¢) at time ¢

o0

V(t) = e EQ[H(S(T)) | S(t) = 8] = e~ / H <se“QT+Ml/2Z) o(2)dz

Z=—00

The option price V() is a function v(7, s) which depends on the time to maturity 7 and the current stock
price s.
Ito formula applied to V (¢)

If the stock price S(t) is given by geometric Brownian motion we have under the real-world measure P
S(t) _ Soeut—i-ch(t)

We saw that the Ito lemma gives

AS = (u+10%) S(t)At + oS(t)AB (3)

For (AS)? we obtain
AS? = (- )AL + (- ) AtAB + ¢*S(t)*AB?

In a sum ZN ' AS? the terms At? and AtAB will go to zero as the partition gets finer. Hence we obtain

AS? = 0%S(t)2 At

Now we consider a process Y (t) = F(t,S(t)) where F(t,z) is a function of two variables. Then the Ito
lemma gives

AY = %f(t S)At + 2F<t S)AS + 522—2@ S) \Ajj
o?S*At
vy -vo) = [ |G sen+ioserSheso]as [ S swas

where the second integral is an Ito integral with respect to dS. Note that by 3 we have dS = (,u + %02) S(t)dt+
oS (t)dB, so the second integral can be written as a sum of a dt integral and a dB integral.

Now we apply this Ito formula to the option price V(t) = v(7, s) where 7 := T — ¢ and s := S(t). By the

b _ 9 .
chain rule we have 5, = —7- yielding

Ov 0%v

ov
87_(7' s) + 102528 5 (7,

s (1,8)AS

AV = { s)} At +



Hedging

We now assume that the interest rate r. is zero. We consider an investment strategy where we have x(t)
stocks in our portfolio at time ¢ (all the remaining money is always in the bank account). Let U(t) denote
the value of our portfolio at time ¢. For interest rate 0 the change in value of U(t) is only due to the change
of stock price and we have

AU = z(t)AS

We have an option with option price V(¢) = v(7,s) and we want to construct a replicating investment
strategy with U(t) = V(¢) for all times ¢ € [0,7]. Then we need to have (all this is under the real-world
measure P)

AU = AV

9%

! 7,8) + 30°S*——(1,5) | At + a—Z(T, s)AS

0
$(t)AS = —E( 882 ) B

In order to achieve this we must match the AS terms, and have the At terms equal to zero:

ov ov 0%
ZL‘(t) = %(7—73) ) _E(’rv S) + %0252@(7—75)

The resulting hedging strategy x(t) = g—Z(T, s) with 7 := T —t and s := S(t) is called Delta hedging. We

obtain that a European option with any payoff can be replicated, hence we have a complete market.

Problems:

1. The stock price is given by geometric Brownian motion with Sy = 10, 4 = 1 and o = 2, the interest
rate is 7. = 0. Consider an option with payoff H(S) = S~

(a) Find a formula for the option price V(t) = v(7,s) as an integral with ¢. Then evaluate this
integral.
Hint: the antiderivative of e®¢(t) is e/2®(t — c).

(b) We conjecture that the option price has the form wv(r,s) = e
strategy x(t) which replicates the option price?

(c) Apply the Ito Lemma to the option price and find a formula AV = (---) At + (---) AS.

ars=1  What is the investment

(d) Let U(t) denote the value of our portfolio with investment strategy x(t). Compare AU with
AV and use this to find the value of a.

2. Now consider an option with payoff H(S) = S'/2. Answer the same questions as for the previous
problem. For (b), (c), (d) we conjecture that the option price has the form v(r,s) = e*s'/? with
some constant a.



