
Summary of topics for exam 2 and final exam

Exam 2 covered the following topics:

• Central Limit Theorem

• Using geometric Brownian motion for stock prices

• Ito calculus

The final exam will cover the following topics:

• topics of exam 1

• topics of exam 2

• option price V (t) = v(τ, s), Ito formula applied to V (t), hedging

Central Limit Theorem

We consider random variables X1, X2, . . . , XN where

• X1, . . . , XN are independent

• X1, . . . , XN have the same distribution

• µ0 := E [Xj] and σ2
0 := Var [Xj] exist.

Then the sum Y := X1 + · · ·+XN has the expectation µ := E[Y ] = Nµ0 and the variance σ2 := Var[Y ] =
Nσ2

0.

The central limit theorem states that Y has approximately normal distribution N(µ, σ2). Equivalently,
the normalized random variable

Z :=
Y − µ
σ

, Y = µ+ σZ

has approximately standard normal distribution N(0, 1). Recall that the density function (pdf) is φ(x) =
(2π)−1/2e−x

2/2 and the distribution function (cdf) is Φ(x).

This means that

P (a ≤ Y ≤ b) = P

(
a− µ
σ
≤ Z ≤ b− µ

σ

)
≈ Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
and the difference between the left hand side and the right hand side goes to zero as N →∞.

We also have for the random variable g(Y ) the expectation

E [g(Y )] = E [g(µ+ σZ)] ≈
∫ ∞
z=−∞

g(µ+ σz)φ(z)dz

Problems:

1. We have independent random variables X1, . . . , XN with Xj =

{
.03 with prob. 1

2

−.01 with prob. 1
2

.

Let Y := X1 + · · ·+X100.

(a) Find an approximation for P (Y ≤ 1.3) using Φ(· · · ).
(b) Assume we have stock prices S0, . . . , S100 with S0 = 15 and log(Sj/Sj−1) = Xj. Find an

approximation for E[S100] as an integral with φ(z). Hint: log (S100/S0) = X1 + · · ·+X100.

(c) The antiderivative of eazφ(z) is ea
2/2Φ(z − a). Use this to evaluate the integral from (b).



Using geometric Brownian motion for stock prices

Recall that standard Brownian motion gives for a given time T the random variable B(T ) which has

distribution N(0, T ). Therefore Z =
B(T )

T 1/2
has N(0, 1) distribution, and B(T ) = T 1/2Z.

In the Black-Scholes model stock prices are modeled by geometric Brownian motion: Under the real-
world measure P we have

S(t) = S0e
µt+σB(t)

where µ is the drift and σ is the volatility.

An important result is: Under the risk-neutral measure Q we have

S(t) = S0e
µ
Q
t+σB(t)

where the volatility σ is the same as under P , but the drift is now

µQ = rc − 1
2
σ2

Note that this does not depend on the original drift µ.

It is important to understand whether to use P or Q:

• For probabilities and expectations corresponding to actual frequencies use P

• For option prices use Q:

Consider a European option with maturity T and payoff function H(S). Then the price of
the option at time 0 is given by

V0 = e−rcTEQ [H(S(T ))] (1)

Problems:

1. The interest rate with continuous compounding is r = 10%. Under the real-world measure P the
stock price is given by

S(t) = S0e
µt+σB(t)

with S0 = 15, drift µ = .4 and volatility σ = .2.

(a) Find P (S(4) ≤ 15e) using Φ(· · · ).

(b) We consider a European option with maturity T = 4 and payoff functionH(S) =

{
1 if S > 15e

0 if S ≤ 15e

(a so-called binary option). Write the option price V0 using an integral with φ(z).

(c) Evaluate the integral from (b) using Φ(· · · ).

Ito calculus

Let F (t, x) be a function of two variables t, x. We can then plug in B(t) for x and obtain the stochastic
process

Y (t) := F (t, B(t))

For example, geometric Brownian motion S0e
µt+σB(t) is obtained with F (t, x) := S0e

µt+σx.



Unfortunately, the function B(t) is not differentiable. Hence also Y (t) is not differentiable, and the usual

fundamental theorem of calculus Y (T )− Y (0) =
∫ T
t=0

Y ′(t)dt does NOT make sense.

The problem is that the increment ∆Bj := B(tj+1)−B(tj) has distribution N(0,∆tj) where ∆tj := tj+1−tj.
Therefore the standard deviation is (∆tj)

1/2, and ∆Bj/∆tj is of order (∆tj)
−1/2 which blows up as ∆tj → 0.

In this situation one has to use “Ito calculus” instead. This is based on two key facts:

1. Let X(t) denote a stochastic process which depends only on past values of B(t) and not on future
values. We can interprete X(t) as a betting strategy where we bet on increments of B(t). Our
fortune U(T ) at time T is given by the limit of

N−1∑
j=0

X(tj)∆Bj (2)

as the partition on the interval [0, T ] gets finer and finer. One can show: the limit of the sum
exists and gives the so-called “Ito integral”

N−1∑
j=0

X(tj)∆Bj →
∫ T

t=0

X(t)dB︸ ︷︷ ︸
Ito integral

and the process U(T ) =
∫ T
t=0

X(t)dB is a martingale. This makes sense since we are betting on
the increments of the martingale B(t), and we know that the discrete version (2) is a martingale.

2. Let f(t) be continuous. Then the sum of f(tj)(∆Bj)
2 converges to a limit:

N−1∑
j=0

f(tj)(∆Bj)
2 →

∫ T

t=0

f(t)dt

Note that we can take the limit of
∑N−1

j=0 f(tj)∆tj and obtain the same limit. Therefore we can use
the following recipe:

Replace (∆Bj)
2by ∆tj. Then take the limit ∆tj → 0.

Now we consider the function
Y (t) := F (t, B(t))

and want to obtain a result of the form

Y (T )− Y (0) =

∫ T

t=0

(???)

We use a partition 0 = t0 < t1 < · · · < tN = T of the interval [0, T ] and have with the increments
∆Yj := Y (tj+1)− Y (tj)

Y (T )− Y (0) = ∆Y0 + · · ·+ ∆YN−1

For the increment ∆Yj := Y (tj+1)− Y (tj) = F (tj+1, Bj+1)− F (tj, Bj) we can use the Taylor series:

∆Yj =
∂F

∂t
(tj, Bj) ·∆tj +

∂F

∂x
(tj, Bj) ·∆Bj +

1

2
· ∂

2F

∂x2
(tj, Bj) · (∆Bj)

2 + higher order terms



Now we take the sum ∆Y0 + · · ·+ ∆YN−1 and obtain in the limit

Y (T )− Y (0) =

∫ T

t=0

∂F

∂x
(t, B(t)) dB︸ ︷︷ ︸

Ito integral (martingale)

+

∫ T

t=0

[
∂F

∂t
(t, B(t)) +

1

2
· ∂

2F

∂x2
(t, B(t))

]
dt︸ ︷︷ ︸

normal integral

This is the Ito Lemma. We obtain that the process Y (t) is a martingale if and only if

∂F

∂t
(t, B(t)) +

1

2
· ∂

2F

∂x2
(t, B(t)) = 0 for all t

We need that the partial derivatives
∂F

∂t
(t, x),

∂F

∂x
(t, x),

∂2F

∂x2
(t, x) exist and are continuous (I omit some

additional technical assumptions here).

RECIPE: How to use the Ito Lemma for Y (t) = F (t, B(t))

1. Find the partial derivatives
∂F

∂t
(t, x),

∂F

∂x
(t, x),

∂2F

∂x2
(t, x).

2. Use the Taylor expansion for the increment ∆Y with terms of order ∆t, ∆B, ∆B2:

∆Y =
∂F

∂t
(t, B) ·∆t+

∂F

∂x
(t, B) ·∆B +

1

2
· ∂

2F

∂x2
(t, B) ·∆B2 + h.o.t.

3. Replace ∆B2 by ∆t. The term (· · · ) ∆B gives an Ito integral
∫

(· · · )dB, the terms (· · · ) ∆t give a
normal integral

∫
(· · · )dt.

4. The process Y (t) is a martingale if and only if in the integral
∫

(· · · )dt the integrand is zero.

Problems:

1. Consider Y (t) = B(t)2.

(a) Use the Ito Lemma to find a formula for Y (T )− Y (0).

(b) Determine c such that B(t)2 − ct is a martingale.

2. Consider geometric Brownian motion S(t) = S0e
µt+σB(t).

(a) Use the Ito Lemma to find a formula for S(T )− S(0).

(b) Consider the discounted stock price process S̃(t) = e−rtS(t). Determine µ such that S̃(t) is a
martingale.

3. Consider Y (t) = B(t)4 + atB(t)2 + bt2 with constants a, b.

(a) Use the Ito Lemma to find a formula for Y (T )− Y (0).

(b) Determine a, b such that Y (t) is a martingale.

(c) Use 3(b) and 1(b) to find a formula for E [B(t)4].



Option price V (t) = v(τ, s)

If the maturity of a European option is T the option price V0 = V (0) at time t = 0 is given by 1.

Now we consider a time t ≤ T . Let τ := T − t denote the time to maturity, and s := S(t) denote the
current stock price.

τ := T − t, s := S(t)

Assume that the stock price S(t) is given by geometric Brownian motion. Then we have under the risk-
neutral measure Q

S(T ) = S(t)eµQτ+σB(τ) = seµQτ+στ
1/2Z with a random variable Z ∼ N(0, 1)

Hence we obtain for the option price V (t) at time t

V (t) = e−rcτEQ [H(S(T )) | S(t) = s] = e−rcτ
∫ ∞
z=−∞

H
(
seµQτ+στ

1/2Z
)
φ(z)dz

The option price V (t) is a function v(τ, s) which depends on the time to maturity τ and the current stock
price s.

Ito formula applied to V (t)

If the stock price S(t) is given by geometric Brownian motion we have under the real-world measure P

S(t) = S0e
µt+σB(t)

We saw that the Ito lemma gives

∆S =
(
µ+ 1

2
σ2
)
S(t)∆t+ σS(t)∆B (3)

For (∆S)2 we obtain
∆S2 = (· · · )∆t2 + (· · · ) ∆t∆B + σ2S(t)2∆B2

In a sum
∑N−1

j=0 ∆S2 the terms ∆t2 and ∆t∆B will go to zero as the partition gets finer. Hence we obtain

∆S2 = σ2S(t)2∆t

Now we consider a process Y (t) = F (t, S(t)) where F (t, x) is a function of two variables. Then the Ito
lemma gives

∆Y =
∂F

∂t
(t, S)∆t+

∂F

∂x
(t, S)∆S + 1

2

∂2F

∂x2
(t, S) ∆S2︸︷︷︸

σ2S2∆t

Y (T )− Y (0) =

∫ T

t=0

[
∂F

∂t
(t, S(t)) + 1

2
σ2S(t)2

∂2F

∂x2
(t, S(t))

]
dt+

∫ T

t=0

∂F

∂x
(t, S(t))dS

where the second integral is an Ito integral with respect to dS. Note that by 3 we have dS =
(
µ+ 1

2
σ2
)
S(t)dt+

σS(t)dB, so the second integral can be written as a sum of a dt integral and a dB integral.

Now we apply this Ito formula to the option price V (t) = v(τ, s) where τ := T − t and s := S(t). By the
chain rule we have ∂

∂t
= − ∂

∂τ
yielding

∆V =

[
−∂v
∂τ

(τ, s) + 1
2
σ2S2∂

2v

∂s2
(τ, s)

]
∆t+

∂v

∂s
(τ, s)∆S



Hedging

We now assume that the interest rate rc is zero. We consider an investment strategy where we have x(t)
stocks in our portfolio at time t (all the remaining money is always in the bank account). Let U(t) denote
the value of our portfolio at time t. For interest rate 0 the change in value of U(t) is only due to the change
of stock price and we have

∆U = x(t)∆S

We have an option with option price V (t) = v(τ, s) and we want to construct a replicating investment
strategy with U(t) = V (t) for all times t ∈ [0, T ]. Then we need to have (all this is under the real-world
measure P )

∆U = ∆V

x(t)∆S =

[
−∂v
∂τ

(τ, s) + 1
2
σ2S2∂

2v

∂s2
(τ, s)

]
∆t+

∂v

∂s
(τ, s)∆S

In order to achieve this we must match the ∆S terms, and have the ∆t terms equal to zero:

x(t) =
∂v

∂s
(τ, s) , −∂v

∂τ
(τ, s) + 1

2
σ2S2∂

2v

∂s2
(τ, s)

The resulting hedging strategy x(t) = ∂v
∂s

(τ, s) with τ := T − t and s := S(t) is called Delta hedging. We
obtain that a European option with any payoff can be replicated, hence we have a complete market.

Problems:

1. The stock price is given by geometric Brownian motion with S0 = 10, µ = 1 and σ = 2, the interest
rate is rc = 0. Consider an option with payoff H(S) = S−1.

(a) Find a formula for the option price V (t) = v(τ, s) as an integral with φ. Then evaluate this
integral.
Hint: the antiderivative of ectφ(t) is ec

2/2Φ(t− c).
(b) We conjecture that the option price has the form v(τ, s) = eaτs−1. What is the investment

strategy x(t) which replicates the option price?

(c) Apply the Ito Lemma to the option price and find a formula ∆V = (· · · ) ∆t+ (· · · ) ∆S.

(d) Let U(t) denote the value of our portfolio with investment strategy x(t). Compare ∆U with
∆V and use this to find the value of a.

2. Now consider an option with payoff H(S) = S1/2. Answer the same questions as for the previous
problem. For (b), (c), (d) we conjecture that the option price has the form v(τ, s) = eaτs1/2 with
some constant a.


