Summary of topics for exam 2 and final exam

Exam 2 covered the following topics:

- Central Limit Theorem
- Using geometric Brownian motion for stock prices
- Ito calculus

The final exam will cover the following topics:

- topics of exam 1
- topics of exam 2
- option price $V(t)=v(\tau, s)$, Ito formula applied to $V(t)$, hedging

Central Limit Theorem

We consider random variables $X_{1}, X_{2}, \ldots, X_{N}$ where

- X_{1}, \ldots, X_{N} are independent
- X_{1}, \ldots, X_{N} have the same distribution
- $\mu_{0}:=E\left[X_{j}\right]$ and $\sigma_{0}^{2}:=\operatorname{Var}\left[X_{j}\right]$ exist.

Then the sum $Y:=X_{1}+\cdots+X_{N}$ has the expectation $\mu:=E[Y]=N \mu_{0}$ and the variance $\sigma^{2}:=\operatorname{Var}[Y]=$ $N \sigma_{0}^{2}$.
The central limit theorem states that Y has approximately normal distribution $N\left(\mu, \sigma^{2}\right)$. Equivalently, the normalized random variable

$$
Z:=\frac{Y-\mu}{\sigma}, \quad Y=\mu+\sigma Z
$$

has approximately standard normal distribution $N(0,1)$. Recall that the density function (pdf) is $\phi(x)=$ $(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$ and the distribution function (cdf) is $\Phi(x)$.
This means that

$$
P(a \leq Y \leq b)=P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \approx \Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

and the difference between the left hand side and the right hand side goes to zero as $N \rightarrow \infty$.
We also have for the random variable $g(Y)$ the expectation

$$
E[g(Y)]=E[g(\mu+\sigma Z)] \approx \int_{z=-\infty}^{\infty} g(\mu+\sigma z) \phi(z) d z
$$

Problems:

1. We have independent random variables X_{1}, \ldots, X_{N} with $X_{j}=\left\{\begin{array}{ll}.03 & \text { with prob. } \frac{1}{2} \\ -.01 & \text { with prob. } \frac{1}{2}\end{array}\right.$. Let $Y:=X_{1}+\cdots+X_{100}$.
(a) Find an approximation for $P(Y \leq 1.3)$ using $\Phi(\cdots)$.
(b) Assume we have stock prices S_{0}, \ldots, S_{100} with $S_{0}=15$ and $\log \left(S_{j} / S_{j-1}\right)=X_{j}$. Find an approximation for $E\left[S_{100}\right]$ as an integral with $\phi(z)$. Hint: $\log \left(S_{100} / S_{0}\right)=X_{1}+\cdots+X_{100}$.
(c) The antiderivative of $e^{a z} \phi(z)$ is $e^{a^{2} / 2} \Phi(z-a)$. Use this to evaluate the integral from (b).

Using geometric Brownian motion for stock prices

Recall that standard Brownian motion gives for a given time T the random variable $B(T)$ which has distribution $N(0, T)$. Therefore $Z=\frac{B(T)}{T^{1 / 2}}$ has $N(0,1)$ distribution, and $B(T)=T^{1 / 2} Z$.
In the Black-Scholes model stock prices are modeled by geometric Brownian motion: Under the realworld measure P we have

$$
S(t)=S_{0} e^{\mu t+\sigma B(t)}
$$

where μ is the drift and σ is the volatility.
An important result is: Under the risk-neutral measure Q we have

$$
S(t)=S_{0} e^{\mu_{Q} t+\sigma B(t)}
$$

where the volatility σ is the same as under P, but the drift is now

$$
\mu_{Q}=r_{c}-\frac{1}{2} \sigma^{2}
$$

Note that this does not depend on the original drift μ.
It is important to understand whether to use P or Q :

- For probabilities and expectations corresponding to actual frequencies use P
- For option prices use Q :

Consider a European option with maturity T and payoff function $H(S)$. Then the price of the option at time 0 is given by

$$
\begin{equation*}
V_{0}=e^{-r_{c} T} E^{Q}[H(S(T))] \tag{1}
\end{equation*}
$$

Problems:

1. The interest rate with continuous compounding is $r=10 \%$. Under the real-world measure P the stock price is given by

$$
S(t)=S_{0} e^{\mu t+\sigma B(t)}
$$

with $S_{0}=15$, drift $\mu=.4$ and volatility $\sigma=.2$.
(a) Find $P(S(4) \leq 15 e)$ using $\Phi(\cdots)$.
(b) We consider a European option with maturity $T=4$ and payoff function $H(S)= \begin{cases}1 & \text { if } S>15 e \\ 0 & \text { if } S \leq 15 e\end{cases}$ (a so-called binary option). Write the option price V_{0} using an integral with $\phi(z)$.
(c) Evaluate the integral from (b) using $\Phi(\cdots)$.

Ito calculus

Let $F(t, x)$ be a function of two variables t, x. We can then plug in $B(t)$ for x and obtain the stochastic process

$$
Y(t):=F(t, B(t))
$$

For example, geometric Brownian motion $S_{0} e^{\mu t+\sigma B(t)}$ is obtained with $F(t, x):=S_{0} e^{\mu t+\sigma x}$.

Unfortunately, the function $B(t)$ is not differentiable. Hence also $Y(t)$ is not differentiable, and the usual fundamental theorem of calculus $Y(T)-Y(0)=\int_{t=0}^{T} Y^{\prime}(t) d t$ does NOT make sense.
The problem is that the increment $\Delta B_{j}:=B\left(t_{j+1}\right)-B\left(t_{j}\right)$ has distribution $N\left(0, \Delta t_{j}\right)$ where $\Delta t_{j}:=t_{j+1}-t_{j}$. Therefore the standard deviation is $\left(\Delta t_{j}\right)^{1 / 2}$, and $\Delta B_{j} / \Delta t_{j}$ is of order $\left(\Delta t_{j}\right)^{-1 / 2}$ which blows up as $\Delta t_{j} \rightarrow 0$. In this situation one has to use "Ito calculus" instead. This is based on two key facts:

1. Let $X(t)$ denote a stochastic process which depends only on past values of $B(t)$ and not on future values. We can interprete $X(t)$ as a betting strategy where we bet on increments of $B(t)$. Our fortune $U(T)$ at time T is given by the limit of

$$
\begin{equation*}
\sum_{j=0}^{N-1} X\left(t_{j}\right) \Delta B_{j} \tag{2}
\end{equation*}
$$

as the partition on the interval $[0, T]$ gets finer and finer. One can show: the limit of the sum exists and gives the so-called "Ito integral"

$$
\sum_{j=0}^{N-1} X\left(t_{j}\right) \Delta B_{j} \rightarrow \underbrace{\int_{t=0}^{T} X(t) d B}_{\text {Ito integral }}
$$

and the process $U(T)=\int_{t=0}^{T} X(t) d B$ is a martingale. This makes sense since we are betting on the increments of the martingale $B(t)$, and we know that the discrete version (2) is a martingale.
2. Let $f(t)$ be continuous. Then the sum of $f\left(t_{j}\right)\left(\Delta B_{j}\right)^{2}$ converges to a limit:

$$
\sum_{j=0}^{N-1} f\left(t_{j}\right)\left(\Delta B_{j}\right)^{2} \rightarrow \int_{t=0}^{T} f(t) d t
$$

Note that we can take the limit of $\sum_{j=0}^{N-1} f\left(t_{j}\right) \Delta t_{j}$ and obtain the same limit. Therefore we can use the following recipe:

$$
\text { Replace }\left(\Delta B_{j}\right)^{2} \text { by } \Delta t_{j} \text {. Then take the limit } \Delta t_{j} \rightarrow 0
$$

Now we consider the function

$$
Y(t):=F(t, B(t))
$$

and want to obtain a result of the form

$$
Y(T)-Y(0)=\int_{t=0}^{T}(? ? ?)
$$

We use a partition $0=t_{0}<t_{1}<\cdots<t_{N}=T$ of the interval $[0, T]$ and have with the increments $\Delta Y_{j}:=Y\left(t_{j+1}\right)-Y\left(t_{j}\right)$

$$
Y(T)-Y(0)=\Delta Y_{0}+\cdots+\Delta Y_{N-1}
$$

For the increment $\Delta Y_{j}:=Y\left(t_{j+1}\right)-Y\left(t_{j}\right)=F\left(t_{j+1}, B_{j+1}\right)-F\left(t_{j}, B_{j}\right)$ we can use the Taylor series:

$$
\Delta Y_{j}=\frac{\partial F}{\partial t}\left(t_{j}, B_{j}\right) \cdot \Delta t_{j}+\frac{\partial F}{\partial x}\left(t_{j}, B_{j}\right) \cdot \Delta B_{j}+\frac{1}{2} \cdot \frac{\partial^{2} F}{\partial x^{2}}\left(t_{j}, B_{j}\right) \cdot\left(\Delta B_{j}\right)^{2}+\text { higher order terms }
$$

Now we take the sum $\Delta Y_{0}+\cdots+\Delta Y_{N-1}$ and obtain in the limit

$$
Y(T)-Y(0)=\underbrace{\int_{t=0}^{T} \frac{\partial F}{\partial x}(t, B(t)) d B}_{\text {Ito integral (martingale) }}+\underbrace{\int_{t=0}^{T}\left[\frac{\partial F}{\partial t}(t, B(t))+\frac{1}{2} \cdot \frac{\partial^{2} F}{\partial x^{2}}(t, B(t))\right] d t}_{\text {normal integral }}
$$

This is the Ito Lemma. We obtain that the process $Y(t)$ is a martingale if and only if

$$
\frac{\partial F}{\partial t}(t, B(t))+\frac{1}{2} \cdot \frac{\partial^{2} F}{\partial x^{2}}(t, B(t))=0 \quad \text { for all } t
$$

We need that the partial derivatives $\frac{\partial F}{\partial t}(t, x), \frac{\partial F}{\partial x}(t, x), \frac{\partial^{2} F}{\partial x^{2}}(t, x)$ exist and are continuous (I omit some additional technical assumptions here).

RECIPE: How to use the Ito Lemma for $Y(t)=F(t, B(t))$

1. Find the partial derivatives $\frac{\partial F}{\partial t}(t, x), \frac{\partial F}{\partial x}(t, x), \frac{\partial^{2} F}{\partial x^{2}}(t, x)$.
2. Use the Taylor expansion for the increment ΔY with terms of order $\Delta t, \Delta B, \Delta B^{2}$:

$$
\Delta Y=\frac{\partial F}{\partial t}(t, B) \cdot \Delta t+\frac{\partial F}{\partial x}(t, B) \cdot \Delta B+\frac{1}{2} \cdot \frac{\partial^{2} F}{\partial x^{2}}(t, B) \cdot \Delta B^{2}+\text { h.o.t. }
$$

3. Replace ΔB^{2} by Δt. The term $(\cdots) \Delta B$ gives an Ito integral $\int(\cdots) d B$, the terms $(\cdots) \Delta t$ give a normal integral $\int(\cdots) d t$.
4. The process $Y(t)$ is a martingale if and only if in the integral $\int(\cdots) d t$ the integrand is zero.

Problems:

1. Consider $Y(t)=B(t)^{2}$.
(a) Use the Ito Lemma to find a formula for $Y(T)-Y(0)$.
(b) Determine c such that $B(t)^{2}-c t$ is a martingale.
2. Consider geometric Brownian motion $S(t)=S_{0} e^{\mu t+\sigma B(t)}$.
(a) Use the Ito Lemma to find a formula for $S(T)-S(0)$.
(b) Consider the discounted stock price process $\tilde{S}(t)=e^{-r t} S(t)$. Determine μ such that $\tilde{S}(t)$ is a martingale.
3. Consider $Y(t)=B(t)^{4}+a t B(t)^{2}+b t^{2}$ with constants a, b.
(a) Use the Ito Lemma to find a formula for $Y(T)-Y(0)$.
(b) Determine a, b such that $Y(t)$ is a martingale.
(c) Use $3(\mathrm{~b})$ and $1(\mathrm{~b})$ to find a formula for $E\left[B(t)^{4}\right]$.

Option price $V(t)=v(\tau, s)$

If the maturity of a European option is T the option price $V_{0}=V(0)$ at time $t=0$ is given by 1 .
Now we consider a time $t \leq T$. Let $\tau:=T-t$ denote the time to maturity, and $s:=S(t)$ denote the current stock price.

$$
\tau:=T-t, \quad s:=S(t)
$$

Assume that the stock price $S(t)$ is given by geometric Brownian motion. Then we have under the riskneutral measure Q

$$
S(T)=S(t) e^{\mu_{Q} \tau+\sigma B(\tau)}=s e^{\mu_{Q} \tau+\sigma \tau^{1 / 2} Z} \quad \text { with a random variable } Z \sim N(0,1)
$$

Hence we obtain for the option price $V(t)$ at time t

$$
V(t)=e^{-r_{c} \tau} E^{Q}[H(S(T)) \mid S(t)=s]=e^{-r_{c} \tau} \int_{z=-\infty}^{\infty} H\left(s e^{\mu_{Q} \tau+\sigma \tau^{1 / 2} Z}\right) \phi(z) d z
$$

The option price $V(t)$ is a function $v(\tau, s)$ which depends on the time to maturity τ and the current stock price s.

Ito formula applied to $V(t)$

If the stock price $S(t)$ is given by geometric Brownian motion we have under the real-world measure P

$$
S(t)=S_{0} e^{\mu t+\sigma B(t)}
$$

We saw that the Ito lemma gives

$$
\begin{equation*}
\Delta S=\left(\mu+\frac{1}{2} \sigma^{2}\right) S(t) \Delta t+\sigma S(t) \Delta B \tag{3}
\end{equation*}
$$

For $(\Delta S)^{2}$ we obtain

$$
\Delta S^{2}=(\cdots) \Delta t^{2}+(\cdots) \Delta t \Delta B+\sigma^{2} S(t)^{2} \Delta B^{2}
$$

In a sum $\sum_{j=0}^{N-1} \Delta S^{2}$ the terms Δt^{2} and $\Delta t \Delta B$ will go to zero as the partition gets finer. Hence we obtain

$$
\Delta S^{2}=\sigma^{2} S(t)^{2} \Delta t
$$

Now we consider a process $Y(t)=F(t, S(t))$ where $F(t, x)$ is a function of two variables. Then the Ito lemma gives

$$
\begin{aligned}
\Delta Y & =\frac{\partial F}{\partial t}(t, S) \Delta t+\frac{\partial F}{\partial x}(t, S) \Delta S+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(t, S) \underbrace{\Delta S^{2}}_{\sigma^{2} S^{2} \Delta t} \\
Y(T)-Y(0) & =\int_{t=0}^{T}\left[\frac{\partial F}{\partial t}(t, S(t))+\frac{1}{2} \sigma^{2} S(t)^{2} \frac{\partial^{2} F}{\partial x^{2}}(t, S(t))\right] d t+\int_{t=0}^{T} \frac{\partial F}{\partial x}(t, S(t)) d S
\end{aligned}
$$

where the second integral is an Ito integral with respect to $d S$. Note that by 3 we have $d S=\left(\mu+\frac{1}{2} \sigma^{2}\right) S(t) d t+$ $\sigma S(t) d B$, so the second integral can be written as a sum of a $d t$ integral and a $d B$ integral.
Now we apply this Ito formula to the option price $V(t)=v(\tau, s)$ where $\tau:=T-t$ and $s:=S(t)$. By the chain rule we have $\frac{\partial}{\partial t}=-\frac{\partial}{\partial \tau}$ yielding

$$
\Delta V=\left[-\frac{\partial v}{\partial \tau}(\tau, s)+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} v}{\partial s^{2}}(\tau, s)\right] \Delta t+\frac{\partial v}{\partial s}(\tau, s) \Delta S
$$

Hedging

We now assume that the interest rate r_{c} is zero. We consider an investment strategy where we have $x(t)$ stocks in our portfolio at time t (all the remaining money is always in the bank account). Let $U(t)$ denote the value of our portfolio at time t. For interest rate 0 the change in value of $U(t)$ is only due to the change of stock price and we have

$$
\Delta U=x(t) \Delta S
$$

We have an option with option price $V(t)=v(\tau, s)$ and we want to construct a replicating investment strategy with $U(t)=V(t)$ for all times $t \in[0, T]$. Then we need to have (all this is under the real-world measure P)

$$
\begin{aligned}
\Delta U & =\Delta V \\
x(t) \Delta S & =\left[-\frac{\partial v}{\partial \tau}(\tau, s)+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} v}{\partial s^{2}}(\tau, s)\right] \Delta t+\frac{\partial v}{\partial s}(\tau, s) \Delta S
\end{aligned}
$$

In order to achieve this we must match the ΔS terms, and have the Δt terms equal to zero:

$$
x(t)=\frac{\partial v}{\partial s}(\tau, s), \quad-\frac{\partial v}{\partial \tau}(\tau, s)+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} v}{\partial s^{2}}(\tau, s)
$$

The resulting hedging strategy $x(t)=\frac{\partial v}{\partial s}(\tau, s)$ with $\tau:=T-t$ and $s:=S(t)$ is called Delta hedging. We obtain that a European option with any payoff can be replicated, hence we have a complete market.
Problems:

1. The stock price is given by geometric Brownian motion with $S_{0}=10, \mu=1$ and $\sigma=2$, the interest rate is $r_{c}=0$. Consider an option with payoff $H(S)=S^{-1}$.
(a) Find a formula for the option price $V(t)=v(\tau, s)$ as an integral with ϕ. Then evaluate this integral.
Hint: the antiderivative of $e^{c t} \phi(t)$ is $e^{c^{2} / 2} \Phi(t-c)$.
(b) We conjecture that the option price has the form $v(\tau, s)=e^{a \tau} s^{-1}$. What is the investment strategy $x(t)$ which replicates the option price?
(c) Apply the Ito Lemma to the option price and find a formula $\Delta V=(\cdots) \Delta t+(\cdots) \Delta S$.
(d) Let $U(t)$ denote the value of our portfolio with investment strategy $x(t)$. Compare ΔU with ΔV and use this to find the value of a.
2. Now consider an option with payoff $H(S)=S^{1 / 2}$. Answer the same questions as for the previous problem. For (b), (c), (d) we conjecture that the option price has the form $v(\tau, s)=e^{a \tau} s^{1 / 2}$ with some constant a.
