Solution of Problems

1. The stock price is given by geometric Brownian motion with $S_{0}=10, \mu=1$ and $\sigma=2$, the interest rate is $r_{c}=0$. Consider an option with payoff $H(S)=S^{-1}$.
(a) Find a formula for the option price $V(t)=v(\tau, s)$ as an integral with ϕ. Then evaluate this integral.
Hint: the antiderivative of $e^{c t} \phi(t)$ is $e^{c^{2} / 2} \Phi(t-c)$.
$\mu_{Q}=r_{c}-\sigma^{2} / 2=-2$, with $\tau=T-t$ and $s=S(t)$ we have

$$
\begin{aligned}
V(t) & =v(\tau, s)=e^{-r_{c} \tau} \int_{z=-\infty}^{\infty} H\left(s e^{\mu_{Q} \tau+\sigma \tau^{1 / 2} z}\right) \phi(z) d z \\
& =\int_{z=-\infty}^{\infty}\left(s e^{-2 \tau+2 \tau^{1 / 2} z}\right)^{-1} \phi(z) d z=s^{-1} e^{2 \tau} \underbrace{\int_{c^{2}}^{\infty} e^{-2 \tau^{1 / 2} z} \phi(z) d z}_{z=-\infty} \\
& {\left[e^{c^{2} / 2} \Phi(z-c)\right]_{z=-\infty}^{\infty}=e^{c^{2} / 2} }
\end{aligned}
$$

using the hint with $c:=-2 \tau^{1 / 2}$, hence $e^{c^{2} / 2}=e^{2 \tau}$ yielding

$$
V(t)=v(\tau, s)=s^{-1} e^{2 \tau} e^{2 \tau}=s^{-1} e^{4 \tau}
$$

(b) We conjecture that the option price has the form $v(\tau, s)=e^{a \tau} s^{-1}$. What is the investment strategy $x(t)$ which replicates the option price?
We use "Delta-hedging" with $x(t)=\frac{\partial v(\tau, s)}{\partial s}=\frac{\partial}{\partial s}\left(e^{a \tau} s^{-1}\right)=-e^{a \tau} s^{-2}$
(c) Apply the Ito Lemma to the option price and find a formula $\Delta V=(\cdots) \Delta t+(\cdots) \Delta S$.

We use that $(\Delta S)^{2}=\sigma^{2} S^{2} \Delta t$. For $v(\tau, s)=e^{a \tau} s^{-1}$ we have $\frac{\partial v}{\partial \tau}=a e^{a \tau} s^{-1}, \frac{\partial v}{\partial s}=e^{a \tau}\left(-s^{-2}\right)$, $\frac{\partial^{2} v}{\partial s^{2}}=e^{a \tau} 2 s^{-3}$ yielding

$$
\begin{aligned}
\Delta V & =-\frac{\partial v}{\partial \tau}(\tau, S) \Delta t+\frac{\partial v}{\partial s}(\tau, S) \Delta S+\frac{1}{2} \frac{\partial^{2} v}{\partial s^{2}}(\tau, S) \underbrace{\Delta S^{2}}_{\sigma^{2} S^{2} \Delta t} \\
& =-a e^{a \tau} S^{-1} \Delta t-e^{a \tau} S^{-2} \Delta S+\frac{1}{2} e^{a \tau} 2 S^{-3} 4 S^{2} \Delta t \\
& =[-a+4] e^{a \tau} S^{-1} \Delta t-e^{a \tau} S^{-2} \Delta S
\end{aligned}
$$

(d) Let $U(t)$ denote the value of our portfolio with investment strategy $x(t)$. Compare ΔU with ΔV and use this to find the value of a.
Since $r_{c}=0$ the change in $U(t)$ is only caused by changes in $S(t)$ and we have

$$
\begin{aligned}
& \Delta U=x(t) \Delta S \\
& \Delta V=-e^{a \tau} S^{-2} \Delta S+[-a+4] e^{a \tau} S^{-1} \Delta t
\end{aligned}
$$

For a replicating portfolio we want $U(t)=V(t)$ for all times, i.e., $\Delta U=\Delta V$. This holds if

$$
x(t)=-e^{a \tau} S(t)^{-2}, \quad-a+4=0
$$

If we use the Delta-hedging strategy from (b) and let $a=4$ we obtain that $U(t)=V(t)=e^{4 \tau} s^{-1}$ where $\tau=T-t$ and $s=S(t)$. Since with our investment strategy we exactly replicate the payoff $S(T)^{-1}$ at maturity T, by the comparison principle the option price must be equal to $U(t)$ for all times $t \in[0, T]$. Note that this is the same option price we obtained in (a) by evaluating the integral.
2. Now consider an option with payoff $H(S)=S^{1 / 2}$. Answer the same questions as for the previous problem.
(a) We proceed exactly as in 1(a):

$$
\begin{aligned}
& V(t)=v(\tau, s)=e^{-r_{c} \tau} \int_{z=-\infty}^{\infty} H\left(s e^{\mu_{Q} \tau+\sigma \tau^{1 / 2} z}\right) \phi(z) d z \\
&=\int_{z=-\infty}^{\infty}\left(s e^{-2 \tau+2 \tau^{1 / 2} z}\right)^{1 / 2} \phi(z) d z=s^{1 / 2} e^{-\tau} \underbrace{\int_{z=-\infty}^{\infty} e^{\tau^{1 / 2} z} \phi(z) d z} \\
&\left.\qquad e^{c^{2} / 2} \Phi(z-c)\right]_{z=-\infty}^{\infty}=e^{c^{2} / 2}
\end{aligned}
$$

using the hint with $c:=\tau^{1 / 2}$, hence $e^{c^{2} / 2}=e^{\tau / 2}$ yielding

$$
V(t)=v(\tau, s)=s^{1 / 2} e^{-\tau} e^{\tau / 2}=s^{1 / 2} e^{-\tau / 2}
$$

(b) We conjecture that the option price has the form $v(\tau, s)=e^{a \tau} s^{1 / 2}$. What is the investment strategy $x(t)$ which replicates the option price?
We use "Delta-hedging" with $x(t)=\frac{\partial v(\tau, s)}{\partial s}=\frac{\partial}{\partial s}\left(e^{a \tau} s^{1 / 2}\right)=e^{a \tau} \frac{1}{2} s^{-1 / 2}$
(c) For $v(\tau, s)=e^{a \tau} s^{1 / 2}$ we have $\frac{\partial v}{\partial \tau}=a e^{a \tau} s^{1 / 2}, \frac{\partial v}{\partial s}=e^{a \tau} \frac{1}{2} s^{-1 / 2}, \frac{\partial^{2} v}{\partial s^{2}}=e^{a \tau}\left(-\frac{1}{4}\right) s^{-3 / 2}$ yielding

$$
\begin{aligned}
\Delta V & =-\frac{\partial v}{\partial \tau}(\tau, S) \Delta t+\frac{\partial v}{\partial s}(\tau, S) \Delta S+\frac{1}{2} \frac{\partial^{2} v}{\partial s^{2}}(\tau, S) \underbrace{\Delta S^{2}}_{\sigma^{2} S^{2} \Delta t} \\
& =-a e^{a \tau} S^{1 / 2} \Delta t+e^{a \tau} \frac{1}{2} S^{-1 / 2} \Delta S+\frac{1}{2} e^{a \tau}\left(-\frac{1}{4}\right) S^{-3 / 2} 4 S^{2} \Delta t \\
& =\left[-a-\frac{1}{2}\right] e^{a \tau} S^{1 / 2} \Delta t+e^{a \tau} \frac{1}{2} S^{-1 / 2} \Delta S
\end{aligned}
$$

(d) We proceed as in 1(d):

$$
\begin{aligned}
& \Delta U=x(t) \Delta S \\
& \Delta V=e^{a \tau} \frac{1}{2} S^{-1 / 2} \Delta S+\left[-a-\frac{1}{2}\right] e^{a \tau} S^{-1} \Delta t
\end{aligned}
$$

For a replicating portfolio we want $U(t)=V(t)$ for all times, i.e., $\Delta U=\Delta V$. This holds if

$$
x(t)=e^{a \tau} \frac{1}{2} S(t)^{-1 / 2}, \quad-a-\frac{1}{2}=0
$$

Hence we use Delta-hedging as in (b) and we use $a=-\frac{1}{2}$. As in 1(d) this implies that the option price is $V(t)=e^{-\tau / 2} s^{1 / 2}$. Note that this is the same option price we obtained in (a) by evaluating the integral.

