SOLUTION OF EXAM 1 AMSC 424, Fall 2016

NO CALCULATORS allowed.
You need to SHOW ALL YOUR WORK in order to get credit.

1. $(35 \mathrm{pts})$ We throw an ideal dice. If you get " 1 " you lose 1 point, if you get " 5 " or " 6 " you win 2 points. You play 80 rounds of this game. Let Y denote the total number of points.
(a) (20 pts) What is the probability that $Y \geq 60$? Give an approximate answer using $\Phi(\cdots) \cdot \Phi(\cdots)$. $X= \begin{cases}-1 & \text { with prob. } \frac{1}{6} \\ 0 & \text { with prob. } \frac{3}{6} \\ 2 & \text { with prob. } \frac{2}{6}\end{cases}$ $\mu_{0}:=E[X]=(-1+2 \cdot 2) / 6=\frac{1}{2}, E\left[X^{2}\right]=\left(1+2 \cdot 2^{2}\right) / 6=\frac{3}{2}, \sigma_{0}^{2}=\operatorname{Var}[X]=\frac{3}{2}-\frac{1}{4}=\frac{5}{4}$ $\mu=80 \mu_{0}=40, \sigma^{2}=80 \sigma_{0}=100$.
By CLT Y has approx. $N(300,250)$ distribution. Hence with

$$
\begin{gathered}
Z=\frac{Y-40}{10}, \quad \tilde{b}=\frac{60-40}{10}=2 \\
P(Y \geq 260)=P(Z \geq \tilde{b}) \approx 1-\Phi(\tilde{b})=\Phi(2)
\end{gathered}
$$

(b) If (15 pts) If $Y \geq 60$ you win $Y \$$, otherwise you get nothing. Find the expected value for your winnings, give an approximate answer as an integral using ϕ. Do NOT evaluate the integral. $Y=40+10 Z$, expected winnings: $\int_{\tilde{b}}^{\infty}(40+10 z) \phi(z) d z$ with $\tilde{b}=2$.
2. (35 pts) The stock price $S(t)$ is given by geometric Brownian motion, with initial stock price $S(0)=$ 10 , yearly drift 0.2 and yearly volatility 0.4 .
(a) (15 pts) Find the probability that $S\left(\frac{1}{4}\right) \leq 10$ using $\Phi(\cdots)$.
$S(T)=10 \exp (0.2 T+0.4 B(T)), B(T)=T^{1 / 2} Z$ with $Z \sim N(0,1)$
$S(T) \leq 10 \Longleftrightarrow \log \left(\frac{S(T)}{10}\right) \leq 0$
$\log \left(\frac{S(T)}{10}\right)=\mu T+\sigma T^{1 / 2} Z \leq 0 \Longleftrightarrow Z \leq \frac{-\mu T}{\sigma T^{1 / 2}}=\frac{-\mu T^{1 / 2}}{\sigma}=-\frac{1}{4}$
probability $=\Phi\left(-\frac{1}{4}\right)$
(b) (20 pts) A European option pays at maturity $T=\frac{1}{4}$ the amount 1 if $S(T) \leq 10$ and pays zero otherwise. The annual interest rate with continuous compounding is 10%. Find the option price V_{0} using $\Phi(\cdots)$.
$\tilde{\mu}=r-\frac{1}{2} \sigma^{2}=0.1-0.08=0.02$
$V_{0}=e^{-r T} Q(S(T) \leq 10)=e^{-.025} \Phi\left(-\frac{1}{40}\right)$
3. (30 pts) Let $B(t)$ denote standard Brownian motion. Let $Y(t)=B(t)^{3}+a \cdot t \cdot B(t)$ where a is a constant.
(a) (20 pts) Use the Ito Lemma to find a formula for $Y(T)-Y(0)$.
$F(t, x)=x^{3}+a t x, \frac{\partial F}{\partial t}=a x, \frac{\partial F}{\partial x}=3 x^{2}+a t, \frac{\partial^{2} F}{\partial x^{2}}=6 x$
$\Delta Y=a B \Delta t+\left(3 B^{2}+a t\right) \Delta B+\frac{1}{2} 6 B \Delta B^{2}$
$Y(T)-Y(0)=\int_{t=0}^{T}(a+3) B d t+\int_{t=0}^{T}\left(3 B(t)^{2}+a t\right) d B$
(b) (10 pts) For which value of a is $Y(t)$ a martingale?

The integral $\int_{t=0}^{T}(\cdots) d B$ is a martingale. We need that the first integral is zero, i.e., $a=-3$.

