Solutions of the problems

Central Limit Theorem

Problems:

1. We have independent random variables X_{1}, \ldots, X_{N} with $X_{j}=\left\{\begin{array}{ll}.03 & \text { with prob. } \frac{1}{2} \\ -.01 & \text { with prob. } \frac{1}{2}\end{array}\right.$.

Let $Y:=X_{1}+\cdots+X_{100}$.
(a) Find an approximation for $P(Y \leq 1.3)$ using $\Phi(\cdots)$.
(b) Assume we have stock prices S_{0}, \ldots, S_{100} with $S_{0}=15$ and $\log \left(S_{j} / S_{j-1}\right)=X_{j}$. Find an approximation for $E\left[S_{100}\right]$ as an integral with $\phi(z)$. Hint: $\log \left(S_{100} / S_{0}\right)=X_{1}+\cdots+X_{100}$.
(c) The antiderivative of $e^{a z} \phi(z)$ is $e^{a^{2} / 2} \Phi(z-a)$. Use this to evaluate the integral from (b).

Solution: (a) $\mu_{0}:=E\left[X_{j}\right]=(.03-.01) \frac{1}{2}=.01, \sigma_{0}^{2}:=\operatorname{Var}\left[X_{j}\right]=E\left[X_{j}^{2}\right]-E\left[X_{j}\right]^{2}=\left(9 \cdot 10^{-4}+1\right.$. $\left.10^{-4}\right) \frac{1}{2}-10^{-4}=4 \cdot 10^{-4}$
$\mu:=E[Y]=100 \mu_{0}=1, \sigma^{2}:=\operatorname{Var}[Y]=100 \sigma_{0}^{2}=4 \cdot 10^{-2}, \sigma=.2$
$P(Y \leq 1.3)=1-\Phi\left(\frac{1.3-\mu}{\sigma}\right)=\Phi\left(\frac{1.3-1}{.2}\right)=\Phi(1.5)$
(b),(c): We have $S_{100}=S_{0} e^{Y}$ and $Y=\mu+\sigma Z=1+.2 Z$ with a random variable Z which has approximately $N(0,1)$ distribution. Therefore we have with $S_{0}=15, \mu=1, \sigma=.2$

$$
\begin{aligned}
E\left[S_{100}\right] & =E\left[S_{0} e^{\mu+\sigma Z}\right]=\int_{z=-\infty}^{\infty} S_{0} e^{\mu+\sigma z} \phi(z) d z=S_{0} e^{\mu} \int_{-\infty}^{\infty} e^{\sigma z} \phi(z) d z \\
& =S_{0} e^{\mu}\left[e^{\sigma^{2} / 2} \Phi(z-\sigma)\right]_{z=-\infty}^{\infty}=S_{0} e^{\mu} e^{\sigma^{2} / 2}(1-0)=15 e^{1.02}
\end{aligned}
$$

Using geometric Brownian motion for stock prices

Problems:

1. The interest rate with continuous compounding is $r=10 \%$. Under the real-world measure P the stock price is given by

$$
S(t)=S_{0} e^{\mu t+\sigma B(t)}
$$

with $S_{0}=15$, drift $\mu=.4$ and volatility $\sigma=.2$.
(a) Find $P(S(4) \leq 15 e)$ using $\Phi(\cdots)$.
(b) We consider a European option with maturity $T=4$ and payoff function $H(S)= \begin{cases}1 & \text { if } S>15 e \\ 0 & \text { if } S \leq 15 e\end{cases}$ (a so-called binary option). Write the option price V_{0} using an integral with $\phi(z)$.
(c) Evaluate the integral from (b) using $\Phi(\cdots)$.

Solution: (a) We have $S(T)=S_{0} e^{\mu T+\sigma B(T)}$. Since $B(T) \sim N(0, T)$ we can write $B(T)=T^{1 / 2} Z$ with $Z \sim N(0,1)$. Hence

$$
S(T)=S_{0} e^{\mu T+\sigma T^{1 / 2} Z}
$$

and $S(t) \leq b$ is equivalent to

$$
\begin{aligned}
S_{0} e^{\mu T+\sigma T^{1 / 2} Z} & \leq b \\
\mu T+\sigma T^{1 / 2} Z & \leq \log \left(b / S_{0}\right) \\
Z & \leq \frac{\log \left(b / S_{0}\right)-\mu T}{\sigma T^{1 / 2}}=\frac{1-.4 \times 4}{.2 \times 2}=-1.5
\end{aligned}
$$

Hence

$$
P(S(4) \leq 15 e)=P(Z \leq 1.5)=\Phi(-1.5)
$$

(b),(c) We have

$$
V_{0}=e^{-r T} E^{Q}[H(S(T))]
$$

Under the risk-neutral measure Q the stock price is $S(t)=S_{0} e^{\mu_{Q} t+\sigma B(t)}$ with $\mu_{Q}=r-\frac{1}{2} \sigma^{2}=$ $.1-\frac{1}{2} 0.04=.08$. We have $B(T)=T^{1 / 2} Z$ with $Z \sim N(0,1)$. Hence

$$
E^{Q}[H(S(T))]=E\left[H\left(S_{0} e^{\mu_{Q} T+\sigma T^{1 / 2} Z}\right)\right]=\int_{-\infty}^{\infty} H\left(S_{0} e^{\mu_{Q} T+\sigma T^{1 / 2} z}\right) \phi(z) d z
$$

Note that $H(S)=0$ if $S \leq 15 e=: b$. The condition $S=S_{0} e^{\mu_{Q} T+\sigma T^{1 / 2} z} \leq b$ is equivalent to

$$
z \leq \frac{\log \left(b / S_{0}\right)-\mu_{Q} T}{\sigma T^{1 / 2}}=\frac{1-.08 \times 4}{.2 \times 2}=\frac{.68}{.4}=1.7
$$

Therefore

$$
H\left(S_{0} e^{\mu_{Q} T+\sigma T^{1 / 2} z}\right)= \begin{cases}1 & \text { if } z>1.7 \\ 0 & \text { if } z \leq 1.7\end{cases}
$$

and

$$
\int_{-\infty}^{\infty} H\left(S_{0} e^{\mu_{Q} T+\sigma T^{1 / 2} z}\right) \phi(z) d z=\int_{1.7}^{\infty} \phi(z) d z=1-\Phi(1.7)
$$

Hence the option price is

$$
V_{0}=e^{-r T} E^{Q}[H(S(T))]=e^{-.1 \times 4}(1-\Phi(1.7))
$$

Ito calculus

Problems:

1. Consider $Y(t)=B(t)^{2}$.
(a) Use the Ito Lemma to find a formula for $Y(T)-Y(0)$.
(b) Determine c such that $B(t)^{2}-c t$ is a martingale.

Solution: $F(t, x)=x^{2}, \frac{\partial F}{\partial x}=2 x, \frac{\partial^{2} F}{\partial x^{2}}=2$. Hence

$$
\begin{aligned}
\Delta Y & =2 B \cdot \Delta B+\frac{1}{2} \cdot 2 \cdot \underbrace{\Delta B^{2}}_{\Delta} \\
Y(T)-\underbrace{Y(0)}_{0} & =\underbrace{\int_{t=0}^{T} 2 B(t) d B}_{\text {martingale }}+\underbrace{\int_{t=0}^{T} 1 d t}_{T} \\
B(T)^{2} & =\text { martingale }+T
\end{aligned}
$$

We obtain that $B(t)^{2}-t$ is a martingale, i.e. we need $c=1$.
2. Consider geometric Brownian motion $S(t)=S_{0} e^{\mu t+\sigma B(t)}$.
(a) Use the Ito Lemma to find a formula for $S(T)-S(0)$.
(b) Consider the discounted stock price process $\tilde{S}(t)=e^{-r t} S(t)$. Determine μ such that $\tilde{S}(t)$ is a martingale.

Solution: $F(t, x)=S_{0} e^{\mu t+\sigma x}, \frac{\partial F}{\partial t}=S_{0} e^{\mu t+\sigma x} \mu, \frac{\partial F}{\partial x}=S_{0} e^{\mu t+\sigma x} \sigma, \frac{\partial^{2} F}{\partial x^{2}}=S_{0} e^{\mu t+\sigma x} \sigma^{2}$

$$
\begin{aligned}
\Delta S & =S_{0} e^{\mu t+\sigma B} \mu \cdot \Delta t+S_{0} e^{\mu t+\sigma B} \sigma \cdot \Delta B+\frac{1}{2} S_{0} e^{\mu t+\sigma B} \sigma^{2} \underbrace{\Delta B^{2}}_{\Delta t} \\
S(T)-S(0) & =\underbrace{\int_{t=0}^{T} S_{0} e^{\mu t+\sigma B(t)} \sigma d B}_{\text {martingale }}+\int_{t=0}^{T} S_{0} e^{\mu t+\sigma B(t)}\left(\mu+\frac{1}{2} \sigma^{2}\right) d t
\end{aligned}
$$

For $\tilde{S}(t)=S_{0} e^{(\mu-r) t+\sigma B(t)}$ we obtain with $(\mu-r)$ instead of μ

$$
\tilde{S}(T)-\tilde{S}(0)=\underbrace{\int_{t=0}^{T} S_{0} e^{(\mu-r) t+\sigma B(t)} \sigma d B}_{\text {martingale }}+\int_{t=0}^{T} S_{0} e^{(\mu-r) t+\sigma B(t)}\left((\mu-r)+\frac{1}{2} \sigma^{2}\right) d t
$$

The process $\tilde{S}(t)$ is a martingale if the second integral is zero: We need $(\mu-r)+\frac{1}{2} \sigma^{2}=0$ or

$$
\mu=r-\frac{1}{2} \sigma^{2}
$$

3. Consider $Y(t)=B(t)^{4}+a t B(t)^{2}+b t^{2}$ with constants a, b.
(a) Use the Ito Lemma to find a formula for $Y(T)-Y(0)$.
(b) Determine a, b such that $Y(t)$ is a martingale.
(c) Use 3(b) and 1(b) to find a formula for $E\left[B(t)^{4}\right]$.

Solution: (a) $F(t, x)=x^{4}+a t x^{2}+b t^{2}, \frac{\partial F}{\partial t}=a x^{2}+2 b t, \frac{\partial F}{\partial x}=4 x^{3}+2 a t x, \frac{\partial^{2} F}{\partial x^{2}}=12 x^{2}+2 a t$

$$
\begin{aligned}
\Delta Y & =\left(a B^{2}+2 b t\right) \Delta t+\left(4 B^{3}+2 a t B\right) \Delta B+\frac{1}{2}\left(12 B^{2}+2 a t\right) \underbrace{\Delta B^{2}}_{\Delta t} \\
Y(T)-Y(0) & =\underbrace{\int_{t=0}^{T}\left[4 B(t)^{3}+2 a t B(t)\right] d B}_{\text {martingale }}+\int_{t=0}^{T}\left[(a+6) B(t)^{2}+(2 b+a) t\right] d t
\end{aligned}
$$

(b) $Y(t)$ is a martingale if the integrand in the second integral is zero: We need $a+6=0$ and $2 b+a=0$, hence

$$
a=-6, \quad b=3
$$

(c) $Y(t)=B(t)^{4}-6 t B(t)^{2}+3 t^{2}$ is a martingale. Hence

$$
\begin{aligned}
E[Y(t)] & =Y(0) \\
E\left[B(t)^{4}\right]-6 t \cdot \underbrace{E\left[B(t)^{2}\right]}_{t}+3 t^{2} & =0
\end{aligned}
$$

since by $1(\mathrm{~b}) E\left[B(t)^{2}\right]=t$. We obtain $E\left[B(t)^{4}\right]=3 t^{2}$.

