Solutions of the problems

Central Limit Theorem

Problems:

- **1.** We have independent random variables X_1, \ldots, X_N with $X_j = \begin{cases} .03 & \text{with prob. } \frac{1}{2} \\ -.01 & \text{with prob. } \frac{1}{2} \end{cases}$. Let $Y := X_1 + \cdots + X_{100}$.
 - (a) Find an approximation for $P(Y \le 1.3)$ using $\Phi(\cdots)$.
 - **(b)** Assume we have stock prices S_0, \ldots, S_{100} with $S_0 = 15$ and $\log(S_j/S_{j-1}) = X_j$. Find an approximation for $E[S_{100}]$ as an integral with $\phi(z)$. Hint: $\log(S_{100}/S_0) = X_1 + \cdots + X_{100}$.
 - (c) The antiderivative of $e^{az}\phi(z)$ is $e^{a^2/2}\Phi(z-a)$. Use this to evaluate the integral from (b).

Solution: (a) $\mu_0 := E[X_j] = (.03 - .01)\frac{1}{2} = .01$, $\sigma_0^2 := \operatorname{Var}[X_j] = E[X_j^2] - E[X_j]^2 = (9 \cdot 10^{-4} + 1 \cdot 10^{-4})\frac{1}{2} - 10^{-4} = 4 \cdot 10^{-4}$ $\mu := E[Y] = 100\mu_0 = 1$, $\sigma^2 := \operatorname{Var}[Y] = 100\sigma_0^2 = 4 \cdot 10^{-2}$, $\sigma = .2$ $P(Y \le 1.3) = 1 - \Phi\left(\frac{1.3 - \mu}{\sigma}\right) = \Phi\left(\frac{1.3 - 1}{.2}\right) = \Phi(1.5)$

(b),(c): We have $S_{100} = S_0 e^Y$ and $Y = \mu + \sigma Z = 1 + .2Z$ with a random variable Z which has approximately N(0,1) distribution. Therefore we have with $S_0 = 15$, $\mu = 1$, $\sigma = .2$

$$E[S_{100}] = E\left[S_0 e^{\mu + \sigma Z}\right] = \int_{z = -\infty}^{\infty} S_0 e^{\mu + \sigma z} \phi(z) dz = S_0 e^{\mu} \int_{-\infty}^{\infty} e^{\sigma z} \phi(z) dz$$
$$= S_0 e^{\mu} \left[e^{\sigma^2/2} \Phi(z - \sigma) \right]_{z = -\infty}^{\infty} = S_0 e^{\mu} e^{\sigma^2/2} (1 - 0) = 15 e^{1.02}$$

Using geometric Brownian motion for stock prices

Problems:

1. The interest rate with continuous compounding is r = 10%. Under the real-world measure P the stock price is given by

$$S(t) = S_0 e^{\mu t + \sigma B(t)}$$

with $S_0 = 15$, drift $\mu = .4$ and volatility $\sigma = .2$.

- (a) Find $P(S(4) \le 15e)$ using $\Phi(\cdots)$.
- **(b)** We consider a European option with maturity T = 4 and payoff function $H(S) = \begin{cases} 1 & \text{if } S > 15e \\ 0 & \text{if } S \leq 15e \end{cases}$ (a so-called binary option). Write the option price V_0 using an integral with $\phi(z)$.
- (c) Evaluate the integral from (b) using $\Phi(\cdots)$.

Solution: (a) We have $S(T) = S_0 e^{\mu T + \sigma B(T)}$. Since $B(T) \sim N(0,T)$ we can write $B(T) = T^{1/2}Z$ with $Z \sim N(0,1)$. Hence

$$S(T) = S_0 e^{\mu T + \sigma T^{1/2} Z}$$

and $S(t) \leq b$ is equivalent to

$$S_0 e^{\mu T + \sigma T^{1/2} Z} \le b$$

 $\mu T + \sigma T^{1/2} Z \le \log(b/S_0)$
 $Z \le \frac{\log(b/S_0) - \mu T}{\sigma T^{1/2}} = \frac{1 - .4 \times 4}{.2 \times 2} = -1.5$

Hence

$$P(S(4) \le 15e) = P(Z \le 1.5) = \Phi(-1.5)$$

(b),(c) We have

$$V_0 = e^{-rT} E^Q \left[H(S(T)) \right]$$

Under the risk-neutral measure Q the stock price is $S(t) = S_0 e^{\mu_Q t + \sigma B(t)}$ with $\mu_Q = r - \frac{1}{2}\sigma^2 = .1 - \frac{1}{2}0.04 = .08$. We have $B(T) = T^{1/2}Z$ with $Z \sim N(0,1)$. Hence

$$E^{Q}[H(S(T))] = E\left[H\left(S_{0}e^{\mu_{Q}T + \sigma T^{1/2}Z}\right)\right] = \int_{-\infty}^{\infty} H\left(S_{0}e^{\mu_{Q}T + \sigma T^{1/2}z}\right)\phi(z)dz$$

Note that H(S)=0 if $S\leq 15e=:b$. The condition $S=S_0e^{\mu_QT+\sigma T^{1/2}z}\leq b$ is equivalent to

$$z \le \frac{\log(b/S_0) - \mu_Q T}{\sigma T^{1/2}} = \frac{1 - .08 \times 4}{.2 \times 2} = \frac{.68}{.4} = 1.7$$

Therefore

$$H\left(S_0 e^{\mu_Q T + \sigma T^{1/2} z}\right) = \begin{cases} 1 & \text{if } z > 1.7\\ 0 & \text{if } z \le 1.7 \end{cases}$$

and

$$\int_{-\infty}^{\infty} H\left(S_0 e^{\mu_Q T + \sigma T^{1/2} z}\right) \phi(z) dz = \int_{1.7}^{\infty} \phi(z) dz = 1 - \Phi(1.7)$$

Hence the option price is

$$V_0 = e^{-rT} E^Q [H(S(T))] = e^{-.1 \times 4} (1 - \Phi(1.7))$$

 $B(T)^2 = \text{martingale} + T$

Ito calculus

Problems:

- 1. Consider $Y(t) = B(t)^2$.
 - (a) Use the Ito Lemma to find a formula for Y(T) Y(0).
 - **(b)** Determine c such that $B(t)^2 ct$ is a martingale.

Solution:
$$F(t,x) = x^2$$
, $\frac{\partial F}{\partial x} = 2x$, $\frac{\partial^2 F}{\partial x^2} = 2$. Hence
$$\Delta Y = 2B \cdot \Delta B + \frac{1}{2} \cdot 2 \cdot \underbrace{\Delta B^2}_{\Delta t}$$

$$Y(T) - \underbrace{Y(0)}_{0} = \underbrace{\int_{t=0}^{T} 2B(t)dB}_{\text{martingale}} + \underbrace{\int_{t=0}^{T} 1 \, dt}_{T}$$

We obtain that $B(t)^2 - t$ is a martingale, i.e. we need c = 1.

- **2.** Consider geometric Brownian motion $S(t) = S_0 e^{\mu t + \sigma B(t)}$.
 - (a) Use the Ito Lemma to find a formula for S(T) S(0).
 - **(b)** Consider the discounted stock price process $\tilde{S}(t) = e^{-rt}S(t)$. Determine μ such that $\tilde{S}(t)$ is a martingale.

Solution:
$$F(t,x) = S_0 e^{\mu t + \sigma x}$$
, $\frac{\partial F}{\partial t} = S_0 e^{\mu t + \sigma x} \mu$, $\frac{\partial F}{\partial x} = S_0 e^{\mu t + \sigma x} \sigma$, $\frac{\partial^2 F}{\partial x^2} = S_0 e^{\mu t + \sigma x} \sigma^2$

$$\Delta S = S_0 e^{\mu t + \sigma B} \mu \cdot \Delta t + S_0 e^{\mu t + \sigma B} \sigma \cdot \Delta B + \frac{1}{2} S_0 e^{\mu t + \sigma B} \sigma^2 \underbrace{\Delta B^2}_{\Delta t}$$

$$S(T) - S(0) = \underbrace{\int_{t=0}^{T} S_0 e^{\mu t + \sigma B(t)} \sigma dB}_{\text{martingale}} + \int_{t=0}^{T} S_0 e^{\mu t + \sigma B(t)} \left(\mu + \frac{1}{2} \sigma^2\right) dt$$

For $\tilde{S}(t) = S_0 e^{(\mu - r)t + \sigma B(t)}$ we obtain with $(\mu - r)$ instead of μ

$$\tilde{S}(T) - \tilde{S}(0) = \underbrace{\int_{t=0}^{T} S_0 e^{(\mu-r)t + \sigma B(t)} \sigma dB}_{\text{martingale}} + \int_{t=0}^{T} S_0 e^{(\mu-r)t + \sigma B(t)} \left((\mu - r) + \frac{1}{2}\sigma^2 \right) dt$$

The process $\tilde{S}(t)$ is a martingale if the second integral is zero: We need $(\mu - r) + \frac{1}{2}\sigma^2 = 0$ or

$$\mu = r - \frac{1}{2}\sigma^2$$

- **3.** Consider $Y(t) = B(t)^4 + atB(t)^2 + bt^2$ with constants a, b.
 - (a) Use the Ito Lemma to find a formula for Y(T) Y(0).
 - **(b)** Determine a, b such that Y(t) is a martingale.
 - (c) Use 3(b) and 1(b) to find a formula for $E[B(t)^4]$.

Solution: (a)
$$F(t,x) = x^4 + atx^2 + bt^2$$
, $\frac{\partial F}{\partial t} = ax^2 + 2bt$, $\frac{\partial F}{\partial x} = 4x^3 + 2atx$, $\frac{\partial^2 F}{\partial x^2} = 12x^2 + 2at$

$$\Delta Y = (aB^2 + 2bt) \Delta t + (4B^3 + 2atB) \Delta B + \frac{1}{2} (12B^2 + 2at) \underbrace{\Delta B^2}_{\Delta t}$$

$$Y(T) - Y(0) = \underbrace{\int_{t=0}^{T} \left[4B(t)^3 + 2atB(t) \right] dB}_{\text{martingale}} + \int_{t=0}^{T} \left[(a+6)B(t)^2 + (2b+a)t \right] dt$$

(b) Y(t) is a martingale if the integrand in the second integral is zero: We need a+6=0 and 2b+a=0, hence

$$a = -6, b = 3$$

(c) $Y(t) = B(t)^4 - 6tB(t)^2 + 3t^2$ is a martingale. Hence

$$E[Y(t)] = Y(0)$$

$$E[B(t)^{4}] - 6t \cdot \underbrace{E[B(t)^{2}]}_{t} + 3t^{2} = 0$$

since by 1(b) $E[B(t)^2] = t$. We obtain $E[B(t)^4] = 3t^2$.