
Interpolation

1 What is interpolation?

For a certain function f (x) we know only the values y1 = f (x1),. . . ,yn = f (xn). For a point x̃ different from x1, . . . ,xn we
would then like to approximate f (x̃) using the given data x1, . . . ,xn and y1, . . . ,yn.

This means we are constructing a function p(x) which passes through the given points and hopefully is close to the function
f (x). It turns out that it is a good idea to use polynomials as interpolating functions (later we will also consider piecewise
polynomial functions).

2 Why are we interested in this?

• Efficient evaluation of functions: For functions like f (x) = sin(x) it is possible to find values using a series expansion
(e.g. Taylor series), but this takes a lot of operations. If we need to compute f (x) for many values x in an interval [a,b]
we can do the following:

– pick points x1, . . . ,xn in the interval

– evaluate f (x1), . . . , f (xn) by some (possibly costly) approximation method (e.g. Taylor series or other series)

– find the interpolating polynomial p(x) and store its coefficients

Now we have a simple way to compute an approximation for f (x):

– given x ∈ [a,b] use the stored coefficients to evaluate the polynomial p(x)

Before the age of computers and calculators, values of functions like sin(x) were listed in tables for values x j with a
certain spacing. Then function values everywhere in between could be obtained by interpolation.

A computer or calculator uses the same method to find values of e.g. sin(x): First an interpolating polynomial p(x) for
the interval [0,π/2] was constructed and the coefficients are stored in the computer. For a given value x ∈ [0,π/2], the
computer just evaluates the polynomial p(x) (once we know the sine function for [0,π/2] we can find sin(x) for all x).

• Design of curves: For designing shapes on a computer we would like to pick a few points with the mouse, and then
the computer should find a “smooth curve” which passes through the given points.

• Tool for other algorithms: In many cases we only have data x1, . . . ,xn and y1, . . . ,yn for a function f (x), but we would
like to compute things like

– the integral I =
∫ b

a f (x)dx

– a “zero” x∗ of the function where f (x∗) = 0

– a derivative f ′(x̃) at some point x̃.

We can do all this by first constructing the interpolating polynomial p(x). Then we can approximate I by
∫ b

a p(x)dx.
We can approximate x∗ by finding a zero of the function p(x). We can approximate f ′(x̃) by evaluating p′(x̃).

1

3 Interpolation with polynomials

3.1 Basic idea

If we have two points (x1,y1) and (x2,y2) the obvious way to guess function values at other points would be to use the linear
function p(x) = c0 + c1x passing through the two points. We can then approximate f (x̃) by p(x̃).

If we have three points we can try to find a function p(x) = c0 + c1x+ c2x2 passing through all three points.

If we have n points we can try to find a function p(x) = c0 + c1x+ · · ·+ cn−1xn−1 passing through all n points.

3.2 Existence and uniqueness

We first have to make sure that our interpolation problem always has a unique solution.

Theorem 3.1. Assume that x1, . . . ,xn are different from each other. Then for any y1, . . . ,yn there exists a unique polynomial
pn−1(x) = c0 + c1x+ · · ·+ cn−1xn−1 such that

p(x j) = y j for j = 1, . . . ,n.

Proof. We use induction. Induction start: For n = 1 we need to find p0(x) = a0 such that p0(x1) = y1. Obviously this has
a unique solution

a0 = y1. (1)

Induction step: We assume that the theorem holds for n points. Therefore there exists a unique polynomial pn−1(x) with
pn−1(x j) = y j for j = 1, . . . ,n. We can write pn(x) = pn−1(x)+q(x) and must find a polynomial q(x) of degree≤ n such that
q(x1) = · · ·= q(xn) = 0. Therefore q(x) must have the form

q(x) = an(x− x1) · · ·(x− xn)

(for each x j we must have a factor (x− x j), the remaining factor must be a constant an since the degree of q(x) is at most
n). We therefore have to find cn such that pn(xn+1) = yn+1. This means that q(xn+1) = an(xn+1− x1) · · ·(xn+1− xn) =
yn+1− pn−1(xn+1) which has the unique solution

an =
yn+1− pn−1(xn+1)

(xn+1− x1) · · ·(xn+1− xn)
(2)

as (xn− x1) · · ·(xn− xn−1) is nonzero.

Note that the proof does not just show existence, but actually gives an algorithm to construct the interpolating polynomial:
We start with p0(x) = a0 where a0 = y1. Then determine a1 from (2) and have p1(x) = a0 +a1(x− x1). We continue in this
way until we finally obtain

pn−1(x) = a0 +a1(x− x1)+a2(x− x1)(x− x2)+ · · ·+an−1(x− x1) · · ·(x− xn−1). (3)

This is the so-called Newton form of the interpolating polynomial. Once we know the coefficients a0, . . . ,an−1 we can
efficiently evaluate pn−1(x) using nested multiplication: E.g., for n = 4 we have

p3(x) = ((a3 · (x− x3)+a2) · (x− x2)+a1) · (x− x1)+a0.

Nested multiplication algorithm for Newton form: Given interpolation nodes x1, . . . ,xn, Newton coefficients a0, . . . ,an−1,
evaluation point x, find y = pn−1(x).

y := an−1
For j = n−1,n−2, . . . ,1:

y := y · (x− x j)+a j−1

Note that this algorithm takes n−1 multiplications (and additions).

2

3.3 Divided differences and recursion formula

Multiplying out (3) gives
pn−1(x) = an−1xn−1 + r(x)

where r(x) is a polynomial of degree ≤ n− 2. We see that an−1 is the leading coefficient (i.e., of the term xn−1) of the
interpolating polynomial pn−1. For a given function f and nodes x1, . . . ,xn−1 the interpolating polynomial pn−1 is uniquely
determined, and in particular the leading coefficient an−1. We introduce the following notation for the leading coefficient
of an interpolating polynomial:

f [x1, . . . ,xn] = an−1

Examples: The notation f [x j] denotes the leading coefficient of the constant polynomial interpolating f in x j, i.e.,

f [x j] = f (x j) (4)

The notation f [x j,x j+1] denotes the leading coefficient of the constant polynomial interpolating f in x j, i.e.,

f [x j,x j+1] =
f (x j+1)− f (x j)

x j+1− x j
.

In general the expression f [x1, . . . ,xm] is called a divided difference. Recall that the arguments x1, . . . ,xm must be different
from each other. The order of the arguments x1, . . . ,xn does not matter since there is only one interpolating polynomial, no
matter in which order we specify the points.

Theorem 3.2. There holds the recursion formula

f [x1, . . . ,xm+1] =
f [x2, . . . ,xm+1]− f [x1, . . . ,xm]

xm+1− x1
(5)

Proof. Let p1,...,m(x) denote the interpolating polynomial for the nodes x1, . . . ,xm. Then we can construct the polynomial
p1,...,m+1(x) for all nodes x1, . . . ,xm+1 as

p1,...,m+1(x) = p1,...,m(x)+ f [x1, . . . ,xm+1] · (x− x1) · · ·(x− xm).

Alternatively, we can start with the interpolating polynomial p2,...,m+1 for the nodes x2, . . . ,xm+1 and construct the polynomial
p1,...,m+1(x) for all nodes x1, . . . ,xm+1 as

p1,...,m+1(x) = p2,...,m+1(x)+ f [x1, . . . ,xm+1] · (x− x2) · · ·(x− xm+1).

Taking the difference of the last two equations gives

0 = p1,...,m(x)− p2,...,m+1(x)+(x− x2) · · ·(x− xm)︸ ︷︷ ︸
xm−1 +O(xm−2)

f [x1, . . . ,xm+1] · ((x− x1)− (x− xm+1))︸ ︷︷ ︸
(xm+1− x1)

p2,...,m+1(x)− p1,...,m(x)︸ ︷︷ ︸
f [x2, . . . ,xm+1]xm−1− f [x1, . . . ,xm]xm−1 +O(xm−2)

= (xm+1− x1) · f [x1, . . . ,xm+1] · xm−1 +O(xm−2)

(f [x2, . . . ,xm+1]− f [x1, . . . ,xm]) = (xm+1− x1) · f [x1, . . . ,xm+1]

where O(xm−2) denotes polynomials of order m−2 or less.

3

3.4 Divided difference algorithm

We now can compute any divided differences using (4) and (5). Given the nodes x1, . . .xn and function values y1, . . . ,yn we
can construct the divided difference table as follows: In the first column we write the nodes x1, . . . ,xn. In the next column
we write the divided differences of 1 argument f [x1] = y1,. . . , f [xn] = yn. In the next column we write the divided differences
of 2 arguments f [x1,x2],. . . , f [xn−1,xn] which we evaluate using (5). In the next column we write the divided differences of 3
arguments f [x1,x2,x3],. . . , f [xn−2,xn−1,xn] which we evaluate using (5). This continues until we write in the last column the
single entry f [x1, . . . ,xn].

x1 f [x1] f [x1,x2] f [x1,x2,x3] · · · f [x1, . . . ,xn]
...

...
...

... . .
.

...
...

... f [xn−2,xn−1,xn]
...

... f [xn−1,xn]
xn f [xn]

Using the divided difference notation we can rewrite the Newton form (3) as

pn−1(x) = f [x1]+ f [x1,x2](x− x1)+ · · ·+ f [x1, . . . ,xn](x− x1) · · ·(x− xn−1).

Note that this formula uses the top entries of each column of the divided difference table.

However, we can also consider the nodes in the reverse order xn,xn−1, . . . ,x1 and obtain the alternative Newton form

pn−1(x) = f [xn]+ f [xn−1,xn](x− xn)+ · · ·+ f [x1, . . . ,xn](x− xn)(x− xn−1) · · ·(x− x2)

for the same polynomial pn−1(x). Note that this formula uses the bottom entries of each column of the divided difference
table.

Let us use this second formula. We can implement this just storing n numbers d1, . . . ,dn. We can first compute the first
column d1, . . . ,dn, then we compute the second column overwriting d1, . . . ,dn−1,. . . , the last column overwriting d1:

d1 := f [x1] d1 := f [x1,x2] d1 := f [x1,x2,x3] · · · d1 := f [x1, . . . ,xn]
...

...
... . .

.

...
... dn−2 := f [xn−2,xn−1,xn]

... dn−1 := f [xn−1,xn]
dn := f [xn]

In the end we have dn = f [xn], dn−1 = f [xn−1,xn],. . . , d1 = f [x1, . . . ,xn] so that

pn−1(x) = dn +dn−1(x− xn)+dn−2(x− xn)(x− xn−1)+ · · ·+d1(x− xn) · · ·(x− x2)

Divided difference algorithm, Part 1: Given x1, . . . ,xn, y1, . . . ,yn find the Newton coefficients d1, . . . ,dn

For i = 1, . . . ,n do:
di := yi

For k = 1, . . . ,n−1 do:
For i = 1, . . . ,n− k do:

di =
di+1−di

xi+k− xi

Divided difference algorithm, Part 2: Given x1, . . . ,xn, d1, . . . ,dn and an evaluation point x find y = pn−1(x)
y := d1
For i = 2, . . . ,n:

y := y · (x− xi)+di

This gives the following Matlab code:

4

function d = divdiff(x,y)
% compute Newton form coefficients of interpolating polynomial
n = length(x);
d = y;
for k=1:n-1
for i=1:n-k
d(i) = (d(i+1)-d(i))/(x(i+k)-x(i));

end
end

function yt = evnewt(d,x,xt)
% evaluate Newton form of interpolating polynomial at points xt
yt = d(1)*ones(size(xt));
for i=2:length(d)
yt = yt.*(xt-x(i)) + d(i);

end

Example: We are given the data points
x j 0 1 2 4
y j 1 2 3 1

. Find the interpolating polynomial in Newton form.

We enter the x j values in the first column and the y j values in the second column:
x j f [x j] f [x j,x j+1] f [x j,x j+1,x j+2] f [x1,x2,x3,x4]

0 1 1 0 −1
6

1 2 1 −2
3

2 3 −1
4 1

We then obtain the remaining columns by using the recursion formula.

For the nodes in order x1,x2,x3,x4 we obtain the Newton form

p(x) = f [x1]+ f [x1,x2](x− x1)+ f [x1,x2,x3](x− x1)(x− x2)+ f [x1,x2,x3,x4](x− x1)(x− x2)(x− x3)

= 1+1 · (x−0)+0 · (x−0)(x−1)+(−1
6)(x−0)(x−1)(x−2)

For the nodes in order x4,x3,x2,x1 we obtain the Newton form

p(x) = f [x4]+ f [x3,x4](x− x4)+ f [x2,x3,x4](x− x4)(x− x3)+ f [x1,x2,x3,x4](x− x4)(x− x3)(x− x2)

= 1+(−1)(x−4)+(−2
3)(x−4)(x−2)+(−1

6)(x−4)(x−2)(x−1)

In Matlab we can plot the given points and the interpolating polynomial as follows:
x = [0,1,2,4]; y = [1,2,3,1]; % given x and y values
d = divdiff(x,y) % find coefficients of Newton form
xt = -.4:.01:4.2; % x-values for plotting
yt = evnewt(d,x,xt); % evaluate Newton form at points xt
plot(x,y,’o’,xt,yt) % plot given pts and interpolating polynomial

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

5

3.5 Error formula for f (x)− p(x)

A divided difference f [x j,x j+1] of two arguments satisfies

f [x j,x j+1] =
f (x j+1)− f (x j)

x j+1− x j
= f ′(s)

for some s ∈ (x j,x j+1) by the mean value theorem. For general divided differences we have a similar result:

Theorem 3.3. Assume that the derivatives f , f ′, . . . , f (n−1) exist and are continuous. Let x1, . . . ,xn be different from each
other. Then there exists s ∈ (min{x1, . . . ,xn},max{x1, . . . ,xn}) such that

f [x1, . . . ,xn] =
f (n−1)(s)
(n−1)!

. (6)

Proof. Consider the interpolating polynomial p(x) and the interpolation error e(x) = f (x)− p(x). Then the function e(x) is
zero for x1, . . . ,xn, hence it has at least n different zeros.

Since e(x1) = 0 and e(x2) = 0 there exists by the mean value theorem a point x′1 ∈ (x1,x2) with e′(x′1) = 0. Hence the function
e′(x) has at least n−1 different zeros. Similarly, the function e′′(x) has at at least n−2 different zeros,. . . , the function e(n−1)

has at least one zero s. Hence we have

0 = e(n−1)(s) = f (n−1)(s)− p(n−1)(s).

Since p(x) = f [x1, . . . ,xn]xn−1 +O(xn−2) we have p(n−1)(x) = f [x1, . . . ,xn](n−1)!.

Let x1, . . . ,xn be different from each other and let pn−1(x) be the interpolating polynomial for the function f (x). Let x̃
be different from x1, . . . ,xn. We want to find a formula for the interpolation error f (x̃)− pn−1(x̃): We first construct an
interpolating polynomial pn(x) which interpolates in the points x1, . . . ,xn and x̃. We must have

pn(x) = pn−1(x)+ f [x1, . . . ,xn, x̃](x− x1) · · ·(x− xn)

and using f (x̃) = pn(x̃) we obtain

f (x̃)− pn−1(x̃) = f [x1, . . . ,xn, x̃](x̃− x1) · · ·(x̃− xn).

We can now express the divided difference using (6) and obtain

Theorem 3.4. Assume that the derivatives f , f ′, . . . , f (n) exist and are continuous. Let x1, . . . ,xnbe different from
each other and let pn−1 denote the interpolating polynomial. Then there exists an intermediate point s ∈
(min{x1, . . . ,xn, x̃},max{x1, . . . ,xn, x̃}) such that

f (x̃)− pn−1(x̃) =
f (n)(s)

n!
· (x̃− x1) · · ·(x̃− xn). (7)

The function ω(x) := (x− x1) · · ·(x− xn) is called the node polynomial.

In practice we don’t know where the intermediate point s is located. If we know that x1, . . . ,xn and x are in an interval [a,b]
we have the upper bound (which may be way too large):

| f (x)− p(x)| ≤ 1
n!

(
max

s∈[a,b]

∣∣∣ f (n)(s)∣∣∣) · |ω(x)| (8)

• The first term 1
n!

(
maxs∈[a,b]

∣∣ f (n)(s)∣∣) depends only on the function f and not on the nodes. This term becomes zero if
f (n)(x) = 0 for all x, hence f is a polynomial of degree ≤ n−1. In this case we must have pn−1(x) = f (x) since the
interpolating polynomial is unique.

• The second term |ω(x)| depends only on x and the nodes x1, . . . ,xn (and not on f). This term becomes equal to zero at
the nodes, and it is small if x is close to one of the nodes.

6

3.6 Equidistant nodes and Chebyshev nodes

We want to approximate a function f (x) for x ∈ [a,b]: We choose nodes x1, . . . ,xn ∈ [a,b] and construct the interpolating
polynomial pn−1(x) . How should we choose the nodes x1, . . . ,xn in order to have a small interpolation error?

We could try equidistant nodes: We divide the interval [a,b] into n−1 subintervals of length h =
b−a
n−1

and use the nodes

x j = a+(j−1)h for j = 1, . . . ,n.

Example: We consider the function f (x) =
1

1+ x2 on the interval [−5,5]. Note that this function has derivatives of any

order and is analytic: for any x0 ∈ R the Taylor series about x0 converges to f (x) in a neighborhood of x0. We use n = 11
equidistant nodes x1 =−5,x2 =−4, . . . ,x11 = 5 and obtain the following interpolating polynomial

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.5

0

0.5

1

1.5

2

Here we divided [−5,5] into 10 subintervals, and the maximal error is E10 := max[−5,5] | f (x)− p10(x)| ≈ 1.96, due to the
large oscillations near the endpoints. We now bisect the 10 subintervals, adding a new node at each midpoint. Now we get
the maximal error E20 := max[−5,5] | f (x)− p20(x)| ≈ 59.8. If we bisect again and again we get the maximal errors

E10 ≈ 1.96, E20 ≈ 59.8, E40 ≈ 1.0 ·105, E80 ≈ 5.5 ·1011, E160 ≈ 2.5 ·1025, E320 ≈ 8.1 ·1052

The size of the oscillations near the endpoints −5,5 gets worse and worse, growing exponentially with n.

What is going on? The error formula (7) contains the node polynomial ω(x) = (x− x1) · · ·(x− xn).

Claim: For equidistant nodes the node polynomial ω(x) has huge oscillations near the endpoints and very small oscillations
near the center.
Let us consider for example the 10 equidistant nodes 1,2,3,4,5,6,7,8,9,10. Then the maximal value in the center interval
occurs at the midpoint tc = 5.5 where we have

|ω(tc)|= (0.5×1.5×2.5×3.5×4.5)2

In the midpoint t1 = 1.5 of the first interval we have

|ω(t1)|= 0.5×0.5×1.5×2.5×3.5×4.5×5.5×6.5×7.5×8.5

Hence we have for n = 10
|ω(t1)|
|ω(tc)|

=
8.5
4.5
× 7.5

3.5
× 6.5

2.5
× 5.5

1.5
≥ 24

(the first factor is slightly smaller than 2, but the product of the first two factors is> 22). In the same way we obtain for any
even n that |ω(t1)|

|ω(tc)| ≥ 2
n
2−1.

Therefore the maximum of |ω(x)| in the first interval is at least by a factor of 2
n
2−1 larger than the maximum in the center

interval.

7

For equidistant nodes we get huge values for |ω(x)| near the endpoints, and very small values for |ω(x)| near the center of
the interval [a,b]. We want to move the nodes so that we get smaller values near the endpoints, and larger values near
the center. We can do this by moving the nodes closer together near the endpoints, and moving farther apart near the center.

It turns out that one can find an optimal choice of nodes such that ωmax = maxx∈[a,b] |ω(x)| is as small as possible. For this
choice of nodes the maxima of |ω(x)| have the same value in all of the intervals between the nodes.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
10 5 Node polynomial (x)

Equidistant nodes

Chebyshev nodes

The optimal choice of nodes are the so-called Chebyshev nodes x1, . . . ,xn given by

x j =
a+b

2
+

b−a
2

cos
(
(j− 1

2)
π

n

)
, j = 1, . . . ,n

-1 -0.5 0 0.5 1

Chebyshev nodes on [-1,1] for n=11

Note that the Chebyshev nodes are closer together near the endpoints, and farther apart near the center.

We claim:

• for the Chebyshev nodes the node polynomial the local maxima of |ω(x)| have the same size ωmax on each subinterval
(x j,x j+1)

• the maximum of the node polynomial is ωmax = max
x∈[a,b]

|ω(x)|= 2
(

b−a
4

)n

• this value of ωmax is optimal: it is not possible to find nodes x1, . . . ,xn with a smaller value of ωmax.

8

3.7 Chebyshev nodes: Theoretical background (you can skip this section)

Chebyshev polynomials Tk(x)

We consider the mapping x = cos t for t ∈ [0,π]. This gives a one-to-one mapping from [0,π] to [−1,1]. We denote the
inverse mapping [−1,1]→ [0,π] by t = cos−1(x).

We define for n = 0,1,2, . . . the functions
Tn(x) := cos

(
n · cos−1(x)

)
(9)

We have for n = 0 and n = 1
T0(x) = cos(0) = 1, T1(x) = cos

(
cos−1(x)

)
= x (10)

Let t = cos−1(x). Then we can use the formula cos(α +β) = cos(α)cos(β)− sin(α)sin(β) for Tn−1(x), Tn+1(x):

Tn−1(x) = cos((n−1)t) = cos(nt)cos(t)+ sin(nt)sin(t)

Tn+1(x) = cos((n+1)t) = cos(nt)cos(t)− sin(nt)sin(t)

Tn−1(x)+Tn+1(x) = 2cos(nt)︸ ︷︷ ︸
Tn(x)

cos(t)︸ ︷︷ ︸
x

yielding the recursion formula
Tn+1(x) = 2xTn(x)−Tn−1(x) (11)

Using (10), (11) we can find Tn(x) for any n = 0,1,2,3, . . .:

T0(x)= 1, T1(x)= x, T2(x)= 2x2−1, T3(x)= 4x3−3x, T4(x)= 8x4−8x2+1, T5(x)= 16x5−20x3+5x

Tn(x) is called Chebyshev polynomial of degree n. We have

T0(x) = 1, for n≥ 1: Tn(x) = 2n−1xn + lower order terms (12)

Note that the function Tn(x) for x ∈ [−1,1] is related to the function cos(nt) for t ∈ [0,π] by the change of variable x = cos t.

The function f (t) = cos(nt) for t ∈ [0,π] satisfies | f (t)| ≤ 1 and has

• the n zeros tk = (k− 1
2)

π

n
, k = 1, . . .n with f (tk) = 0

• the n+1 extrema t̃k = k
π

n
, k = 0, . . . ,n with f (t̃k) = (−1)k

Therefore the function Tn(x) for x ∈ [−1,1] satisfies |Tn(x)| ≤ 1 and has

• the n zeros xk = cos(tk) = cos
(
(k− 1

2)
π

n

)
, k = 1, . . .n with Tn(xk) = 0

• the n+1 extrema x̃k = cos(t̃k) = cos
(
k π

n

)
k = 0, . . . ,n with Tn(x̃k) = (−1)k

0 0.5 1 1.5 2 2.5 3

t

-1

-0.5

0

0.5

1
cos(5t)

t
1

t
2

t
3

t
4

t
5

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

T
5
(x)

x
1

x
2

x
3

x
4

x
5

Note that (x− x1) · · ·(x− xn) = xn + lower order terms. Because of (12) we have for n≥ 1

(x− x1) · · ·(x− xn) = 21−nTn(x) (13)

9

Chebyshev nodes for interpolation on [−1,1]

We want to approximate a function f (x) for x ∈ [−1,1]: We choose nodes x1, . . . ,xn ∈ [−1,1] and construct the interpolating
polynomial pn−1(x) . How should we choose the nodes? The maximal error on the interval

Emax := max
x∈[−1,1]

| f (x)− pn−1(x)|

should be small. From (8) we obtain the upper bound

Emax ≤
1
n!

(
max

s∈[a,b]

∣∣∣ f (n)(s)∣∣∣) ·(max
x∈[−1,1]

|ω(x)|
)

︸ ︷︷ ︸
ωmax

where ω(x) = (x− x1) · · ·(x− xn) is the so-called node polynomial. In order to obtain a small bound for Emax we therefore
want to

pick nodes x1, . . . ,xn such that ωmax is small

We now pick the Chebyshev nodes xk = cos
(
(k− 1

2)
π

n

)
for k = 1, . . . ,n. Because of (13) and |Tn(x)| ≤ 1 for x ∈ [−1,1]

we obtain
ωmax = max

x∈[−1,1]
|ω(x)|= 21−n

Can we find nodes x̂1, . . . , x̂n with ω̂max = max[−1,1] |(x− x̂1) · · ·(x− x̂n)|< 21−n?
Assume that ω̂max < ωmax = 21−n and consider the difference polynomial q(x) = ω(x)− ω̂(x). Since ω(x) = xn + l.o.t.
and ω̂(x) = xn + l.o.t. the polynomial q(x) is of degree≤ n− 1. Recall that ω(x) = 21−nTn(x) has the extremal values
ω(x̃k) = (−1)k21−n, k = 0, . . . ,n where x̃k = cos

(
k π

n

)
. Consider the interval [x̃1, x̃0]: at the endpoints x̃0, x̃1 we have

q(x̃0) = ω(x̃0)︸ ︷︷ ︸
21−n

− ω̂(x̃0)︸ ︷︷ ︸
< 21−n

> 0, q(x̃1) = ω(x̃1)︸ ︷︷ ︸
−21−n

−ω̂(x̃0)︸ ︷︷ ︸
< 21−n

< 0

and by the intermediate value theorem the function q(x) must have a zero in the interval (x̃1, x̃0). By the same argument the
function q(x) has a zero in the intervals (x̃k, x̃k−1) for k = 1, . . . ,n. Therefore the polynomial q(x) has at least n distinct zeros.
But q(x) is a polynomial of degree≤ n−1, and therefore we must have q(x) = 0 for all x. But this means that ω(x) = ω̂(x)
which is a contradiction to our assumption ω̂max < ωmax. We have proved the following result:

Theorem 3.5. The nodes x1, . . . ,xn ∈ [−1,1] which give the smallest value

ωmax = max
x∈[−1,1]

|(x− x1) · · ·(x− xn)|

are the Chebyshev nodes given by xk = cos
(
(k− 1

2)
π

n

)
, yielding the minmal value ωmax = 21−n.

If we want to approximate a function f (x) on an interval x ∈ [a,b] instead of [−1,1] we use the mapping

x 7→ a+b
2

+ x
b−a

2
. This maps x ∈ [−1,1] to the interval [a,b]. We obtain for the optimal choice of nodes on [a,b]:

The Chebyshev nodes for the interval [a,b] are given by xk =
a+b

2
+

b−a
2

cos
(
(k− 1

2)
π

n

)
and we have that

ωmax = max
x∈[a,b]

|(x− x1) · · ·(x− xn)|=
(

b−a
2

)n

21−n = 2
(

b−a
4

)n

10

3.8 Interpolation with multiple nodes

So far we assumed that the nodes x1, . . . ,xn are different from each other. What happens if we move two nodes closer and
closer together?

Example 1: Consider three nodes x1 < x2 < x3. In this case we have the divided difference table

x1 f (x1) f [x1,x2] =
f (x2)− f (x1)

x2−x1
f [x1,x2,x3] =

f [x2,x3]− f [x1,x2]
x3−x1

x2 f (x2) f [x2,x3] =
f (x3)− f (x2)

x3−x2

x3 f (x3)

and the interpolating polynomial p(x) = f [x1]+ f [x1,x2](x− x1)+ f [x1,x2,x3](x− x1)(x− x2).

Now we move the node x2 towards x1and want to know what happens in the limit. Assume that the function f is differentiable,
then we get for f [x1,x2]

lim
x2→x1

f (x2)− f (x1)

x2− x1
= f ′(x1)

Hence we define f [x1,x1] = f ′(x1). The divided difference table becomes

x1 f (x1) f [x1,x1] = f ′(x1) f [x1,x1,x3] =
f [x1,x3]− f [x1,x1]

x3−x1

x1 f (x1) f [x1,x3] =
f (x3)− f (x1)

x3−x1

x3 f (x3)

and the interpolating polynomial is p(x) = f [x1]+ f [x1,x1](x− x1)+ f [x1,x1,x3](x− x1)(x− x1). This function still satisfies
p(x1) = f (x1) and p(x2) = f (x2). Additionally we have p′(x1) = f [x1,x1] = f ′(x1).

Note that the blue values in the divided difference table are given, and the black values are obtained by the recursion formula.

Therefore p(x) solves an interpolation problem where function values and some derivative values are given:

Find an interpolating polynomial p(x) satisfying

p(x1) = f (x1), p′(x1) = f ′(x1), p(x3) = f (x3)

where x1,x3 and f (x1), f ′(x1), f (x3) are given.

Example 2: Find an interpolating polynomial p(x) satisfying the n = 5 conditions

p(1) = 3, p′(1) = 4, p′′(1) = 5 p(2) = 6, p′(2) = 7

Now 1 is a triple node and 2 is a double node: we have n = 5 nodes 1,1,1,2,2

1 f [1] = 3 f [1,1] = 4 f [1,1,1] = 5
2 f [1,1,1,2] = f [1,1,2]− f [1,1,1]

2−1 f [1,1,1,2,2] = f [1,1,2,2]− f [1,1,1,2]
2−1

1 f [1] = 3 f [1,1] = 4 f [1,1,2] = f [1,2]− f [1,1]
2−1 f [1,1,2,2] = f [1,2,2]− f [1,1,2]

2−1

1 f [1] = 3 f [1,2] = f [2]− f [1]
2−1 f [1,2,2] = f [2,2]− f [1,2]

2−1

2 f [2] = 6 f [2,2] = 7

2 f [2] = 6
Note that the blue values in the divided difference table are given, and the black values are obtained by the recursion formula.
We now obtain the interpolating polynomial in Newton form: if we use the nodes in the order 1,1,1,2,2 we use the top
entries of each column and get

p(x)= f [1]+ f [1,1](x−1)+ f [1,1,1](x−1)(x−1)+ f [1,1,1,2](x−1)(x−1)(x−1)+ f [1,1,1,2,2](x−1)(x−1)(x−1)(x−2)

We can also use the nodes in the reverse order and use the bottom entries of each column. This gives the Newton form

p(x)= f [2]+ f [2,2](x−2)+ f [1,2,2](x−2)(x−2)+ f [1,1,2,2](x−1)(x−2)(x−2)+ f [1,1,1,2,2](x−1)(x−1)(x−2)(x−2)

11

Summary: Interpolation with multiple nodes

• At a node X the values f (X), f ′(X), . . . , f (m−1)(X) are given. We say that node X has multiplicity m. This means that
we use X , . . . ,X︸ ︷︷ ︸

m times

in the list of nodes x1, . . . ,xn.

• Let n be the sum of the multiplicities of all the nodes. We want to find an interpolating polynomial p(x) of degree≤
n− 1 which satisfies n conditions for the function values and derivatives. This interpolation problem has a unique
solution p(x).

• We define divided differences with m identical nodes as follows:

f [X , . . . ,X︸ ︷︷ ︸
m times

] :=
f (m−1)(X)

(m−1)!

• Algorithm: First fill in the divided differences with identical nodes using the given data. Then fill in the remaining
entries of the divided difference table using the recursion formula (5). Now the interpolating polynomial is given by

p(x) = f [x1]+ f [x1,x2](x− x1)+ · · ·+ f [x1, . . . ,xn](x− x1) · · ·(x− xn−1)

We can also use the nodes in reverse order. This gives the Newton form

p(x) = f [xn]+ f [xn−1,xn](x− xn)+ · · ·+ f [x1, . . . ,xn](x− x2) · · ·(x− xn)

• The error formula also holds for multiple nodes:

f (x)− p(x) =
f (n)(t)

n!
(x− x1) · · ·(x− xn)

where min{x1, . . . ,xn,x} ≤ t ≤max{x1, . . . ,xn,x}

12

