Linear least squares problem: Example

We want to determine n unknown parameters cy,...,c, using m measurements where m > n.
Here ||-|| always denotes the 2-norm ||v||, = (v} 4--- +v2)!/2.

Example problem

t 1 2
Fit the experimental data y 8 T4 3 with a curve of the form g(t) = c; -1 +cp -t +c3-12.
gin) -+ gn(nn)
Heren=3,m=4and g|(t) = 1, g2(t) =1, g3(t) = t*. We define the matrix A := : :
gl(tm) gn<tm)
We want to find ¢ € R? such that ||Ac —y||, = min.
4 6 14 12
Find solution using normal equations: Find M:=ATA=| 6 14 36 |andb:=ATy=| 30
14 36 98 80
—0.1
3 x 3 linear system Mc = b using Gaussian elimination, yielding the solution vectorc = | 0.9
0.5

= [0;1;2;3]; y = [0;1;4;7];
= [t.”0,t,t.~2];
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use normal equations
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te = linspace(-.5,3.5,1e2)’; points for plotting
plot(t,y,'o’,te,[te.”0,te,te.”2]*c) % plot given points and fitted curve
legend(’given points’,’'least squares fit’)
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Matlab shortcut (actually uses QR decomposition)

\
—_— = = =

[OSIN S L )
O b~ = O

. Then solve the



Least squares problem with orthogonal basis

For a least squares problem we are given n linearly independent vectors al'),...,a™ € R™ which form a basis for the
subspace V = span{a(!),...,a(}. For a given right hand side vector y € R” we want to find u € V such that [|u—y| is
minimal. We can write u = cja'!) + -+ + ¢,a = Ac with the matrix A = [aV),...,a”] € R"*". Hence we want to find

¢ € R" such that ||Ac —y|| is minimal.

Solving this problem is much simpler if we have an orthogonal basis for the subspace V: Assume we have vectors
p(l)7 e ,p(") such that

° span{p(l), . ,p(”)} =V
e the vectors are orthogonal on each other: p{) . pl) = 0 for i # j

We can then write u = dy p\!) + - +d, p" = Pd with the matrix P = [p(1), ... p] € R"*", Hence we want to find d € R"
such that |[Pd — b|| is minimal. The normal equations for this problem give

(P'P)d=P'b (1)
where the matrix
p(l)T p(l) p(l) p(l) p(n) p(l) p(l) O
P'P= : [p(l)j...,p(”)] = : : =
(mT (n). (1) ... (n) . ,(n)
p p p p p O p(n) .p(n)

is now diagonal since p¥) - p{/) = 0 for i # j. Therefore the normal equations (1) are actually decoupled

<p<1> _pm)d1 —pM.y

and have the solution

@@ .
di=L"0  fori=1,....n
p(l) p(l)
Gram-Schmidt orthogonalization
We still need a method to construct from a given basis a!), ..., a an orthogonal basis p{!), ..., p.
Given 7 linearly independent vectors aV, ... a™ e R™ we want to find vectors p!), ..., p") such that

° span{p(l),...,p(">} = span{a(l),...,a(")}

e the vectors are orthogonal on each other: p(i) . p(f ) =0 fori %]

Step 1: p(l) =g

Step 2: p(z) =a® — slzp(l) where we choose s, such that p(!) - p(2) = 0:

@ _gop® 0 20 e

Step 3: p(3> = aB) — s13p(1) — S23p(2) where we choose 513, 23 such that

3)

° p(l) p(3) — 0’ i‘e.’ p(l) .a( _S13p(1) p(l) — 523 p(l) p(2) — O’ hence

0



0
Step n: p(”) =™ —slnp(l) —~--—sn71,np("_1) where we choose s1,,...,5,-1,, such thatp(-i)-p(”) =0forj=1,....,.n—1
which yields
(). pn)
sjn—p . P ~ forj=1,...,n—1
pU) - pl)
1 0 0
Example: We are given the vectors a(!) = i ,a? = ; ,a®) = i . Use Gram-Schmidt orthogonalization to
1 3 9
find an orthogonal basis p(1), p®, p(® for the subspace V = span {al),a!?),a®}
1
Step 1: | o1 — g ] = | 1
epl:|p'/ :=a" |= |
1
0 1] —3
(.42 611 1
G e N ol N (DI N N S _| 2
Step 2: | p :=a p(l)-p(l)p ) 11 %
3
3 1 1 5
0 1 -3 1
1. .3 2). (3 1
Step 3: p(3) _ 0 p(l).a( )p(l) B p( ). a )p(z) _ 1 _E 1 _E _1§ | -1
p) . p) p@ . p2) 4 4 |1 5 5 —1
|9 1 3 1
Note that we have
aV = p
@ _ 04 8 m
a =p ‘f‘ZP
14 15
G B 2, 27 ,2)
a p+ 4p + 5p
which we can write as
1] &6 14
D 4@ g®] = [, ,@ 3 1
[a“,a( ,a}zp PP p 01 L
i 0 0 1
1 00 [1 15 1
I 11| |1 =05 —1 (l)lis 335
1 24 |1 05 -1 0 0 1
1 39 | 1 1.5 1
A P S
In the general case we have
al = p)

a® = p® 4 513p0 4 513p@

™ = p 451 pW 4oy



which we can write as

I s12 -+ Su

Therefore we obtain a decomposition A = PS where

e P c R™*" has orthogonal columns

e S € R™" is upper triangular, with 1 on the diagonal.
Note that the vectors p(!), ..., p(®) are different from 0:

Assume, e.g., that p©) = a®) —s13p(1) —553p) =0, then a® = s13p1) + 553p? is in span { p(V), p@} = span {aV),a?}.
This is a contradiction to the assumption that aM.a® a3 are linearly independent.

Solving the least squares problem ||Ac —y|| = min using orthogonalization
We are given A € R™*" with linearly independent columns, b € R”. We want to find ¢ € R” such that ||Ac — y|| = min.
From the Gram-Schmidt method we get A = PS, hence we want to find ¢ such that
HP Sc —yH = min
d

This gives the following method:

Algorithm: solve least squares problem ||Ac — y||, = min using orthogonalization

e use Gram-Schmidt to find decomposition A = PS

Py

e solve |Pd —y|| =min: d;:= ———~ fori=1,...,n
p(l) . p(l)
e solve Sc = d by back substitution
1 0 0 0
. 111 1
Example: Solve the least squares problem ||Ac — b|| = min for A = L2 o4l b= 4
|1 3 9 7
} :(1)'2 j1 1 1.5 357
e Gram-Schmidt gives A = 1 0 5 1 0 1 3 (see above)
1 15 1 0 OV P
4 S
M.p 12 2.p 12 G .p 2
ch=Tm,m g T e e T s e E e m T =00
1 1.5 35 1 3
e solving | 0 1 ¢y | = | 2.4 | by back substitution gives c3 =0.5, ¢ =0.9,¢c; = —1.1
0 0 1 c3 0.5
—1.1
Hence the solution of our least squares problem is the vector ¢ = 0.9
0.5

Note: If you want to solve a least squares problem by hand with pencil and paper, it is usually easier to use the normal
equations. But for numerical computation on a computer using orthogonalization is usually more efficient and more accurate.



Finding an orthonormal basis ¢V),...,¢™: the QR decomposition

The Gram-Schmidt method gives an orthogonal basis p(!), ..., p for V = span {a(l) yeen ,a(")}

Often it is convenient to have a so-called orthonormal basis ¢V, ..., ¢™ where the basis vectors have length 1: Define

gV = 1'>Hp(j) forj=1,...,n

then we have

° span{q(l),...,q(”)} =V

. 1 forj=k
(). (k) — J
[ ] . =
1 {0 otherwise

This means that the matrix Q = [q(l), . ,q(”)] satisfies Q" Q = I where [ is the n X n identity matrix.

Since pl) = Hp(j)H q(j) we have

4l — Hpqu(l)
r

a? = Hp(2>Hq<2> tsi pme(l)
2 r2

a(n):Hp(n) ORI, p<1)Hp<1>+ 5y Hp<n 1>Hq<n—1)
T'nn T'in Fn—1,n

which we can write as

rnr riz2 oo In

: . Tn—1n
0 0 T'nn
A=0R
where the n X n matrix R is given by
row 1 of R Hp(l)H-(rowlofS)
row n of R Hp(”)H-(rown of )

We obtain the so-called QR decomposition A = QR where
e the matrix Q € R”*" has orthonormal columns, range Q = range A
e the matrix R € R"*" is upper triangular, with nonzero diagonal elements

Example: In our example we have pW.p) =4, p@.p2 =5 50).p0) =4 hence



and we obtain the QR decomposition

1 00 5 —15/V5 5

111 5 —=5/V/5 =5 2 3 7
1 24| |5 5,5 -5 8 ‘? 32ﬁ
1 39 S5 15/V5 05

In Matlab we can find the QR decomposition using [Q,R]=qr(A,0)

> A=[1111; 0123; 01409]’;
>> [Q,R] = qr(A,0)

Q =
-0.5000 0.6708 0.5000
-0.5000 0.2236 -0.5000
-0.5000 -0.2236 -0.5000
-0.5000 -0.6708 0.5000
R =

-2.0000 -3.0000 -7.0000
0 -2.2361 -6.7082
0 0 2.0000

Note that Matlab returned the basis —g(!), —¢(®),¢®) (which is also an orthonormal basis) and hence rows 1 and 2 of the
matrix R is (—1) times our previous matrix R.

If we want to find an orthonormal basis for range A and an orthonormal basis for the orthogonal complement (rangeA)+ =
nullA"T we can use the command [Qh,Rh]=qr (A) : It returns matrices O € R”*" and R € R"*" with

basis for rangeA basis for (rangeA)* R

A— | ,0) (n) (n+1) (m) R=
Q T d 4 red ’ m —n rows of zeros

> A=[1111; 0123; 01409]’";
>> [Qh,Rh] = qr(A)

Qh =
-0.5000 0.6708 0.5000 0.2236
-0.5000 0.2236 -0.5000 -0.6708
-0.5000 -0.2236 -0.5000 0.6708
-0.5000 -0.6708 0.5000 -0.2236
Rh =

-2.0000 -3.0000 -7.0000
0 -2.2361 -6.7082
0 0 2.0000
0 0 0

But in most cases we only need an orthonormal basis for range A and we should use [Q,R]=qr (A, Q) (which Matlab calls
the “economy size” decomposition).

Solving the least squares problem |[Ac —b|| = min using the QR decomposition

If we use an orthonormal basis ¢'"),...,¢" for span{a(!),...,a} we have Q" Q = I. The solution of ||Qd — y|| = min is
therefore given by the normal equations (QTQ)d =Q'y,ie.,weobtaind =Q"y.



This gives the following method:

Algorithm: solve the least squares problem ||Ac —y||, = min using orthonormalization:
e find the QR decomposition A = QR

eletd=Q'y

e solve Rc = d by back substitution

In Matlab we can do this as follows:

[Q,R] = qr(A,0);
d = Q'xy;
c = R\d;

In our example we have

> A=0[1111;0123; 061409]'; yv=10;1;4;71;
>> [Q,R] = qr(A,0);
>> d = Q'xy;
>> ¢ = R\d
C =
-0.1000
0.9000
0.5000

We can use the shortcut c=A\y which actually uses the QR decomposition to find the solution of ||Ac —y||, = min

> A=[1111;0123; 01409]'; y=10;1;4;71;

>> ¢ = A\y

C =
-0.1000
0.9000
0.5000

Warning: In Matlab symbolic mode the backslash command does not find the least squares solution:

> A=sym([1111;,0123;01409])"; y=-sym([0;1;4;7]);

>> ¢ = A\y
Warning: The system is inconsistent. Solution does not exist.
C =

Inf

Inf

Inf



