
Linear least squares problem: Example

We want to determine n unknown parameters c1, . . . ,cn using m measurements where m≥ n.
Here ‖·‖ always denotes the 2-norm ‖v‖2 = (v2

1 + · · ·+ v2
n)

1/2.

Example problem

Fit the experimental data
t 0 1 2 3
y 0 1 4 7

with a curve of the form g(t) = c1 ·1+ c2 · t + c3 · t2.

Here n = 3, m = 4 and g1(t) = 1, g2(t) = t, g3(t) = t2. We define the matrix A :=

 g1(t1) · · · gn(t1)
...

...
g1(tm) · · · gn(tm)

=


1 0 0
1 1 1
1 2 4
1 3 9

.

We want to find c ∈ R3 such that ‖Ac− y‖2 = min.

Find solution using normal equations: Find M := A>A =

 4 6 14
6 14 36

14 36 98

 and b := A>y =

 12
30
80

. Then solve the

3×3 linear system Mc = b using Gaussian elimination, yielding the solution vector c =

 −0.1
0.9
0.5

.

t = [0;1;2;3]; y = [0;1;4;7];
A = [t.^0,t,t.^2];
c = (A’*A)\(A’*y) % use normal equations
c = A\y % Matlab shortcut (actually uses QR decomposition)

te = linspace(-.5,3.5,1e2)’; % points for plotting
plot(t,y,’o’,te,[te.^0,te,te.^2]*c) % plot given points and fitted curve
legend(’given points’,’least squares fit’)
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Least squares problem with orthogonal basis

For a least squares problem we are given n linearly independent vectors a(1), . . . ,a(n) ∈ Rm which form a basis for the
subspace V = span{a(1), . . . ,a(n)}. For a given right hand side vector y ∈ Rm we want to find u ∈ V such that ‖u− y‖ is
minimal. We can write u = c1a(1)+ · · ·+ cna(n) = Ac with the matrix A =

[
a(1), . . . ,a(n)

]
∈ Rm×n. Hence we want to find

c ∈ Rn such that ‖Ac− y‖ is minimal.

Solving this problem is much simpler if we have an orthogonal basis for the subspace V : Assume we have vectors
p(1), . . . , p(n) such that

• span
{

p(1), . . . , p(n)
}
=V

• the vectors are orthogonal on each other: p(i) · p( j) = 0 for i 6= j

We can then write u = d1 p(1)+ · · ·+dn p(n) = Pd with the matrix P = [p(1), . . . , p(n)] ∈Rm×n. Hence we want to find d ∈Rn

such that ‖Pd−b‖ is minimal. The normal equations for this problem give

(P>P)d = P>b (1)

where the matrix

P>P =

 p(1)>
...

p(n)>

[p(1), . . . , p(n)
]
=

 p(1) · p(1) · · · p(1) · p(n)
...

...
p(n) · p(1) · · · p(n) · p(n)

=


p(1) · p(1) 0

. . .

0 p(n) · p(n)


is now diagonal since p(i) · p( j) = 0 for i 6= j. Therefore the normal equations (1) are actually decoupled(

p(1) · p(1)
)

d1 = p(1) · y
...(

p(n) · p(n)
)

dn = p(n) · y

and have the solution

di =
p(i) · y

p(i) · p(i)
for i = 1, . . . ,n

Gram-Schmidt orthogonalization

We still need a method to construct from a given basis a(1), . . . ,a(n) an orthogonal basis p(1), . . . , p(n).

Given n linearly independent vectors a(1), . . . ,a(n) ∈ Rm we want to find vectors p(1), . . . , p(n) such that

• span
{

p(1), . . . , p(n)
}
= span

{
a(1), . . . ,a(n)

}
• the vectors are orthogonal on each other: p(i) · p( j) = 0 for i 6= j

Step 1: p(1) := a(1)

Step 2: p(2) := a(2)− s12 p(1) where we choose s12 such that p(1) · p(2) = 0:

p(1) ·a(2)− s12 p(1) · p(1) = 0 ⇐⇒ s12 =
p(1) ·a(2)

p(1) · p(1)

Step 3: p(3) := a(3)− s13 p(1)− s23 p(2) where we choose s13, s23 such that

• p(1) · p(3) = 0, i.e., p(1) ·a(3)− s13 p(1) · p(1)− s23 p(1) · p(2)︸ ︷︷ ︸
0

= 0, hence s13 =
p(1) ·a(3)

p(1) · p(1)
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• p(2) · p(3) = 0, i.e., p(2) ·a(3)− s13 p(2) · p(1)︸ ︷︷ ︸
0

−s23 p(2) · p(2) = 0, hence s23 =
p(2) ·a(3)

p(2) · p(1)

...

Step n: p(n) := a(n)− s1n p(1)−·· ·− sn−1,n p(n−1) where we choose s1n, . . . ,sn−1,n such that p( j) · p(n) = 0 for j = 1, . . . ,n−1
which yields

s jn =
p( j) · p(n)

p( j) · p( j)
for j = 1, . . . ,n−1

Example: We are given the vectors a(1) =


1
1
1
1

, a(2) =


0
1
2
3

, a(3) =


0
1
4
9

. Use Gram-Schmidt orthogonalization to

find an orthogonal basis p(1), p(2), p(3) for the subspace V = span
{

a(1),a(2),a(3)
}

.

Step 1: p(1) := a(1) =


1
1
1
1



Step 2: p(2) := a(2)− p(1) ·a(2)

p(1) · p(1)
p(1) =


0
1
2
3

− 6
4


1
1
1
1

=


−3

2
−1

2
1
2
3
2



Step 3: p(3) := a(3)− p(1) ·a(3)

p(1) · p(1)
p(1)− p(2) ·a(3)

p(2) · p(2)
p(2) =


0
1
4
9

− 14
4


1
1
1
1

− 15
5


−3

2
−1

2
1
2
3
2

=


1
−1
−1
1


Note that we have

a(1) = p(1)

a(2) = p(2)+
6
4

p(1)

a(3) = p(3)+
14
4

p(1)+
15
5

p(2)

which we can write as [
a(1),a(2),a(3)

]
=
[

p(1), p(2), p(3)
] 1 6

4
14
4

0 1 15
5

0 0 1




1 0 0
1 1 1
1 2 4
1 3 9


︸ ︷︷ ︸

A

=


1 −1.5 1
1 −0.5 −1
1 0.5 −1
1 1.5 1


︸ ︷︷ ︸

P

 1 1.5 3.5
0 1 3
0 0 1


︸ ︷︷ ︸

S

In the general case we have

a(1) = p(1)

a(2) = p(2)+ s12 p(1)

a(3) = p(3)+ s13 p(1)+ s13 p(2)

...

a(n) = p(n)+ s1n p(1)+ · · ·+ sn−1,n p(n−1)
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which we can write as

[
a(1),a(2), . . . ,a(n)

]
=
[

p(1), p(2), . . . , p(n)
]


1 s12 · · · s1n

0 1
. . .

...
...

. . . . . . sn−1,n
0 · · · 0 1


Therefore we obtain a decomposition A = PS where

• P ∈ Rm×n has orthogonal columns

• S ∈ Rn×n is upper triangular, with 1 on the diagonal.

Note that the vectors p(1), . . . , p(n) are different from~0:

Assume, e.g., that p(3) = a(3)− s13 p(1)− s23 p(2) =~0, then a(3) = s13 p(1)+ s23 p(2) is in span
{

p(1), p(2)
}
= span

{
a(1),a(2)

}
.

This is a contradiction to the assumption that a(1),a(2),a(3) are linearly independent.

Solving the least squares problem ‖Ac− y‖= min using orthogonalization

We are given A ∈ Rm×n with linearly independent columns, b ∈ Rn. We want to find c ∈ Rn such that ‖Ac− y‖= min.

From the Gram-Schmidt method we get A = PS, hence we want to find c such that∥∥P Sc︸︷︷︸
d

−y
∥∥= min

This gives the following method:

Algorithm: solve least squares problem ‖Ac− y‖2 = min using orthogonalization

• use Gram-Schmidt to find decomposition A = PS

• solve ‖Pd− y‖= min: di :=
p(i) · y

p(i) · p(i)
for i = 1, . . . ,n

• solve Sc = d by back substitution

Example: Solve the least squares problem ‖Ac−b‖= min for A =


1 0 0
1 1 1
1 2 4
1 3 9

, b =


0
1
4
7

.

• Gram-Schmidt gives A =


1 −1.5 1
1 −0.5 −1
1 0.5 −1
1 1.5 1


︸ ︷︷ ︸

P

 1 1.5 3.5
0 1 3
0 0 1


︸ ︷︷ ︸

S

(see above)

• d1 =
p(1) ·b

p(1) · p(1)
=

12
4

= 3, d2 =
p(2) ·b

p(2) · p(2)
=

12
5

= 2.4, d3 =
p(3) ·b

p(3) · p(3)
=

2
4
= 0.5

• solving

 1 1.5 3.5
0 1 3
0 0 1

 c1
c2
c3

=

 3
2.4
0.5

 by back substitution gives c3 = 0.5, c2 = 0.9, c1 =−1.1

Hence the solution of our least squares problem is the vector c =

 −1.1
0.9
0.5

.

Note: If you want to solve a least squares problem by hand with pencil and paper, it is usually easier to use the normal
equations. But for numerical computation on a computer using orthogonalization is usually more efficient and more accurate.

4



Finding an orthonormal basis q(1), . . . ,q(n): the QR decomposition

The Gram-Schmidt method gives an orthogonal basis p(1), . . . , p(n) for V = span
{

a(1), . . . ,a(n)
}

Often it is convenient to have a so-called orthonormal basis q(1), . . . ,q(n) where the basis vectors have length 1: Define

q( j) =
1∥∥p( j)
∥∥ p( j) for j = 1, . . . ,n

then we have

• span
{

q(1), . . . ,q(n)
}
=V

• q( j) ·q(k) =

{
1 for j = k
0 otherwise

This means that the matrix Q = [q(1), . . . ,q(n)] satisfies Q>Q = I where I is the n×n identity matrix.

Since p( j) =
∥∥p( j)

∥∥q( j) we have

a(1) =
∥∥∥p(1)

∥∥∥q(1)︸ ︷︷ ︸
r11

a(2) =
∥∥∥p(2)

∥∥∥q(2)︸ ︷︷ ︸
r22

+s12

∥∥∥p(1)
∥∥∥︸ ︷︷ ︸

r12

p(1)

...

a(n) =
∥∥∥p(n)

∥∥∥q(n)︸ ︷︷ ︸
rnn

+s1n

∥∥∥p(1)
∥∥∥︸ ︷︷ ︸

r1n

p(1)+ · · ·+ sn−1,n

∥∥∥p(n−1)
∥∥∥︸ ︷︷ ︸

rn−1,n

q(n−1)

which we can write as

[
a(1),a(2), . . . ,a(n)

]
=
[
q(1),q(2), . . . ,q(n)

]


r11 r12 · · · r1n

0 r22
. . .

...
...

. . . . . . rn−1,n
0 · · · 0 rnn


A = QR

where the n×n matrix R is given by  row 1 of R
...

row n of R

=


∥∥p(1)

∥∥ · (row 1 of S)
...∥∥p(n)

∥∥ · (row n of S)


We obtain the so-called QR decomposition A = QR where

• the matrix Q ∈ Rm×n has orthonormal columns, rangeQ = rangeA

• the matrix R ∈ Rn×n is upper triangular, with nonzero diagonal elements

Example: In our example we have p(1) · p(1) = 4, p(2) · p(2) = 5, p(3) · p(3) = 4, hence

q(1) =
1
2

p(1) =


.5
.5
.5
.5

 , q(2) =
1√
5

p(2) =
1√
5


−1.5
−.5
.5

1.5

 , q(3) =
1
2

p(3) =


.5
−.5
−.5
.5
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and we obtain the QR decomposition
1 0 0
1 1 1
1 2 4
1 3 9

=


.5 −1.5/

√
5 .5

.5 −.5/
√

5 −.5
.5 .5/

√
5 −.5

.5 1.5/
√

5 .5


 2 3 7

0
√

5 3
√

5
0 0 2



In Matlab we can find the QR decomposition using [Q,R]=qr(A,0)

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’;
>> [Q,R] = qr(A,0)
Q =

-0.5000 0.6708 0.5000
-0.5000 0.2236 -0.5000
-0.5000 -0.2236 -0.5000
-0.5000 -0.6708 0.5000

R =
-2.0000 -3.0000 -7.0000

0 -2.2361 -6.7082
0 0 2.0000

Note that Matlab returned the basis −q(1),−q(2),q(3) (which is also an orthonormal basis) and hence rows 1 and 2 of the
matrix R is (−1) times our previous matrix R.

If we want to find an orthonormal basis for rangeA and an orthonormal basis for the orthogonal complement (rangeA)⊥ =
nullA> we can use the command [Qh,Rh]=qr(A) : It returns matrices Q̂ ∈ Rm×m and R̂ ∈ Rm×n with

Q̂ =


basis for rangeA︷ ︸︸ ︷
q(1), . . . ,q(n),

basis for (rangeA)⊥︷ ︸︸ ︷
q(n+1), . . . ,q(m)

 , R̂ =


R

0 · · · 0
...

...
0 · · · 0


m−n rows of zeros

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’;
>> [Qh,Rh] = qr(A)
Qh =

-0.5000 0.6708 0.5000 0.2236
-0.5000 0.2236 -0.5000 -0.6708
-0.5000 -0.2236 -0.5000 0.6708
-0.5000 -0.6708 0.5000 -0.2236

Rh =
-2.0000 -3.0000 -7.0000

0 -2.2361 -6.7082
0 0 2.0000
0 0 0

But in most cases we only need an orthonormal basis for rangeA and we should use [Q,R]=qr(A,0) (which Matlab calls
the “economy size” decomposition).

Solving the least squares problem ‖Ac−b‖= min using the QR decomposition

If we use an orthonormal basis q(1), . . . ,q(n) for span{a(1), . . . ,a(n)} we have Q>Q = I. The solution of ‖Qd− y‖ = min is
therefore given by the normal equations (Q>Q)d = Q>y, i.e., we obtain d = Q>y.
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This gives the following method:
Algorithm: solve the least squares problem ‖Ac− y‖2 = min using orthonormalization:

• find the QR decomposition A = QR

• let d = Q>y

• solve Rc = d by back substitution

In Matlab we can do this as follows:

[Q,R] = qr(A,0);
d = Q’*y;
c = R\d;

In our example we have

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’; y = [0;1;4;7];
>> [Q,R] = qr(A,0);
>> d = Q’*y;
>> c = R\d
c =

-0.1000
0.9000
0.5000

We can use the shortcut c=A\y which actually uses the QR decomposition to find the solution of ‖Ac− y‖2 = min

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’; y = [0;1;4;7];
>> c = A\y
c =

-0.1000
0.9000
0.5000

Warning: In Matlab symbolic mode the backslash command does not find the least squares solution:

>> A = sym([1 1 1 1; 0 1 2 3; 0 1 4 9])’; y = sym([0;1;4;7]);
>> c = A\y
Warning: The system is inconsistent. Solution does not exist.
c =
Inf
Inf
Inf
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