
1 The Linear Least Squares Problem

Introduction: Determine unknown parameters c1, . . . ,cn using m > n measurements with errors

Example: We want to measure the acceleration g caused by gravity. If we throw an object into the air the height y is a
quadratic function of time

y = g(t) = c1 + c2t + c3t2

with three unknown parameters c1,c2,c3 which we want to determine (then we obtain the acceleration from gravity as
g =−2c3). In order to determine 3 unknown parameters we need at least 3 measurements. But we have measurement errors,
so we want to perform a much larger number m of measurements.

We now perform our experiment: we throw an object into the air and measure its height at m different times t1, . . . , tm: We
perform m = 4 measurements and find the following data values (time t in seconds, height y in meters):

t j 0 1 2 3
y j 5 15 20 10

0 0.5 1 1.5 2 2.5 3

time

0

5

10

15

20

measured heights with best fit g(t)

Note that there is no quadratic function g(t) which passes through all four points. We therefore want to find the function
g(t) = c1 + c2t + c3t2 which gives “the best fit” for the given data points.

In general the output value y depends on the input value x as follows:

y = g(t) with g(t) = c1g1(t)+ · · ·+ cngn(t)

Here the functions g1(t), . . . ,gn(t) are known, and we want to determine the unknown parameters c1, . . . ,cn.

We perform m≥ n measurements and obtain data points (t1,y1), . . .(tm,ym) where

y j = g(t j)+ e j, j = 1, . . . ,m

with measurement errors e j. We assume that e1, . . . ,em are small random errors (we will be more precise below).

Example: If we want to fit measured points with a straight line, we have g(x) = c1 ·1+ c2 · t with g1(x) = 1 and g2(x) = t.
In this case we need m ≥ 2 points in order to be able to estimate c1,c2. Because of the random errors we should use m as
large as possible. Note that for m > 2 points we will not be able (in general) to find a straight line which passes through all
the data points. We would like to find c1, . . . ,cn which give the “best fit”.

For a certain choice c1, . . . ,cn of the parameters we can measure the fit to the data values by the residual vector r =
(r1, . . . ,rm)

> where
r j := g(t j)− y j = c1g1(t j)+ · · ·+ cngn(t j)− y j, j = 1, . . . ,m.

If the function g(t) were the true function, the observed values y1, . . . ,ym would have errors r1, . . . ,rm. Since large values of
the errors are unlikely we want to pick c1, . . . ,cn such that the residual vector r has a “small size”.

1

Assumption about measurement errors

In order to understand which error vectors (e1, . . . ,em) are “likely” or “unlikely” we need to be more precise about the
distribution of the errors. We first assume the following (in section 2 we will show that the least squares method also works
under a weaker assumption)

Assumption for errors e1, . . . ,em:

• the errors e1, . . . ,em are independent

• the error e j has normal distribution with a standard deviation σ (which is the same for all j = 1, . . . ,m): An error of
size z occurs with a probability density of ce−z2/(2σ2) which is the well-known bell-shaped curve:

95%

Μ - 3 Σ Μ - 2 Σ Μ - Σ Μ Μ + Σ Μ + 2 Σ Μ + 3 Σ

Most errors observed in practice have (approximatively) a normal distribution, since they are a sum of many indepen-
dent sources (“central limit theorem”). The standard deviation σ describes how much the error is “spread out”. We
have that |z| ≤ 1.96σ with probability 95%. Note that large errors (“outliers”) are extremely unlikely.

For a certain choice c1, . . . ,cn we obtain a residual vector (r1, . . . ,rN)
>. If (c1, . . . ,cn) were the true values, the observed

values y1, . . . ,ym have a probability density which is given by the product of the individual densities:

Ce−(r
2
1+···+r2

m)/(2σ2)

For the “maximal likelihood” (most plausible choice of c1, . . . ,cn) we should therefore minimize r2
1 + · · ·r2

m = ‖r‖2
2 (“least

squares method”).

The least squares method may give bad results for c1, . . . ,cn if our assumption is not satisfied. Two typical situations are:

• The errors ei are normally distributed with known standard deviations σi which have different sizes (e.g., the measure-
ment error is larger in certain intervals for x). In this case we need to minimize

r2
1

σ2
1
+ · · ·+ r2

m

σ2
m

(“weighted least squares method”). We define ỹ j := y/σ j and ã jk := a jk/σ j, then r2
1

σ2
1
+ · · ·+ r2

m
σ2

m
=
∥∥Ãc− ỹ

∥∥2 and we

can use the normal algorithm (“ordinary least squares method”) with Ã and ỹ.

• There are a few very large errors, so called “outliers”. This can be due to the fact that in addition to the standard error
sources (small noise, measurement errors) there can be some rare large errors, e.g., if we accidentally knock against
our delicate apparatus while performing our experiment. Since for the normal distribution large errors are extremely
rare, outliers have a strong effect on the obtained parameters c1, . . . ,cn and can spoil the result.

It turns out that the least squares method works well even when the errors are not normally distributed. We only need the
following properties for the errors:

• the errors e1, . . . ,em are independent

• the mean (expectation) is zero: E[e j] = 0

• the variance is the same for j = 1, . . . ,m: E[e2
j] = σ2

2

“Least squares method”

We want to find coefficients c1, . . . ,cn such that the 2-norm‖r‖2 is minimal, i.e.,

F(c1, . . . ,cn) := r2
1 + · · ·+ r2

m = minimal. (1)

Define the matrix A ∈ Rm×n by

A =

 g1(t1) · · · gn(t1)
...

...
g1(tm) · · · gn(tm)


then the residual vector is given by r = Ac− y and F(c1, . . . ,cn) = ‖Ac− y‖2

2.

Therefore we can pose the least squares problem in the following form: Given a matrix A ∈ RN×n and a right-hand side
vector y ∈ Rm, find a vector c ∈ Rn such that

‖Ac− y‖2 = minimal. (2)

We will write ‖·‖ for ‖·‖2 from now on.

Normal Equations

Note that the function F(c1, . . . ,cn) is a quadratic function of the coefficients c1, . . . ,cn. Since this is a smooth function, at a
minimum we must have that the partial derivatives satisfy

∂F
∂c1

= 0, . . . ,
∂F
∂cn

= 0. (3)

Since F(c1, . . . ,cn) = r2
1 + · · ·+ r2

m and r j = a j1c1 + · · ·+a jncn− y j we obtain using the chain rule

∂F
∂c1

= 2r1
∂ r1

∂c1
+ · · ·+2rm

∂ rm

∂c1
= 2r1a11 + · · ·+2rmam1 = 2[a11 · · ·am1]

 r1
...

rm

 !
= 0

for the first equation in (3). All n equations in (3) together can therefore be written as a11 · · · am1
...

...
an1 · · · amn


 r1

...
rm

=

 0
...
0

 , i.e.,A>r =

 0
...
0

 .

These are the so-called normal equations. Since r = Ac− y we obtain A>(Ac− y) =

 0
...
0

 or

A>Ac = A>y. (4)

This leads to the following algorithm:

1. Let M := A>A and b := A>y

2. Solve the n×n linear system Mc = b.

3

Note that ‖Ac− y‖ = min means that we want to approximate the vector y by a linear combination of the columns of the
matrix A. If a column of A is a linear combination of some other columns, this column is “superfluous”, and leads to multiple
solutions c which all give the same approximation Ac.

Therefore it makes sense to assume that the columns of the matrix A are linearly independent, i.e.,

Ac =

 0
...
0

 =⇒ c =

 0
...
0

 . (5)

This means that the rank of the matrix A is n (the rank is the number of linearly indpendent columns).

Theorem 1. Assume that the columns of A are linearly independent. Then

1. The normal equations have a unique solution c ∈ Rn.

2. This vector c gives the unique minimum of the least squares problem: For c̃ ∈ Rn with c̃ 6= c we have

‖Ac̃− y‖> ‖Ac− y‖

Proof. For (1.) we have to show that the matrix M = A>A is nonsingular, i.e., Mc =

 0
...
0

 =⇒ c =

 0
...
0

. Therefore we

assume Mc =

 0
...
0

. By multiplying with c> from the left we obtain

c>A>︸ ︷︷ ︸
(Ac)>

Ac = 0, i.e.,‖Ac‖= 0

which means Ac =

 0
...
0

. Now our assumption (5) gives c =

 0
...
0

.

For (2.) we let c̃ = c+d with d 6=

 0
...
0

 and have r̃ := Ac̃− y = A(c+d)− y = (Ac− y)+Ad = r+Ad, hence

‖r̃‖2 = (r+Ad)>(r+Ad) = r>r+2(Ad)>r+(Ad)>(Ad)

= ‖r‖2 +2d> A>r︸︷︷︸
0
...
0



+‖Ad‖2︸ ︷︷ ︸
>0

> ‖r‖2

where A>r =

 0
...
0

 by the normal equations, and ‖Ad‖> 0 because of d 6=

 0
...
0

 and (5).

The normal equations are the best method to solve a least squares problem by hand. On a computer with machine arithmetic
it turns out that sometimes this leads to a numerically unstable algorithm. We can illustrate this by looking at the special
case N = n with a square nonsingular matrix A. In this case ‖r‖= ‖Ac− y‖ is minimized by solving the linear system Ac = y,
and we have ‖r‖= 0. Assume that A has a large condition number of about 103, then typically A>A has a condition number
of about 106. Therefore by solving the normal equations with matrix M = A>A we will lose about 6 digits of accuracy. On
the other hand we can just solve Ac = y and only lose about 3 digits of accuracy. Hence in this special case the algorithm
with the normal equations is numerically unstable. It turns out that a similar loss of accuracy can also happen for N > n if
we use the normal equations. Therefore we should use a different algorithm on a computer.

4

Gram-Schmidt orthogonalization

Assume that we have a matrix A ∈RN×n with m≥ n and linearly independent columns, i.e., rankA = n. We now want to find
an orthogonal basis p(1), . . . , p(n)of rangeA, i.e., p(j)>p(k) = 0 for j 6= k.

We can do this in the following way: Denote the columns of A by a(j), i.e., A = [a(1), . . . ,a(n)].

Let p(1) := a(1).

Let p(2) := a(2)− s12 p(1) where we determine s12 such that p(2) ⊥ p(1), i.e.,
(
a(2)− s12 p(1)

)
· p(1) = 0 which yields

s12 :=
a(2) · p(1)∥∥p(1)

∥∥2

We continue in the same way for p(3), . . . , p(n): We let

p(j) := a(j)− s1 j p(1)− . . .− s j−1, j p(j−1) (6)

where we determine s1 j such that p(j) ⊥ p(1),. . . , determine s j−1, j such that p(j) ⊥ p(j−1) yielding

sk j :=
a(j) · p(k)∥∥p(k)

∥∥2 k = 1, . . . , j−1 (7)

By construction we have that the vectors p(1), . . . , p(n) are orthogonal. By (6) we have

a(j) = p(j)+ s1 j p(1)+ . . .+ s j−1, j p(j−1), j = 1, . . . ,n

which means in matrix form that

[a(1), . . . ,a(n)] = [p(1), . . . , p(n)]

 1 s12 · · ·
.

1


A = PS

where P = [p(1), . . . , p(n)] has orthogonal columns and S is the upper triangular matrix with diagonal elements s j j = 1 and
elements sk j for j > k is given by (7).

Solving the least squares problem using the decomposition A = PS

With the decomposition A = PS our problem becomes ‖PSc− y‖ = min. With d = Sc we have ‖Pd− y‖ = min, hence the
normal equations give

P>Pd = P>y.

Since the matrix P>P is diagonal this is easy to solve: with b := P>y we obtain

d j =
b j∥∥p(j)
∥∥2 j = 1, . . . ,n

We can then find c by solving Sc = d using backsubstitution since S is upper triangular.

5

Orthonormal basis and decomposition A = QR

We can normalize the vectors p(1), . . . , p(n) to vectors q(1), . . . ,q(n) of length 1 by defining

q(j) := p(j)/
∥∥∥p(j)

∥∥∥
Let Q := [q(1), . . . ,q(n)] ∈ Rm×n, then we have

A = QR (8)

where R ∈ Rn×n is upper triangular with

R j j =
∥∥∥p(j)

∥∥∥> 0, Rk j =
a(j) · p(k)∥∥p(k)

∥∥ for j > k.

Since the columns of Q ∈ RN×n are orthonormal we have Q>Q = I.

In Matlab we can compute the QR decomposition using [Q,R]=qr(A,0)

Remark 1.

1. The command [Q,R]=qr(A) (without “0”) gives a matrix Q ∈ Rm×m which has additional m−n columns so that all
columns give an orthonormal basis of all of RN , and the matrix R ∈ RN×n has N− n zero rows added at the bottom.
We don’t need this for the least squares problem and use the “economy version” of the QR decomposition given by
qr(A,0).

Therefore the qr command allows us to find an orthonormal basis for a subspace W = span
{

a(1), . . . ,a(n)
}

of RN

and for its orthogonal complement W⊥: The first n columns of Q form an orthonormal basis of W , the remaining
N−n columns form an orthonormal basis of W⊥.

2. Actually Matlab does not use the Gram-Schmidt method for computing the QR decomposition since this may still be
numerically unstable. Instead the so-called “Householder reflection method” is used (which I won’t explain here).

Therefore we obtain the following algorithm for solving the least squares problem:

1. Find a decomposition A = QR where Q ∈ Rm×n has orthonormal columns, and R is upper triangular.

2. Let b := Q>y and solve the upper triangular linear system

Rc = b

by back substitution.

In Matlab we can do this as follows:

[Q,R] = qr(A,0);
c = R\(Q’*y)

Matlab has a shortcut for this, we can just use the backslash operator:

c = A\y

6

