Machine Numbers and Machine Arithmetic

A Matlab program such as
x=.1; yl=cos(x); y=1-yl
is not evaluated exactly. We can only store a certain number of digits for each number. Instead of arbitrary real numbers we

only have finitely many machine numbers available. Arithmetic operations like z=x+y or s=sqrt(x) are not performed
exactly, but give a result which is again a machine number. This is called machine arithmetic.

We want to
e represent real numbers with a large range of magnitudes, e.g., 10719 to 10'%

e achieve small relative errors: rounding a number to the closest machine should give a relative error of at most
~16
ey~ 10 .

Simple base 10 machine numbers

Some machines (e.g. all calculators) use base 10 machine numbers. In decimal notation we have e.g.
(341)10=3-10""+4-1072+1-107°.
In general an n-digit base 10 number with digits d; € {0,...,9} is

(didy...dy)io=dy- 107" +dy- 1072+ +d,- 107"

We can write a number x € R in the form x = ¢ - 10° with a mantissa ¢ and an exponent ¢. E.g., the number x = 12345
can be written as
x = 12345 = .12345-10° = .012345 - 10% = .0012345 - 10’

We call the first form .12345 - 10° the normalized representation since the first digit d; after the decimal point is nonzero.

Any number x € R with x # 0 can be written as

1
x==+q-10°% E§q<1, eel €))

For machine numbers we want to represent the mantissa with z digits, and use a range ey, < e < emax of exponents.
Simple base 10 machine numbers are either normalized numbers or zero:

ﬁ_{i(.dldz...dn)lo'loe, d;€{0,....9}, d#0, eC€Z, emn<e< emn

The largest machine number is xpax = (199---9) 10 10" = (1 —107") - 10%max,
the smallest positive machine number is Xy, = (.10...0)1q - 10min = 10¢min—1,
For calculators we have typically n = 8 mantissa digits, and can use exponents between epi, = —99 and emax = 99.

Rounding: A given number x € R is represented by a machine number £. This operation is denoted by f1(x) (“floating point
approximation”).

Write x in the form x = ¢ - 10¢ with % <g<lande€cZ

If emin < e < emax: Find the nearest mantissa § = (.d1d>...d,)10 to g, then £ = +4- 10°

If e > epax: “Overflow” , i.e., |x| is too large (we will explain later what to do in this case)

If e < epip: “Underflow”, let £ be O or x,,;,, whatever is closer



2
Example: Assume we have a machine with n = 3, epin = —99 and epx = 99. We want to find £ = fI(x) for x = 300°

° x= —i—% 1072 ie., g = % and e = —2. Note that € € [emin, €max] S0 wWe don’t have overflow or underflow.

e Now we need to approximate the mantissa g = % = (.666666...)19 by a number § = (.d;da2d3) 0.
The closest number to the left is giere = (.666) 10, the closest number to the right is §righe = (.667)19. In order to decide
which is closer we look at the midpoint gmig = (.6665)10. If ¢ < gmig we round down to §iefr, if ¢ > gmia We round up
tO Gright (if ¢ = gmiq it does not matter which we choose).
Here g = (.666666 )10 > gmia = (.666500) 10, therefore § = §iigh; and

%= fl(x) = +(.667)10-1072.

Now we want to find an upper bound for the rounding error: If we don’t have overflow or underflow we have x = ¢ - 10¢
and X = +4-10°. Hence
£—x|_1g-10°=¢-10°] _|§—gq|

q-10¢ ¢
In the denominator we have g > %. In the numerator we have |§ — ¢| < % - 107" since the spacing between two successive
mantissa values is 107", and the largest possible value of |§ — ¢| is half this distance. Hence the rounding error can be

bounded by

X

— |qA_CI| < %‘10*” :l.lo—n—&-l
g ~— 1/10 2

This number is called the machine epsilon: | gy = 1 - 107"+,

In our example we had n = 3, therefore &y, = 1. 1072=5.10"3. Forx= ﬁ we obtained £ = .667-1072, so R

~ —4
=1 ~5-1077.

n X
X—X

For x = 100.4 = (.1004) - 10* we obtain £ = (.100) - 10> = 100, so ~4-1072.

Simple base 2 machine numbers

Most computers use base 2 machine numbers. In binary notation we have e.g.
(101),=1-2""40-27241.272.
In general an n-digit base 2 number with digits d; € {0,1} is
(didy...dy)y=dy 27 +dy- 2724 +d,- 27"

We can write a number x € R in the form x = +¢ - 2¢ with a mantissa ¢ and an exponent e. E.g., the number x = (1101),

can be written as
x=(1101); = (.1101), - 2* = (.01101),-2° = (.001101), - 2°

We call the first form (.1101), - 2% the normalized representation since the first digit d; after the point is nonzero.

Any number x € R with x # 0 can be written as
1
x==+q-2° §§q<1, ecZ 2)

For machine numbers we want to represent the mantissa with » digits, and use a range enyin < e < emax of exponents.
Simple base 2 machine numbers are either normalized numbers or zero:

X {i(.dldz...dn)2-2e, die{0,1}, di=1, €€Z, emn<e<emn
X =
0

Note that for normalized numbers we always have d; = 1, hence this digit does not have to be stored.
The largest machine number is xpy,x = ((11--- 1)y - 2°mx = (1 —27") . 2¢max,

the smallest positive machine number is xpi, = (.10...0), - 26min = 2¢min—1,



Rounding: A given number x € R is represented by a machine number £. This operation is denoted by f1(x) (“floating
point approximation”).

Write x in the form x = £¢q - 2° with % <g<landeecZ

o If epin < e < emax: Find the nearest mantissa § = (.d1d; ...d,)s to g, then £ = £4-2¢

o If e > epax: “Overflow” | i.e., |x| is too large (we will explain later what to do in this case)
o If e < epin: “Underflow”, let £ be O or x,,,;,,, whatever is closer

Example: What happens when the Matlab command x=.1 is executed? Matlab uses binary machine numbers with n = 53,

1
emin = —1021, eymax = 1024. We want to find £ = f1(x) for x = 10

° x= +1% 273 e, g= 1% and e = —3. Note that e € [ein, €max] SO We don’t have overflow or underflow.

e Now we need to approximate the mantissa g = % by a number § = (.d1d; . ..ds3),. Note that we have in base 2 (digits
after ds3 are shown in red)

= (.1100110011001100110011001100110011001100110011001100110011...),
Greft = (.11001100110011001100110011001100110011001100110011001),
qngh (.11001100110011001100110011001100110011001100110011010),

= (.1100110011001100110011001100110011001100110011001100110000),

The closest number to the left is e, the closest number to the right is grighe. In order to decide which is closer we
look at the midpoint gmig. If ¢ < gmia We round down to Giefi, if ¢ > gmia We round up to gright (if ¢ = gmiq it does not
matter which we choose).
Here g > gmiq, therefore § = Grigh and

2= f1(x) = +rign -2

Now we want to find an upper bound for the rounding error: If we don’t have overflow or underflow we have x = +¢-2¢
and X = £4 - 2°. Hence
X—x

_ |G-2°—q-2°| _ 4 —q|
q-2¢ q

X

In the denominator we have g > % In the numerator we have |§—¢g| < % -27" since the spacing between two successive
mantissa values is 27", and the largest possible value of |§ — g| is half this distance. Hence the rounding error can be bounded
by

—n

A 1
_la—d 32 _ Lt g
q 1/2

This number is called the machine epsilon: [y =2 " |

In Matlab we have n = 53, therefore £, =273~ 1.11-107'6. In our example with x = % we have

X—x

X

Y979 555.10717.
P q

IEEE754 machine numbers

Our “simple base 2 machine numbers” have some problems.

There is a huge hole around 0

The distance between 0 and the smallest positive machine number x,,;, is much larger than the distance between xy,;;, and the
next larger machine number x; := xpin (1 +27"):

Xmin — 0 = 2M0 > X — Xppjp = 27" - 26min

This has unpleasant consequences:



e Rounding numbers x with |x| > xpi, causes a relative error of size< &. Rounding numbers x with |x| < xpi, gives
either O or xni, and causes a relative error of size< 100% (underflow). If a program generates values slightly smaller
than xp,;, the accuracy decreases dramatically.

e The two statements if y>x and if y-x>0 have different meanings: For the machine numbers x = x,i, and y = x; the
expression y>x evaluates to true since x; is a larger machine number than x,;,. But the expression y-x>0 evaluates
to false: The machine first computes y —x = x| — xpip, = 27" - 2°min_ then this value is rounded to the closest machine
number which is 0.

We can fix this by filling in the hole around O: So far the smallest positive numbers are obtained with e = ep;,, they have a
spacing of 27" . 2¢min;
+(.1dy...dy,)y - 2%, dj€{0,1}

We now add the “subnormal numbers” which have the same spacing of 27" . 26min:

:t(.Odz...dn)2-26mi“, dj S {0,1}
Note that these values include the two distinct machine numbers -0 and —O0 (using signs “+” and “—” withdp = --- =
d, = 0). We will explain below that this is a feature, not a bug.

Now rounding a number x with |x| < xpax is more well-behaved since the finest spacing 27" - 2¢min js used around 0: We get
£ = fl(x) with

X—x

< {2_” for x| > Xmin
X

min {2_"%, 1} for |x| < Xmin

This is called “gradual underflow”: If we generate values slightly smaller than xp;, the rounding error only increases
slightly (instead of jumping to 100%).

We need to specify what happens for overflow, division by 0, 0/0 etc.

We introduce special values +Inf, -Inf for handling overflow:

>> x=1e300; -Xxx*X
ans =
-Inf

We can perform arithmetic with Inf and -Inf: E.g., 5-Inf gives -Inf, Inf*Inf gives Inf, 0/Inf gives 0 etc.

Note that there are actually two distinct machine numbers +0 and -0. These are both displayed as 0, and the comparison
+0==-0 is defined as true. But these two values can preserve the sign information in the case of an underflow:

>> x=1e-300
X =
le-300
>> y=-X*X % underflow to -0, displayed as 0
y:
0

>> 1/y % 1/-0 gives -Inf
ans =

-Inf

For indeterminite expressions like Inf-Inf, 0xInf or 0/0 we introduce the special value NaN (“Not a Number”’). This
value is also useful for representing a missing data value. Arithmetic operations involving NaN give again NaN (with a few
exceptions).



Summary:

IEEE754 machine numbers have the following form with d; € {0, 1} and integer e:

+(1dy...dy)2-2% emin <e<ema (normalized numbers)
£=1< £(.0d...dy), - 26min (subnormal numbers, includes +0,—0)
Inf, -Inf, NaN (special values)

Single Precision numbers (type float in C) use 4 bytes = 32 bits (1 for sign, 8 for exponent, 23 for mantissa).
Double Precision numbers (type double in C) use 8 bytes = 64 bits (1 for sign, 11 for exponent, 52 for mantissa).

‘ bits n €max €min Em Xmax Xmin

Single Precision | 32 24 128 —125 27 %=~6-107% =~2!2x3.10% 27126 ~ 1038
Double Precision | 64 53 1024 —1021 273 ~10710 21024 42,1038 2-1022 5. 1308

Note that there are subnormal numbers smaller than x,;, available. The smallest positive subnormal number is 27"2%min —=
271074 ~ 5.10732* for double precision. But the value xyi, ~ 2- 10739 is important since values |x| < xyi, can cause
roundoff errors larger than ¢,.

Machine arithmetic

Our machine has built-in operations (like x + y, x/y, 1/, sinx) which operate on machine numbers (this includes +0, —0,
Inf, —Inf, NaN).

Note that for machine numbers x,y the value x + y is usually not a machine number. E.g. for decimal machine numbers with

n = 3 mantissa digits:

x=(123)10-10",  y=(456)10-107",  x+y=(.1234.00456)-10' = (.12756)9- 10’

For the code z=x+y the value z has to be a machine number. In this example this should be the machine number z =
f1(:12756-10") = (.128)0- 10".

Therefore the built-in machine operations like y=sqrt (x) are implemented as follows: For the given machine number x
e find the “exact” result Y = \/x (in practice: use some extra digits)
e return the machine number y = fI1(Y)

Therefore machine operations don’t return the exact result Y, but the closest possible machine number. Note that this causes
an error |&,| < &y. All built-in machine operations (like x +y, x/y, v/, sinx) are implemented in this way. (Actually, for
functions like sin(x) a slightly larger relative error 2¢€, is allowed to avoid the so-called “table-makers dilemma”.)

Each arithmetic operation in a program causes a relative error of size< g,.
Example: For the Matlab code x=.1; y=1-cos(x) the machine actually performs the following operations to find the
computed value §:

x:=fI(.1) round .1 to closest machine number
Y :=cos(%) find true result cos(£) with extra accuracy
$1:=fl(N1) round Y] to closest machine number
Y:=1-3 find true result 1 — §; with extra accuracy

y:=fl(Y) round Y to closest machine number



