
Machine Numbers and Machine Arithmetic

A Matlab program such as

x=.1; y1=cos(x); y=1-y1

is not evaluated exactly. We can only store a certain number of digits for each number. Instead of arbitrary real numbers we
only have finitely many machine numbers available. Arithmetic operations like z=x+y or s=sqrt(x) are not performed
exactly, but give a result which is again a machine number. This is called machine arithmetic.

We want to

• represent real numbers with a large range of magnitudes, e.g., 10−100 to 10100

• achieve small relative errors: rounding a number to the closest machine should give a relative error of at most
εM ≈ 10−16.

Simple base 10 machine numbers

Some machines (e.g. all calculators) use base 10 machine numbers. In decimal notation we have e.g.

(.341)10 = 3 ·10−1 +4 ·10−2 +1 ·10−3.

In general an n-digit base 10 number with digits d j ∈ {0, . . . ,9} is

(.d1d2 . . .dn)10 = d1 ·10−1 +d2 ·10−2 + · · ·+dn ·10−n.

We can write a number x ∈ R in the form x = ±q · 10e with a mantissa q and an exponent e. E.g., the number x = 12345
can be written as

x = 12345 = .12345 ·105 = .012345 ·106 = .0012345 ·107

We call the first form .12345 ·105 the normalized representation since the first digit d1 after the decimal point is nonzero.

Any number x ∈ R with x 6= 0 can be written as

x =±q ·10e,
1
10
≤ q < 1, e ∈ Z (1)

For machine numbers we want to represent the mantissa with n digits, and use a range emin ≤ e≤ emax of exponents.
Simple base 10 machine numbers are either normalized numbers or zero:

x̂ =

{
±(.d1d2 . . .dn)10 ·10e, d j ∈ {0, . . . ,9}, d1 6= 0, e ∈ Z, emin ≤ e≤ emax

0

The largest machine number is xmax = (.99 · · ·9)10 ·10emax = (1−10−n) ·10emax ,

the smallest positive machine number is xmin = (.10 . . .0)10 ·10emin = 10emin−1.

For calculators we have typically n = 8 mantissa digits, and can use exponents between emin =−99 and emax = 99.

Rounding: A given number x ∈R is represented by a machine number x̂. This operation is denoted by f l(x) (“floating point
approximation”).

• Write x in the form x =±q ·10e with 1
10 ≤ q < 1 and e ∈ Z

• If emin ≤ e≤ emax: Find the nearest mantissa q̂ = (.d1d2 . . .dn)10 to q, then x̂ =±q̂ ·10e

• If e > emax: “Overflow” , i.e., |x| is too large (we will explain later what to do in this case)

• If e < emin: “Underflow”, let x̂ be 0 or xmin, whatever is closer

1

Example: Assume we have a machine with n = 3, emin =−99 and emax = 99. We want to find x̂ = f l(x) for x =
2

300
.

• x =+2
3 ·10−2, i.e., q = 2

3 and e =−2. Note that e ∈ [emin,emax] so we don’t have overflow or underflow.

• Now we need to approximate the mantissa q = 2
3 = (.666666 . . .)10 by a number q̂ = (.d1d2d3)10.

The closest number to the left is q̂left = (.666)10, the closest number to the right is q̂right = (.667)10. In order to decide
which is closer we look at the midpoint qmid = (.6665)10. If q < qmid we round down to q̂left, if q > qmid we round up
to q̂right (if q = qmid it does not matter which we choose).
Here q = (.666666 · · ·)10 > qmid = (.666500)10, therefore q̂ = q̂right and

x̂ = f l(x) = +(.667)10 ·10−2.

Now we want to find an upper bound for the rounding error: If we don’t have overflow or underflow we have x =±q ·10e

and x̂ =±q̂ ·10e. Hence ∣∣∣∣ x̂− x
x

∣∣∣∣= |q̂ ·10e−q ·10e|
q ·10e =

|q̂−q|
q

In the denominator we have q ≥ 1
10 . In the numerator we have |q̂−q| ≤ 1

2 ·10−n since the spacing between two successive
mantissa values is 10−n, and the largest possible value of |q̂−q| is half this distance. Hence the rounding error can be
bounded by ∣∣∣∣ x̂− x

x

∣∣∣∣= |q̂−q|
q
≤

1
2 ·10−n

1/10
= 1

2 ·10−n+1

This number is called the machine epsilon: εM = 1
2 ·10−n+1 .

In our example we had n = 3, therefore εM = 1
2 ·10−2 = 5 ·10−3. For x = 2

300 we obtained x̂ = .667 ·10−2, so
x̂− x

x
≈ 5 ·10−4.

For x = 100.4 = (.1004) ·103 we obtain x̂ = (.100) ·103 = 100, so
x̂− x

x
≈ 4 ·10−2.

Simple base 2 machine numbers

Most computers use base 2 machine numbers. In binary notation we have e.g.

(.101)2 = 1 ·2−1 +0 ·2−2 +1 ·2−3.

In general an n-digit base 2 number with digits d j ∈ {0,1} is

(.d1d2 . . .dn)2 = d1 ·2−1 +d2 ·2−2 + · · ·+dn ·2−n.

We can write a number x ∈ R in the form x = ±q · 2e with a mantissa q and an exponent e. E.g., the number x = (1101)2
can be written as

x = (1101)2 = (.1101)2 ·24 = (.01101)2 ·25 = (.001101)2 ·26

We call the first form (.1101)2 ·24 the normalized representation since the first digit d1 after the point is nonzero.

Any number x ∈ R with x 6= 0 can be written as

x =±q ·2e,
1
2
≤ q < 1, e ∈ Z (2)

For machine numbers we want to represent the mantissa with n digits, and use a range emin ≤ e≤ emax of exponents.
Simple base 2 machine numbers are either normalized numbers or zero:

x̂ =

{
±(.d1d2 . . .dn)2 ·2e, d j ∈ {0,1}, d1 = 1, e ∈ Z, emin ≤ e≤ emax

0

Note that for normalized numbers we always have d1 = 1, hence this digit does not have to be stored.
The largest machine number is xmax = (.11 · · ·1)2 ·2emax = (1−2−n) ·2emax ,

the smallest positive machine number is xmin = (.10 . . .0)2 ·2emin = 2emin−1.

2

Rounding: A given number x ∈ R is represented by a machine number x̂. This operation is denoted by f l(x) (“floating
point approximation”).

• Write x in the form x =±q ·2e with 1
2 ≤ q < 1 and e ∈ Z

• If emin ≤ e≤ emax: Find the nearest mantissa q̂ = (.d1d2 . . .dn)2 to q, then x̂ =±q̂ ·2e

• If e > emax: “Overflow” , i.e., |x| is too large (we will explain later what to do in this case)

• If e < emin: “Underflow”, let x̂ be 0 or xmin, whatever is closer

Example: What happens when the Matlab command x=.1 is executed? Matlab uses binary machine numbers with n = 53,

emin =−1021, emax = 1024. We want to find x̂ = f l(x) for x =
1
10

.

• x =+ 8
10 ·2

−3, i.e., q = 8
10 and e =−3. Note that e ∈ [emin,emax] so we don’t have overflow or underflow.

• Now we need to approximate the mantissa q = 8
10 by a number q̂ = (.d1d2 . . .d53)2. Note that we have in base 2 (digits

after d53 are shown in red)

q = (.1100110011001100110011001100110011001100110011001100110011 . . .)2

q̂left = (.11001100110011001100110011001100110011001100110011001)2

q̂right = (.11001100110011001100110011001100110011001100110011010)2

qmid = (.1100110011001100110011001100110011001100110011001100110000)2

The closest number to the left is q̂left, the closest number to the right is q̂right. In order to decide which is closer we
look at the midpoint qmid. If q < qmid we round down to q̂left, if q > qmid we round up to q̂right (if q = qmid it does not
matter which we choose).
Here q > qmid, therefore q̂ = q̂right and

x̂ = f l(x) = +q̂right ·2−3

Now we want to find an upper bound for the rounding error: If we don’t have overflow or underflow we have x =±q ·2e

and x̂ =±q̂ ·2e. Hence ∣∣∣∣ x̂− x
x

∣∣∣∣= |q̂ ·2e−q ·2e|
q ·2e =

|q̂−q|
q

In the denominator we have q ≥ 1
2 . In the numerator we have |q̂−q| ≤ 1

2 · 2
−n since the spacing between two successive

mantissa values is 2−n, and the largest possible value of |q̂−q| is half this distance. Hence the rounding error can be bounded
by ∣∣∣∣ x̂− x

x

∣∣∣∣= |q̂−q|
q
≤

1
2 ·2

−n

1/2
= 1

2 ·2
−n+1 = 2−n

This number is called the machine epsilon: εM = 2−n .

In Matlab we have n= 53, therefore εM = 2−53≈ 1.11 ·10−16. In our example with x= 1
10 we have

x̂− x
x

=
q̂−q

q
≈ 5.55 ·10−17.

IEEE754 machine numbers

Our “simple base 2 machine numbers” have some problems.

There is a huge hole around 0

The distance between 0 and the smallest positive machine number xmin is much larger than the distance between xmin and the
next larger machine number x1 := xmin(1+2−n):

xmin−0 = 2emin � x1− xmin = 2−n ·2emin

This has unpleasant consequences:

3

• Rounding numbers x with |x| > xmin causes a relative error of size≤ εM. Rounding numbers x with |x| < xmin gives
either 0 or xmin and causes a relative error of size≤ 100% (underflow). If a program generates values slightly smaller
than xmin the accuracy decreases dramatically.

• The two statements if y>x and if y-x>0 have different meanings: For the machine numbers x = xmin and y = x1 the
expression y>x evaluates to true since x1 is a larger machine number than xmin. But the expression y-x>0 evaluates
to false: The machine first computes y−x = x1−xmin = 2−n ·2emin , then this value is rounded to the closest machine
number which is 0.

We can fix this by filling in the hole around 0: So far the smallest positive numbers are obtained with e = emin, they have a
spacing of 2−n ·2emin :

±(.1d2 . . .dn)2 ·2emin , d j ∈ {0,1}

We now add the “subnormal numbers” which have the same spacing of 2−n ·2emin :

±(.0d2 . . .dn)2 ·2emin , d j ∈ {0,1}

Note that these values include the two distinct machine numbers +0 and −0 (using signs “+” and “−” with d2 = · · · =
dn = 0). We will explain below that this is a feature, not a bug.

Now rounding a number x with |x| ≤ xmax is more well-behaved since the finest spacing 2−n ·2emin is used around 0: We get
x̂ = f l(x) with ∣∣∣∣ x̂− x

x

∣∣∣∣≤
{

2−n for |x| ≥ xmin

min
{

2−n xmin
x ,1

}
for |x|< xmin

This is called “gradual underflow”: If we generate values slightly smaller than xmin the rounding error only increases
slightly (instead of jumping to 100%).

We need to specify what happens for overflow, division by 0, 0/0 etc.

We introduce special values +Inf, -Inf for handling overflow:

>> x=1e300; -x*x
ans =
-Inf

We can perform arithmetic with Inf and -Inf: E.g., 5-Inf gives -Inf, Inf*Inf gives Inf, 0/Inf gives 0 etc.

Note that there are actually two distinct machine numbers +0 and -0. These are both displayed as 0, and the comparison
+0==-0 is defined as true. But these two values can preserve the sign information in the case of an underflow:

>> x=1e-300
x =

1e-300
>> y=-x*x % underflow to -0, displayed as 0
y =

0
>> 1/y % 1/-0 gives -Inf
ans =
-Inf

For indeterminite expressions like Inf-Inf, 0*Inf or 0/0 we introduce the special value NaN (“Not a Number”). This
value is also useful for representing a missing data value. Arithmetic operations involving NaN give again NaN (with a few
exceptions).

4

Summary:

IEEE754 machine numbers have the following form with d j ∈ {0,1} and integer e:

x̂ =

±(.1d2 . . .dn)2 ·2e, emin ≤ e≤ emax (normalized numbers)
±(.0d2 . . .dn)2 ·2emin (subnormal numbers, includes +0,−0)
Inf, -Inf, NaN (special values)

Single Precision numbers (type float in C) use 4 bytes = 32 bits (1 for sign, 8 for exponent, 23 for mantissa).

Double Precision numbers (type double in C) use 8 bytes = 64 bits (1 for sign, 11 for exponent, 52 for mantissa).

bits n emax emin εM xmax xmin

Single Precision 32 24 128 −125 2−24 ≈ 6 ·10−8 ≈ 2128 ≈ 3 ·1038 2−126 ≈ 10−38

Double Precision 64 53 1024 −1021 2−53 ≈ 10−16 ≈ 21024 ≈ 2 ·10308 2−1022 ≈ 2 ·10−308

Note that there are subnormal numbers smaller than xmin available. The smallest positive subnormal number is 2−n2emin =
2−1074 ≈ 5 · 10−324 for double precision. But the value xmin ≈ 2 · 10−308 is important since values |x| < xmin can cause
roundoff errors larger than εM.

Machine arithmetic

Our machine has built-in operations (like x+ y, x/y,
√

x, sinx) which operate on machine numbers (this includes +0, −0,
Inf, −Inf, NaN).

Note that for machine numbers x,y the value x+y is usually not a machine number. E.g. for decimal machine numbers with
n = 3 mantissa digits:

x = (.123)10 ·101, y = (.456)10 ·10−1, x+ y = (.123+ .00456) ·101 = (.12756)10 ·101

For the code z=x+y the value z has to be a machine number. In this example this should be the machine number z =
f l
(
.12756 ·101

)
= (.128)10 ·101.

Therefore the built-in machine operations like y=sqrt(x) are implemented as follows: For the given machine number x

• find the “exact” result Y =
√

x (in practice: use some extra digits)

• return the machine number y = f l(Y)

Therefore machine operations don’t return the exact result Y , but the closest possible machine number. Note that this causes
an error |εy| ≤ εM. All built-in machine operations (like x+ y, x/y,

√
x, sinx) are implemented in this way. (Actually, for

functions like sin(x) a slightly larger relative error 2εM is allowed to avoid the so-called “table-makers dilemma”.)

Each arithmetic operation in a program causes a relative error of size≤ εM.
Example: For the Matlab code x=.1; y=1-cos(x) the machine actually performs the following operations to find the
computed value ŷ:

x̂ := f l(.1) round .1 to closest machine number

Y1 := cos(x̂) find true result cos(x̂) with extra accuracy

ŷ1 := f l(Y1) round Y1 to closest machine number

Y := 1− ŷ1 find true result 1− ŷ1 with extra accuracy

ŷ := f l(Y) round Y to closest machine number

5

