## Machine Numbers and Machine Arithmetic

A Matlab program such as
$\mathrm{x}=.1 ; \mathrm{y} 1=\cos (\mathrm{x}) ; \mathrm{y}=1-\mathrm{y} 1$
is not evaluated exactly. We can only store a certain number of digits for each number. Instead of arbitrary real numbers we only have finitely many machine numbers available. Arithmetic operations like $z=x+y$ or $s=s q r t(x)$ are not performed exactly, but give a result which is again a machine number. This is called machine arithmetic.
We want to

- represent real numbers with a large range of magnitudes, e.g., $10^{-100}$ to $10^{100}$
- achieve small relative errors: rounding a number to the closest machine should give a relative error of at most $\varepsilon_{M} \approx 10^{-16}$.


## Simple base 10 machine numbers

Some machines (e.g. all calculators) use base 10 machine numbers. In decimal notation we have e.g.

$$
(.341)_{10}=3 \cdot 10^{-1}+4 \cdot 10^{-2}+1 \cdot 10^{-3}
$$

In general an $n$-digit base 10 number with digits $d_{j} \in\{0, \ldots, 9\}$ is

$$
\left(. d_{1} d_{2} \ldots d_{n}\right)_{10}=d_{1} \cdot 10^{-1}+d_{2} \cdot 10^{-2}+\cdots+d_{n} \cdot 10^{-n}
$$

We can write a number $x \in \mathbb{R}$ in the form $x= \pm q \cdot 10^{e}$ with a mantissa $q$ and an exponent $e$. E.g., the number $x=12345$ can be written as

$$
x=12345=.12345 \cdot 10^{5}=.012345 \cdot 10^{6}=.0012345 \cdot 10^{7}
$$

We call the first form $.12345 \cdot 10^{5}$ the normalized representation since the first digit $d_{1}$ after the decimal point is nonzero.
Any number $x \in \mathbb{R}$ with $x \neq 0$ can be written as

$$
\begin{equation*}
x= \pm q \cdot 10^{e}, \quad \frac{1}{10} \leq q<1, \quad e \in \mathbb{Z} \tag{1}
\end{equation*}
$$

For machine numbers we want to represent the mantissa with $n$ digits, and use a range $e_{\min } \leq e \leq e_{\max }$ of exponents.
Simple base 10 machine numbers are either normalized numbers or zero:

$$
\hat{x}=\left\{\begin{array}{l} 
\pm\left(. d_{1} d_{2} \ldots d_{n}\right)_{10} \cdot 10^{e}, \quad d_{j} \in\{0, \ldots, 9\}, \quad d_{1} \neq 0, \quad e \in \mathbb{Z}, \quad e_{\min } \leq e \leq e_{\max } \\
0
\end{array}\right.
$$

The largest machine number is $x_{\max }=(.99 \cdots 9)_{10} \cdot 10^{e_{\max }}=\left(1-10^{-n}\right) \cdot 10^{e_{\max }}$,
the smallest positive machine number is $x_{\min }=(.10 \ldots 0)_{10} \cdot 10^{e_{\min }}=10^{e_{\min }-1}$.
For calculators we have typically $n=8$ mantissa digits, and can use exponents between $e_{\min }=-99$ and $e_{\max }=99$.
Rounding: A given number $x \in \mathbb{R}$ is represented by a machine number $\hat{x}$. This operation is denoted by $f l(x)$ ("floating point approximation").

- Write $x$ in the form $x= \pm q \cdot 10^{e}$ with $\frac{1}{10} \leq q<1$ and $e \in \mathbb{Z}$
- If $e_{\min } \leq e \leq e_{\max }$ : Find the nearest mantissa $\hat{q}=\left(. d_{1} d_{2} \ldots d_{n}\right)_{10}$ to $q$, then $\hat{x}= \pm \hat{q} \cdot 10^{e}$
- If $e>e_{\max }$ : "Overflow", i.e., $|x|$ is too large (we will explain later what to do in this case)
- If $e<e_{\min }$ : "Underflow", let $\hat{x}$ be 0 or $x_{\text {min }}$, whatever is closer

Example: Assume we have a machine with $n=3, e_{\min }=-99$ and $e_{\max }=99$. We want to find $\hat{x}=f l(x)$ for $x=\frac{2}{300}$.

- $x=+\frac{2}{3} \cdot 10^{-2}$, i.e., $q=\frac{2}{3}$ and $e=-2$. Note that $e \in\left[e_{\min }, e_{\max }\right]$ so we don't have overflow or underflow.
- Now we need to approximate the mantissa $q=\frac{2}{3}=(.666666 \ldots)_{10}$ by a number $\hat{q}=\left(. d_{1} d_{2} d_{3}\right)_{10}$.

The closest number to the left is $\hat{q}_{\text {left }}=(.666)_{10}$, the closest number to the right is $\hat{q}_{\text {right }}=(.667)_{10}$. In order to decide which is closer we look at the midpoint $q_{\text {mid }}=(.6665)_{10}$. If $q<q_{\text {mid }}$ we round down to $\hat{q}_{\text {left }}$, if $q>q_{\text {mid }}$ we round up to $\hat{q}_{\text {right }}$ (if $q=q_{\text {mid }}$ it does not matter which we choose).
Here $q=(.666666 \cdots)_{10}>q_{\text {mid }}=(.666500)_{10}$, therefore $\hat{q}=\hat{q}_{\text {right }}$ and

$$
\hat{x}=f l(x)=+(.667)_{10} \cdot 10^{-2} .
$$

Now we want to find an upper bound for the rounding error: If we don't have overflow or underflow we have $x= \pm q \cdot 10^{e}$ and $\hat{x}= \pm \hat{q} \cdot 10^{e}$. Hence

$$
\left|\frac{\hat{x}-x}{x}\right|=\frac{\left|\hat{q} \cdot 10^{e}-q \cdot 10^{e}\right|}{q \cdot 10^{e}}=\frac{|\hat{q}-q|}{q}
$$

In the denominator we have $q \geq \frac{1}{10}$. In the numerator we have $|\hat{q}-q| \leq \frac{1}{2} \cdot 10^{-n}$ since the spacing between two successive mantissa values is $10^{-n}$, and the largest possible value of $|\hat{q}-q|$ is half this distance. Hence the rounding error can be bounded by

$$
\left|\frac{\hat{x}-x}{x}\right|=\frac{|\hat{q}-q|}{q} \leq \frac{\frac{1}{2} \cdot 10^{-n}}{1 / 10}=\frac{1}{2} \cdot 10^{-n+1}
$$

This number is called the machine epsilon: $\varepsilon_{M}=\frac{1}{2} \cdot 10^{-n+1}$.
In our example we had $n=3$, therefore $\varepsilon_{M}=\frac{1}{2} \cdot 10^{-2}=5 \cdot 10^{-3}$. For $x=\frac{2}{300}$ we obtained $\hat{x}=.667 \cdot 10^{-2}$, so $\frac{\hat{x}-x}{x} \approx 5 \cdot 10^{-4}$. For $x=100.4=(.1004) \cdot 10^{3}$ we obtain $\hat{x}=(.100) \cdot 10^{3}=100$, so $\frac{\hat{x}-x}{x} \approx 4 \cdot 10^{-2}$.

## Simple base 2 machine numbers

Most computers use base 2 machine numbers. In binary notation we have e.g.

$$
(.101)_{2}=1 \cdot 2^{-1}+0 \cdot 2^{-2}+1 \cdot 2^{-3} .
$$

In general an $n$-digit base 2 number with digits $d_{j} \in\{0,1\}$ is

$$
\left(. d_{1} d_{2} \ldots d_{n}\right)_{2}=d_{1} \cdot 2^{-1}+d_{2} \cdot 2^{-2}+\cdots+d_{n} \cdot 2^{-n} .
$$

We can write a number $x \in \mathbb{R}$ in the form $x= \pm q \cdot 2^{e}$ with a mantissa $q$ and an exponent $e$. E.g., the number $x=(1101)_{2}$ can be written as

$$
x=(1101)_{2}=(.1101)_{2} \cdot 2^{4}=(.01101)_{2} \cdot 2^{5}=(.001101)_{2} \cdot 2^{6}
$$

We call the first form $(.1101)_{2} \cdot 2^{4}$ the normalized representation since the first digit $d_{1}$ after the point is nonzero.
Any number $x \in \mathbb{R}$ with $x \neq 0$ can be written as

$$
\begin{equation*}
x= \pm q \cdot 2^{e}, \quad \frac{1}{2} \leq q<1, \quad e \in \mathbb{Z} \tag{2}
\end{equation*}
$$

For machine numbers we want to represent the mantissa with $n$ digits, and use a range $e_{\min } \leq e \leq e_{\max }$ of exponents.
Simple base 2 machine numbers are either normalized numbers or zero:

$$
\hat{x}=\left\{\begin{array}{l} 
\pm\left(. d_{1} d_{2} \ldots d_{n}\right)_{2} \cdot 2^{e}, \quad d_{j} \in\{0,1\}, \quad d_{1}=1, \quad e \in \mathbb{Z}, \quad e_{\min } \leq e \leq e_{\max } \\
0
\end{array}\right.
$$

Note that for normalized numbers we always have $d_{1}=1$, hence this digit does not have to be stored.
The largest machine number is $x_{\text {max }}=(.11 \cdots 1)_{2} \cdot 2^{e_{\text {max }}}=\left(1-2^{-n}\right) \cdot 2^{e_{\text {max }}}$,
the smallest positive machine number is $x_{\min }=(.10 \ldots 0)_{2} \cdot 2^{e_{\min }}=2^{e_{\text {min }}-1}$.

Rounding: A given number $x \in \mathbb{R}$ is represented by a machine number $\hat{x}$. This operation is denoted by $f l(x)$ ("floating point approximation").

- Write $x$ in the form $x= \pm q \cdot 2^{e}$ with $\frac{1}{2} \leq q<1$ and $e \in \mathbb{Z}$
- If $e_{\min } \leq e \leq e_{\text {max }}$ : Find the nearest mantissa $\hat{q}=\left(. d_{1} d_{2} \ldots d_{n}\right)_{2}$ to $q$, then $\hat{x}= \pm \hat{q} \cdot 2^{e}$
- If $e>e_{\text {max }}$ : "Overflow", i.e., $|x|$ is too large (we will explain later what to do in this case)
- If $e<e_{\text {min }}$ : "Underflow", let $\hat{x}$ be 0 or $x_{\text {min }}$, whatever is closer

Example: What happens when the Matlab command $\mathbf{x}=.1$ is executed? Matlab uses binary machine numbers with $n=53$, $e_{\min }=-1021, e_{\max }=1024$. We want to find $\hat{x}=f l(x)$ for $x=\frac{1}{10}$.

- $x=+\frac{8}{10} \cdot 2^{-3}$, i.e., $q=\frac{8}{10}$ and $e=-3$. Note that $e \in\left[e_{\min }, e_{\max }\right]$ so we don't have overflow or underflow.
- Now we need to approximate the mantissa $q=\frac{8}{10}$ by a number $\hat{q}=\left(. d_{1} d_{2} \ldots d_{53}\right)_{2}$. Note that we have in base 2 (digits after $d_{53}$ are shown in red)

$$
\begin{aligned}
q & =(.1100110011001100110011001100110011001100110011001100110011 \ldots)_{2} \\
\hat{q}_{\text {left }} & =(.11001100110011001100110011001100110011001100110011001)_{2} \\
\hat{q}_{\text {right }} & =(.11001100110011001100110011001100110011001100110011010)_{2} \\
q_{\text {mid }} & =(.1100110011001100110011001100110011001100110011001100110000)_{2}
\end{aligned}
$$

The closest number to the left is $\hat{q}_{\text {left }}$, the closest number to the right is $\hat{q}_{\text {right }}$. In order to decide which is closer we look at the midpoint $q_{\text {mid }}$. If $q<q_{\text {mid }}$ we round down to $\hat{q}_{\text {left }}$, if $q>q_{\text {mid }}$ we round up to $\hat{q}_{\text {right }}$ (if $q=q_{\text {mid }}$ it does not matter which we choose).
Here $q>q_{\text {mid }}$, therefore $\hat{q}=\hat{q}_{\text {right }}$ and

$$
\hat{x}=f l(x)=+\hat{q}_{\mathrm{right}} \cdot 2^{-3}
$$

Now we want to find an upper bound for the rounding error: If we don't have overflow or underflow we have $x= \pm q \cdot 2^{e}$ and $\hat{x}= \pm \hat{q} \cdot 2^{e}$. Hence

$$
\left|\frac{\hat{x}-x}{x}\right|=\frac{\left|\hat{q} \cdot 2^{e}-q \cdot 2^{e}\right|}{q \cdot 2^{e}}=\frac{|\hat{q}-q|}{q}
$$

In the denominator we have $q \geq \frac{1}{2}$. In the numerator we have $|\hat{q}-q| \leq \frac{1}{2} \cdot 2^{-n}$ since the spacing between two successive mantissa values is $2^{-n}$, and the largest possible value of $|\hat{q}-q|$ is half this distance. Hence the rounding error can be bounded by

$$
\left|\frac{\hat{x}-x}{x}\right|=\frac{|\hat{q}-q|}{q} \leq \frac{\frac{1}{2} \cdot 2^{-n}}{1 / 2}=\frac{1}{2} \cdot 2^{-n+1}=2^{-n}
$$

This number is called the machine epsilon: $\varepsilon_{M}=2^{-n}$.
In Matlab we have $n=53$, therefore $\varepsilon_{M}=2^{-53} \approx 1.11 \cdot 10^{-16}$. In our example with $x=\frac{1}{10}$ we have $\frac{\hat{x}-x}{x}=\frac{\hat{q}-q}{q} \approx 5.55 \cdot 10^{-17}$.

## IEEE754 machine numbers

Our "simple base 2 machine numbers" have some problems.

## There is a huge hole around 0

The distance between 0 and the smallest positive machine number $x_{\min }$ is much larger than the distance between $x_{\min }$ and the next larger machine number $x_{1}:=x_{\text {min }}\left(1+2^{-n}\right)$ :

$$
x_{\min }-0=2^{e_{\min }} \gg x_{1}-x_{\min }=2^{-n} \cdot 2^{e_{\min }}
$$

This has unpleasant consequences:

- Rounding numbers $x$ with $|x|>x_{\text {min }}$ causes a relative error of size $\leq \varepsilon_{M}$. Rounding numbers $x$ with $|x|<x_{\text {min }}$ gives either 0 or $x_{\min }$ and causes a relative error of size $\leq 100 \%$ (underflow). If a program generates values slightly smaller than $x_{\text {min }}$ the accuracy decreases dramatically.
- The two statements if $\mathbf{y}>\mathbf{x}$ and if $\mathbf{y}-\mathbf{x}>0$ have different meanings: For the machine numbers $x=x_{\min }$ and $y=x_{1}$ the expression $\mathbf{y}>\mathbf{x}$ evaluates to true since $x_{1}$ is a larger machine number than $x_{\text {min }}$. But the expression $\mathbf{y}-\mathbf{x}>\mathbf{0}$ evaluates to false: The machine first computes $y-x=x_{1}-x_{\min }=2^{-n} \cdot 2^{e_{\min }}$, then this value is rounded to the closest machine number which is 0 .

We can fix this by filling in the hole around 0 : So far the smallest positive numbers are obtained with $e=e_{\min }$, they have a spacing of $2^{-n} \cdot 2^{e_{\text {min }}}$ :

$$
\pm\left(.1 d_{2} \ldots d_{n}\right)_{2} \cdot 2^{e_{\min }}, \quad d_{j} \in\{0,1\}
$$

We now add the "subnormal numbers" which have the same spacing of $2^{-n} \cdot 2^{e_{\text {min }}}$ :

$$
\pm\left(.0 d_{2} \ldots d_{n}\right)_{2} \cdot 2^{e_{\min }}, \quad d_{j} \in\{0,1\}
$$

Note that these values include the two distinct machine numbers +0 and -0 (using signs " + " and " - " with $d_{2}=\cdots=$ $d_{n}=0$ ). We will explain below that this is a feature, not a bug.

Now rounding a number $x$ with $|x| \leq x_{\max }$ is more well-behaved since the finest spacing $2^{-n} \cdot 2^{e_{\text {min }}}$ is used around 0 : We get $\hat{x}=f l(x)$ with

$$
\left|\frac{\hat{x}-x}{x}\right| \leq \begin{cases}2^{-n} & \text { for }|x| \geq x_{\min } \\ \min \left\{2^{-n \frac{x_{\min }}{x}}, 1\right\} & \text { for }|x|<x_{\min }\end{cases}
$$

This is called "gradual underflow": If we generate values slightly smaller than $x_{\min }$ the rounding error only increases slightly (instead of jumping to $100 \%$ ).

We need to specify what happens for overflow, division by $0,0 / 0$ etc.
We introduce special values $\boldsymbol{+ I n f},-\mathbf{I n f}$ for handling overflow:

```
>> x=1e300; -x*x
ans =
    -Inf
```

We can perform arithmetic with Inf and -Inf: E.g., 5 -Inf gives -Inf, Inf $*$ Inf gives Inf, $0 /$ Inf gives 0 etc.
Note that there are actually two distinct machine numbers +0 and -0 . These are both displayed as 0 , and the comparison $+0==-0$ is defined as true. But these two values can preserve the sign information in the case of an underflow:

```
>> x=1e-300
```

x =

1e-300
>> $\mathrm{y}=-\mathrm{x} * \mathrm{x} \quad$ \% underflow to -0 , displayed as 0
$y=$
0
$\gg 1 / y \quad$ \% $1 /-0$ gives -Inf
ans =
- Inf

For indeterminite expressions like Inf-Inf, $0 *$ Inf or $0 / 0$ we introduce the special value NaN ("Not a Number"). This value is also useful for representing a missing data value. Arithmetic operations involving NaN give again NaN (with a few exceptions).

## Summary:

IEEE754 machine numbers have the following form with $d_{j} \in\{0,1\}$ and integer $e$ :

$$
\hat{x}= \begin{cases} \pm\left(.1 d_{2} \ldots d_{n}\right)_{2} \cdot 2^{e}, \quad e_{\min } \leq e \leq e_{\max } & \text { (normalized numbers) } \\ \pm\left(.0 d_{2} \ldots d_{n}\right)_{2} \cdot 2^{e_{\min }} & \text { (subnormal numbers, includes }+0,-0 \text { ) } \\ \text { Inf, -Inf, NaN } & \text { (special values) }\end{cases}
$$

Single Precision numbers (type float in C) use 4 bytes $=32$ bits ( 1 for sign, 8 for exponent, 23 for mantissa).
Double Precision numbers (type double in C) use 8 bytes $=64$ bits ( 1 for sign, 11 for exponent, 52 for mantissa).

|  | bits | $n$ | $e_{\max }$ | $e_{\min }$ | $\varepsilon_{M}$ | $x_{\max }$ | $x_{\min }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single Precision | 32 | 24 | 128 | -125 | $2^{-24} \approx 6 \cdot 10^{-8}$ | $\approx 2^{128} \approx 3 \cdot 10^{38}$ | $2^{-126} \approx 10^{-38}$ |
| Double Precision | 64 | 53 | 1024 | -1021 | $2^{-53} \approx 10^{-16}$ | $\approx 2^{1024} \approx 2 \cdot 10^{308}$ | $2^{-1022} \approx 2 \cdot 10^{-308}$ |

Note that there are subnormal numbers smaller than $x_{\min }$ available. The smallest positive subnormal number is $2^{-n} 2^{e_{\text {min }}}=$ $2^{-1074} \approx 5 \cdot 10^{-324}$ for double precision. But the value $x_{\min } \approx 2 \cdot 10^{-308}$ is important since values $|x|<x_{\min }$ can cause roundoff errors larger than $\varepsilon_{M}$.

## Machine arithmetic

Our machine has built-in operations (like $x+y, x / y, \sqrt{x}, \sin x$ ) which operate on machine numbers (this includes $+0,-0$, Inf, $-\operatorname{Inf}, \mathrm{NaN}$ ).

Note that for machine numbers $x, y$ the value $x+y$ is usually not a machine number. E.g. for decimal machine numbers with $n=3$ mantissa digits:

$$
x=(.123)_{10} \cdot 10^{1}, \quad y=(.456)_{10} \cdot 10^{-1}, \quad x+y=(.123+.00456) \cdot 10^{1}=(.12756)_{10} \cdot 10^{1}
$$

For the code $z=x+y$ the value $z$ has to be a machine number. In this example this should be the machine number $z=$ $f l\left(.12756 \cdot 10^{1}\right)=(.128)_{10} \cdot 10^{1}$.

Therefore the built-in machine operations like $\mathrm{y}=\mathrm{sqrt}(\mathrm{x})$ are implemented as follows: For the given machine number $x$

- find the "exact" result $Y=\sqrt{x}$ (in practice: use some extra digits)
- return the machine number $y=f l(Y)$

Therefore machine operations don't return the exact result $Y$, but the closest possible machine number. Note that this causes an error $\left|\varepsilon_{y}\right| \leq \varepsilon_{M}$. All built-in machine operations (like $x+y, x / y, \sqrt{x}, \sin x$ ) are implemented in this way. (Actually, for functions like $\sin (x)$ a slightly larger relative error $2 \varepsilon_{M}$ is allowed to avoid the so-called "table-makers dilemma".)

## Each arithmetic operation in a program causes a relative error of size $\leq \varepsilon_{M}$.

Example: For the Matlab code $x=.1 ; y=1-\cos (x)$ the machine actually performs the following operations to find the computed value $\hat{y}$ :

$$
\begin{aligned}
\hat{x} & :=f l(.1) & & \text { round } .1 \text { to closest machine number } \\
Y_{1} & :=\cos (\hat{x}) & & \text { find true result } \cos (\hat{x}) \text { with extra accuracy } \\
\hat{y}_{1} & :=f l\left(Y_{1}\right) & & \text { round } Y_{1} \text { to closest machine number } \\
Y & :=1-\hat{y}_{1} & & \text { find true result } 1-\hat{y}_{1} \text { with extra accuracy } \\
\hat{y} & :=f l(Y) & & \text { round } Y \text { to closest machine number }
\end{aligned}
$$

