Machine Numbers and Machine Arithmetic

A Matlab program such as

x=.1; y1=cos(x); y=1-y1

is not evaluated exactly. We can only store a certain number of digits for each number. Instead of arbitrary real numbers we only have finitely many **machine numbers** available. Arithmetic operations like z=x+y or s=sqrt(x) are not performed exactly, but give a result which is again a machine number. This is called **machine arithmetic**.

We want to

- represent real numbers with a large range of magnitudes, e.g., 10^{-100} to 10^{100}
- achieve small relative errors: rounding a number to the closest machine should give a relative error of at most $\varepsilon_M \approx 10^{-16}$.

Simple base 10 machine numbers

Some machines (e.g. all calculators) use base 10 machine numbers. In decimal notation we have e.g.

$$(.341)_{10} = 3 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3}$$

In general an *n*-digit base 10 number with digits $d_j \in \{0, ..., 9\}$ is

$$(.d_1d_2...d_n)_{10} = d_1 \cdot 10^{-1} + d_2 \cdot 10^{-2} + \dots + d_n \cdot 10^{-n}.$$

We can write a number $x \in \mathbb{R}$ in the form $x = \pm q \cdot 10^e$ with a **mantissa** q and an **exponent** e. E.g., the number x = 12345 can be written as

$$x = 12345 = .12345 \cdot 10^5 = .012345 \cdot 10^6 = .0012345 \cdot 10^7$$

We call the first form $.12345 \cdot 10^5$ the **normalized** representation since the first digit d_1 after the decimal point is nonzero. Any number $x \in \mathbb{R}$ with $x \neq 0$ can be written as

$$x = \pm q \cdot 10^e, \qquad \frac{1}{10} \le q < 1, \qquad e \in \mathbb{Z}$$
(1)

For machine numbers we want to represent the mantissa with *n* digits, and use a range $e_{\min} \le e \le e_{\max}$ of exponents. Simple base 10 machine numbers are either normalized numbers or zero:

$$\hat{x} = \begin{cases} \pm (.d_1 d_2 \dots d_n)_{10} \cdot 10^e, & d_j \in \{0, \dots, 9\}, & d_1 \neq 0, \\ 0 & e \in \mathbb{Z}, & e_{\min} \le e \le e_{\max} \end{cases}$$

The largest machine number is $x_{max} = (.99 \cdots 9)_{10} \cdot 10^{e_{max}} = (1 - 10^{-n}) \cdot 10^{e_{max}}$,

the smallest positive machine number is $x_{\min} = (.10...0)_{10} \cdot 10^{e_{\min}} = 10^{e_{\min}-1}$.

For calculators we have typically n = 8 mantissa digits, and can use exponents between $e_{\min} = -99$ and $e_{\max} = 99$.

Rounding: A given number $x \in \mathbb{R}$ is represented by a machine number \hat{x} . This operation is denoted by fl(x) ("floating point approximation").

- Write x in the form $x = \pm q \cdot 10^e$ with $\frac{1}{10} \le q < 1$ and $e \in \mathbb{Z}$
- If $e_{\min} \le e \le e_{\max}$: Find the nearest mantissa $\hat{q} = (.d_1 d_2 \dots d_n)_{10}$ to q, then $\hat{x} = \pm \hat{q} \cdot 10^e$
- If $e > e_{\text{max}}$: "Overflow", i.e., |x| is too large (we will explain later what to do in this case)
- If $e < e_{\min}$: "Underflow", let \hat{x} be 0 or x_{min} , whatever is closer

Example: Assume we have a machine with n = 3, $e_{\min} = -99$ and $e_{\max} = 99$. We want to find $\hat{x} = fl(x)$ for $x = \frac{2}{300}$.

- $x = +\frac{2}{3} \cdot 10^{-2}$, i.e., $q = \frac{2}{3}$ and e = -2. Note that $e \in [e_{\min}, e_{\max}]$ so we don't have overflow or underflow.
- Now we need to approximate the mantissa q = ²/₃ = (.6666666...)₁₀ by a number q̂ = (.d₁d₂d₃)₁₀. The closest number to the left is q̂_{left} = (.666)₁₀, the closest number to the right is q̂_{right} = (.667)₁₀. In order to decide which is closer we look at the midpoint q_{mid} = (.6665)₁₀. If q < q_{mid} we round down to q̂_{left}, if q > q_{mid} we round up to q̂_{right} (if q = q_{mid} it does not matter which we choose). Here q = (.6666666...)₁₀ > q_{mid} = (.666500)₁₀, therefore q̂ = q̂_{right} and

 $\hat{x} = fl(x) = +(.667)_{10} \cdot 10^{-2}.$

Now we want to find an **upper bound for the rounding error**: If we don't have overflow or underflow we have $x = \pm q \cdot 10^e$ and $\hat{x} = \pm \hat{q} \cdot 10^e$. Hence

$$\left|\frac{\hat{x}-x}{x}\right| = \frac{\left|\hat{q}\cdot 10^e - q\cdot 10^e\right|}{q\cdot 10^e} = \frac{\left|\hat{q}-q\right|}{q}$$

In the denominator we have $q \ge \frac{1}{10}$. In the numerator we have $|\hat{q} - q| \le \frac{1}{2} \cdot 10^{-n}$ since the spacing between two successive mantissa values is 10^{-n} , and the largest possible value of $|\hat{q} - q|$ is half this distance. Hence the rounding error can be bounded by

$$\left|\frac{\hat{x} - x}{x}\right| = \frac{|\hat{q} - q|}{q} \le \frac{\frac{1}{2} \cdot 10^{-n}}{1/10} = \frac{1}{2} \cdot 10^{-n+1}$$

This number is called the **machine epsilon:** $\varepsilon_M = \frac{1}{2} \cdot 10^{-n+1}$

In our example we had n = 3, therefore $\varepsilon_M = \frac{1}{2} \cdot 10^{-2} = 5 \cdot 10^{-3}$. For $x = \frac{2}{300}$ we obtained $\hat{x} = .667 \cdot 10^{-2}$, so $\frac{\hat{x} - x}{x} \approx 5 \cdot 10^{-4}$. For $x = 100.4 = (.1004) \cdot 10^3$ we obtain $\hat{x} = (.100) \cdot 10^3 = 100$, so $\frac{\hat{x} - x}{x} \approx 4 \cdot 10^{-2}$.

Simple base 2 machine numbers

Most computers use base 2 machine numbers. In binary notation we have e.g.

$$(.101)_2 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

In general an *n*-digit base 2 number with digits $d_i \in \{0, 1\}$ is

$$(.d_1d_2...d_n)_2 = d_1 \cdot 2^{-1} + d_2 \cdot 2^{-2} + \dots + d_n \cdot 2^{-n}.$$

We can write a number $x \in \mathbb{R}$ in the form $x = \pm q \cdot 2^e$ with a **mantissa** q and an **exponent** e. E.g., the number $x = (1101)_2$ can be written as

$$x = (1101)_2 = (.1101)_2 \cdot 2^4 = (.01101)_2 \cdot 2^5 = (.001101)_2 \cdot 2^6$$

We call the first form $(.1101)_2 \cdot 2^4$ the **normalized** representation since the first digit d_1 after the point is nonzero. Any number $x \in \mathbb{R}$ with $x \neq 0$ can be written as

$$x = \pm q \cdot 2^e, \qquad \frac{1}{2} \le q < 1, \qquad e \in \mathbb{Z}$$
⁽²⁾

For machine numbers we want to represent the mantissa with *n* digits, and use a range $e_{\min} \le e \le e_{\max}$ of exponents. Simple base 2 machine numbers are either normalized numbers or zero:

$$\hat{x} = \begin{cases} \pm (.d_1 d_2 \dots d_n)_2 \cdot 2^e, & d_j \in \{0, 1\}, & d_1 = 1, \\ 0 & e \in \mathbb{Z}, & e_{\min} \le e \le e_{\max} \end{cases}$$

Note that for normalized numbers we always have $d_1 = 1$, hence this digit does not have to be stored. The **largest machine number** is $x_{\max} = (.11 \cdots 1)_2 \cdot 2^{e_{\max}} = (1 - 2^{-n}) \cdot 2^{e_{\max}}$,

the smallest positive machine number is $x_{\min} = (.10...0)_2 \cdot 2^{e_{\min}} = 2^{e_{\min}-1}$.

Rounding: A given number $x \in \mathbb{R}$ is represented by a machine number \hat{x} . This operation is denoted by fl(x) ("floating point approximation").

- Write *x* in the form $x = \pm q \cdot 2^e$ with $\frac{1}{2} \le q < 1$ and $e \in \mathbb{Z}$
- If $e_{\min} \le e \le e_{\max}$: Find the nearest mantissa $\hat{q} = (.d_1 d_2 \dots d_n)_2$ to q, then $\hat{x} = \pm \hat{q} \cdot 2^e$
- If $e > e_{\text{max}}$: "Overflow", i.e., |x| is too large (we will explain later what to do in this case)
- If $e < e_{\min}$: "Underflow", let \hat{x} be 0 or x_{min} , whatever is closer

Example: What happens when the Matlab command **x=.1** is executed? Matlab uses binary machine numbers with n = 53, $e_{\min} = -1021$, $e_{\max} = 1024$. We want to find $\hat{x} = fl(x)$ for $x = \frac{1}{10}$.

- $x = +\frac{8}{10} \cdot 2^{-3}$, i.e., $q = \frac{8}{10}$ and e = -3. Note that $e \in [e_{\min}, e_{\max}]$ so we don't have overflow or underflow.
- Now we need to approximate the mantissa $q = \frac{8}{10}$ by a number $\hat{q} = (.d_1d_2...d_{53})_2$. Note that we have in base 2 (digits after d_{53} are shown in red)

The closest number to the left is \hat{q}_{left} , the closest number to the right is \hat{q}_{right} . In order to decide which is closer we look at the midpoint q_{mid} . If $q < q_{\text{mid}}$ we round down to \hat{q}_{left} , if $q > q_{\text{mid}}$ we round up to \hat{q}_{right} (if $q = q_{\text{mid}}$ it does not matter which we choose).

Here $q > q_{\text{mid}}$, therefore $\hat{q} = \hat{q}_{\text{right}}$ and

$$\hat{x} = fl(x) = +\hat{q}_{\text{right}} \cdot 2^{-3}$$

Now we want to find an **upper bound for the rounding error**: If we don't have overflow or underflow we have $x = \pm q \cdot 2^e$ and $\hat{x} = \pm \hat{q} \cdot 2^e$. Hence

$$\left|\frac{\hat{x}-x}{x}\right| = \frac{\left|\hat{q}\cdot 2^{e} - q\cdot 2^{e}\right|}{q\cdot 2^{e}} = \frac{\left|\hat{q}-q\right|}{q}$$

In the denominator we have $q \ge \frac{1}{2}$. In the numerator we have $|\hat{q} - q| \le \frac{1}{2} \cdot 2^{-n}$ since the spacing between two successive mantissa values is 2^{-n} , and the largest possible value of $|\hat{q} - q|$ is half this distance. Hence the rounding error can be bounded by

$$\left|\frac{\hat{x}-x}{x}\right| = \frac{|\hat{q}-q|}{q} \le \frac{\frac{1}{2} \cdot 2^{-n}}{1/2} = \frac{1}{2} \cdot 2^{-n+1} = 2^{-n}$$

This number is called the **machine epsilon:** $|\varepsilon_M = 2^{-n}|$.

In Matlab we have n = 53, therefore $\varepsilon_M = 2^{-53} \approx 1.11 \cdot 10^{-16}$. In our example with $x = \frac{1}{10}$ we have $\frac{\hat{x} - x}{x} = \frac{\hat{q} - q}{q} \approx 5.55 \cdot 10^{-17}$.

IEEE754 machine numbers

Our "simple base 2 machine numbers" have some problems.

There is a huge hole around 0

The distance between 0 and the smallest positive machine number x_{\min} is much larger than the distance between x_{\min} and the next larger machine number $x_1 := x_{\min}(1+2^{-n})$:

$$x_{\min} - 0 = 2^{e_{\min}} \gg x_1 - x_{\min} = 2^{-n} \cdot 2^{e_{\min}}$$

This has unpleasant consequences:

- Rounding numbers x with $|x| > x_{\min}$ causes a relative error of size $\leq \varepsilon_M$. Rounding numbers x with $|x| < x_{\min}$ gives either 0 or x_{\min} and causes a relative error of size $\leq 100\%$ (underflow). If a program generates values slightly smaller than x_{\min} the accuracy decreases dramatically.
- The two statements if y > x and if y x > 0 have different meanings: For the machine numbers $x = x_{\min}$ and $y = x_1$ the expression y > x evaluates to true since x_1 is a larger machine number than x_{\min} . But the expression y x > 0 evaluates to false: The machine first computes $y x = x_1 x_{\min} = 2^{-n} \cdot 2^{e_{\min}}$, then this value is rounded to the closest machine number which is 0.

We can fix this by filling in the hole around 0: So far the smallest positive numbers are obtained with $e = e_{\min}$, they have a spacing of $2^{-n} \cdot 2^{e_{\min}}$:

$$\pm (.1d_2 \dots d_n)_2 \cdot 2^{e_{\min}}, \qquad d_j \in \{0,1\}$$

We now add the "**subnormal numbers**" which have the same spacing of $2^{-n} \cdot 2^{e_{\min}}$:

$$\pm (.0d_2...d_n)_2 \cdot 2^{e_{\min}}, \qquad d_i \in \{0,1\}$$

Note that these values include the **two distinct machine numbers** +0 and -0 (using signs "+" and "-" with $d_2 = \cdots = d_n = 0$). We will explain below that this is a feature, not a bug.

Now rounding a number x with $|x| \le x_{\text{max}}$ is more well-behaved since the finest spacing $2^{-n} \cdot 2^{e_{\min}}$ is used around 0: We get $\hat{x} = fl(x)$ with

$$\left|\frac{\hat{x}-x}{x}\right| \le \begin{cases} 2^{-n} & \text{for } |x| \ge x_{\min}\\ \min\left\{2^{-n}\frac{x_{\min}}{x}, 1\right\} & \text{for } |x| < x_{\min} \end{cases}$$

This is called "gradual underflow": If we generate values slightly smaller than x_{\min} the rounding error only increases slightly (instead of jumping to 100%).

We need to specify what happens for overflow, division by 0, 0/0 etc.

We introduce special values +Inf, -Inf for handling overflow:

```
>> x=1e300; -x*x
ans =
    .Inf
```

We can perform arithmetic with Inf and -Inf: E.g., 5-Inf gives -Inf, Inf*Inf gives Inf, 0/Inf gives 0 etc.

Note that there are actually two distinct machine numbers +0 and -0. These are both displayed as 0, and the comparison +0=-0 is defined as true. But these two values can preserve the sign information in the case of an underflow:

For indeterminite expressions like Inf-Inf, 0*Inf or 0/0 we introduce the special value NaN ("Not a Number"). This value is also useful for representing a missing data value. Arithmetic operations involving NaN give again NaN (with a few exceptions).

Summary:

IEEE754 machine numbers have the following form with $d_i \in \{0, 1\}$ and integer *e*:

	$\int \pm (.1d_2 \dots d_n)_2 \cdot 2^e, e_{\min} \le e \le e_{\max}$		(normalized numbers)		
$\hat{x} = \langle$	$\pm (.0d_2\ldots d_n)_2\cdot 2^{e_{\min}}$		(subnormal numbers, includes $+0,-0$)		
	Inf, -Inf, NaN		(special values)		

Single Precision numbers (type float in C) use 4 bytes = 32 bits (1 for sign, 8 for exponent, 23 for mantissa).

Double Precision numbers (type double in C) use 8 bytes = 64 bits (1 for sign, 11 for exponent, 52 for mantissa).

	bits	п	$e_{\rm max}$	e_{\min}	\mathcal{E}_M	x_{\max}	x_{\min}
Single Precision	32	24	128	-125	$2^{-24}\approx 6\cdot 10^{-8}$	$pprox 2^{128}pprox 3\cdot 10^{38}$	$2^{-126} \approx 10^{-38}$
Double Precision	64	53	1024	-1021	$2^{-53} \approx 10^{-16}$	$pprox 2^{1024} pprox 2 \cdot 10^{308}$	$2^{-1022} \approx 2 \cdot 10^{-308}$

Note that there are subnormal numbers smaller than x_{\min} available. The smallest positive subnormal number is $2^{-n}2^{e_{\min}} = 2^{-1074} \approx 5 \cdot 10^{-324}$ for double precision. But the value $x_{\min} \approx 2 \cdot 10^{-308}$ is important since values $|x| < x_{\min}$ can cause roundoff errors larger than ε_M .

Machine arithmetic

Our machine has built-in operations (like x + y, x/y, \sqrt{x} , $\sin x$) which operate on machine numbers (this includes +0, -0, Inf, -Inf, NaN).

Note that for machine numbers x, y the value x + y is usually not a machine number. E.g. for decimal machine numbers with n = 3 mantissa digits:

$$x = (.123)_{10} \cdot 10^1$$
, $y = (.456)_{10} \cdot 10^{-1}$, $x + y = (.123 + .00456) \cdot 10^1 = (.12756)_{10} \cdot 10^1$

For the code z=x+y the value z has to be a machine number. In this example this should be the machine number $z = fl(.12756 \cdot 10^1) = (.128)_{10} \cdot 10^1$.

Therefore the built-in machine operations like y=sqrt(x) are implemented as follows: For the given machine number x

- find the "exact" result $Y = \sqrt{x}$ (in practice: use some extra digits)
- return the machine number y = fl(Y)

Therefore machine operations don't return the exact result *Y*, but the closest possible machine number. Note that this causes an error $|\varepsilon_y| \le \varepsilon_M$. All built-in machine operations (like x + y, x/y, \sqrt{x} , $\sin x$) are implemented in this way. (Actually, for functions like $\sin(x)$ a slightly larger relative error $2\varepsilon_M$ is allowed to avoid the so-called "table-makers dilemma".)

Each arithmetic operation in a program causes a relative error of size $\leq \varepsilon_M$.

Example: For the Matlab code x=.1; y=1-cos(x) the machine actually performs the following operations to find the computed value \hat{y} :

round .1 to closest machine number
find true result $\cos(\hat{x})$ with extra accuracy
round Y_1 to closest machine number
find true result $1 - \hat{y}_1$ with extra accuracy
round Y to closest machine number