
Piecewise polynomial interpolation

For certain x-values x1 ≤ x2 ≤ ·· · ≤ xn we are given the function values yi = f (xi). In some cases below we will also assume
that we are additionally given some derivatives si = f ′(xi). We want to find an interpolating function p(x) which satisfies all
the given data and is hopefully close to the function f (x).

We could use a single interpolating polynomial p(x). But this is usually a bad idea: for a large value of n we will obtain

large oscillations.

We should only use an interpolating polynomial if we know that this will not be a problem and several of the following
conditions hold

• the derivatives f (k) do not grow very fast (e.g., f (x) = sinx)

• the points x1, . . . ,xn are close together, and we evaluate p(x) at a point x̃ inside of the interval [x1,xn]

• for equidistant nodes, we only evaluate p(x) for x̃ near the center of the interval [x1, . . . ,xn]

• if we want to evaluate p(x) over a whole interval [a,b] we should choose x1, . . . ,xn as Chebyshev nodes for this interval.

In all other cases it is much better to use a piecewise polynomial: We break the interval [a,b] into smaller subintervals, and
use polynomial interpolation with low degree polynomials on each subinterval. Typically we choose polynomial degree of
about 3. This is a good compromise between small errors and control of oscillations.

Piecewise linear interpolation

We are given x-values x1, . . . ,xn and y-values yi = f (xi) for i = 1, . . . ,n. With hi := xi+1− xi we obtain for x ∈ [xi,xi+1] the
interpolating function

f [xi]+ f [xi,xi+1](x− xi) = yi +
yi+1− yi

h
(x− xi). (1)

We then define p(x) as the piecewise linear function with

for x ∈ [xi,xi+1] : p(x) = yi +
yi+1− yi

h
(x− xi)

We then have from the error formula for polynomial interpolation with 2 points that

for x ∈ [xi,xi+1] : f (x)− p(x) =
f ′′(t)
2!

(x− xi)(x− xi+1) (2)

| f (x)− p(x)| ≤ 1
2 max

t∈[xi,xi+1]

∣∣ f ′′(t)∣∣ · h2
i

4
(3)

since the function |(x− xi)(x− xi+1)| has its maximum hi
2 ·

hi
2 in the midpoint of the interval [xi,xi+1].

We see that the interpolation error satisfies | f (x)− p(x)| ≤ Ch2
i where C = 1

8 maxt∈[x1,xn] | f ′′(t)|. If we choose equidistant
points with hi = (b−a)/(n−1) we have | f (x)− p(x)| ≤C(b−a)2/n2, i.e., doubling the number of points reduces the error
bound by a factor of 4.

However, if the function f (x) has different behavior on different parts of the interval we can get better results by choosing
the points x1, . . . ,xn accordingly: If | f ′′(x)| is small in a certain region we can use a wider spacing hi; if | f ′′(x)| is large in
another reason we should place the nodes more closely, so that hi is small there. In this way we can achieve a small overall
error

max
x∈[x1,xn]

| f (x)− p(x)| ≤ 1
8 max

i=1,...,n−1

(
h2

i max
t∈[xi,xi+1]

∣∣ f ′′(t)∣∣)
with a small number of nodes. We say the choice of the nodes x1, . . . ,xn is adapted to the behavior of the function f .

One advantage of piecewise linear interpolation is that the behavior of p resembles the behavior of f :

• whereever the function f is increasing/decreasing, we have that the function p is increasing/decreasing

However, we have drawbacks:

• the function p(x) is not smooth: it has kinks (jumps of p′(x)) at the nodes x2, . . . ,xn−1 in general

• the error | f (x)− p(x)| ≤Ch2
i for x∈ [xi,xi+1] only decreases fairly slowly with decreasing spacing hi. We would rather

have a higher power like Ch4
i .
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Piecewise cubic Hermite interpolation

Both of these drawbacks can be fixed by using a piecewise cubic polynomial p(x).

We assume that we are given

• x1, . . . ,xn

• y1, . . . ,yn where yi = f (xi)

• s1, . . . ,sn where si = f ′(xi)

In this case we can construct on each interval [xi,xi+1] a cubic Hermite polynomial pi(x) with

pi(xi) = yi, p′(xi) = si, p(xi+1) = yi+1, p′(xi+1) = si+1.

E.g., on the first interval we obtain the following divided difference table: Let r1 :=
y2− y1

h1

x1 y1 s1
r1−s1

h1

s2−2r1+s1
h2

1

x1 y1 r1
s2−r1

h1

x2 y2 s2
x2 y2

yielding the following for the interpolating polynomial p1(x) on the interval [x1,x2]:

p1(x) = y1 + s1(x− x1)+
r1− s1

h1
(x− x1)

2 +
s2−2r1 + s1

h2
1

(x− x1)
2(x− x2) (4)

p′′1(x) =
r1− s1

h1
·2 +

s2−2r1 + s1

h2
1

[2(x− x2)+4(x− x1)]

p′′1(x1) =
r1− s1

h1
·2 +

s2−2r1 + s1

h2
1

[−2h1] =
6r1−4s1−2s2

h1
(5)

p′′1(x2) =
r1− s1

h1
·2 +

s2−2r1 + s1

h2
1

[4h1] =
−6r1 +2s1 +4s2

h1
(6)

(We will need the second derivative later). In the same way we define pi(x) on the interval [xi,xi+1].

The piecewise cubic Hermite polynomial p(x) is then given by

for x ∈ [xi,xi+1] : p(x) = pi(x) (7)

Then we obtain from the error formula for polynomial interpolation with 4 points xi,xi,xi+1,xi+1 that

for x ∈ [xi,xi+1] : f (x)− p(x) =
f (4)(t)

4!
(x− xi)

2(x− xi+1)
2

| f (x)− p(x)| ≤ 1
24 max

t∈[xi,xi+1]

∣∣ f ′′(t)∣∣ · h4
i

16

since the function |(x− xi)(x− xi+1)| has its maximum hi
2 ·

hi
2 in the midpoint of the interval [xi,xi+1].

We see that the interpolation error satisfies | f (x)− p(x)| ≤Ch4
i where C = 1

24·16 maxt∈[x1,xn]

∣∣ f (4)(t)∣∣. If we choose equidistant
points with hi = (b−a)/(n−1) we have | f (x)− p(x)| ≤C(b−a)4/n4, i.e., doubling the number of points reduces the error
bound by a factor of 16.

However, if the function f (x) has different behavior on different parts of the interval we can get better results by choosing
the points x1, . . . ,xn accordingly: If

∣∣ f (4)(x)∣∣ is small in a certain region we can use a wider spacing hi; if
∣∣ f (4)(x)∣∣ is large in

another reason we should place the nodes more closely, so that hi is small there. In this way we can achieve a small overall
error

max
x∈[x1,xn]

| f (x)− p(x)| ≤ 1
24·16 max

i=1,...,n−1

(
h4

i max
t∈[xi,xi+1]

∣∣∣ f (4)(t)∣∣∣)
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with a small number of nodes.

Again, a major advantage of using piecewise polynomials is that we can pick a nonuniform spacing of the nodes adapted to
the behavior of the function f .

The cubic Hermite spline has the following drawbacks:

• We need the derivatives si = f ′(xi) at all nodes x1, . . . ,xn. In many cases these values are not available.

• We have that p′(x) is continuous, but p′′(x) has jumps at the points x2, . . . ,xn−1 in general. We would like to have a
smoother function p(x).

Complete cubic spline

The complete cubic spline fixes these two problems. We now assume that we are given

• x1, . . . ,xn

• y1, . . . ,yn where yi = f (xi)

• s1 = f ′(x1) and sn = f ′(xn),

i.e., we only need the derivatives at the two endpoints (see the section “Not-a-knot spline” below if these are not available).
If these values are given, we can pick arbitrary numbers s2, . . . ,sn−1 and obtain with (7) a piecewise cubic function p(x)
which interpolates all the given data values.

How should we pick the n−2 numbers s2, . . . ,sn−1 to obtain a “nice function” p(x)?

We can actually use this freedom to achieve a function p(x) where p′′(x) is continuous at the points x2, . . . ,xn−1: We want to
pick the n−2 numbers x2, . . . ,xn−1 such that the n−2 equations

p′′i−1(xi) = p′′i (xi) i = 2, . . . ,n−1 (8)

are satisfied.

This gives n−2 linear equations for n−2 unknowns s2, . . . ,sn−1.

E.g., we want that the second derivatives from the left and the right coincide at the point x2: Using (5) and (6) (with indices
shifted by 1) we get for i = 2 the equation

p′′1(x2)
!
= p′′2(x1)

−6r1 +2s1 +4s2

h1
=

6r2−4s2−2s3

h2

2
h1

s1 +

(
4
h1

+
4
h2

)
s2 +

2
h2

s3 = 6
(

r1

h1
+

r2

h2

)
Note that the value s1 in the first equation and the value sn in the last equation are given, and should therefore be moved to
the right hand side. Hence we obtain the tridiagonal linear system (after dividing each equation by 2)

2
h1
+ 2

h2

1
h2

1
h2

2
h2
+ 2

h3

1
h3

. . . . . . . . .
1

hn−3

2
hn−3

+ 2
hn−2

1
hn−2

1
hn−2

2
hn−2

+ 2
hn−1




s2

s3
...

sn−2

sn−1

=


3
( r1

h1
+ r2

h2

)
− s1

h1

3
( r2

h2
+ r3

h3

)
...

3
( rn−3

hn−3
+ rn−2

hn−2

)
3
( rn−2

hn−2
+ rn−1

hn−1

)
− sn

hn−1

 (9)

This gives the following algorithm for finding the cubic spline interpolation:

• for i = 1, . . . ,n−1: let hi := xi+1− xi, ri := yi+1−yi
hi

• define the matrix A on the left hand side of (9) and the vector b on the right hand side of (9)
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• solve the tridiagonal linear system A

 s2
...

sn−1

= b using Gaussian elimination without pivoting

For a given point x̃ ∈ [x1,xn] we evaluate the cubic spline as follows:

• find the interval [xi,xi+1] containing x̃

• evaluate pi(x̃) using (4)

In Matlab we can find the complete cubic spline as follows: yt = spline([x1, . . . ,xn],[s1,y1, . . . ,yn,sn],xt)

Here xt is a vector of points where we want to evaluate the spline, and yt is the corresponding vector of function values.

“Optimal energy” property for complete cubic spline

It turns out that a complete cubic spline gives a “smooth” function p(x) “without large oscillations”. In fact, the complete
cubic spline is the optimal interpolating curve in a certain sense.

Historically, people constructing ships used thin flexible rulers made of wood (called “splines”) to find “smooth curves”
passing through given points (xi,yi). For a thin piece of wood of length L one needs a certain energy to bend it into a curve
with curvature κ(s) along the arc length s ∈ [0,L]:

E =C
∫ L

s=0
κ(s)2ds

Here C is a stiffness constant. If one tries to pass a thin piece of wood through a number of points and allows it to relax it
will assume the shape with lowest possible energy E.

If we describe the curve by a function y = p(x) we have for small slopes p′(x) that κ(s)≈ p′′(x) and

E ≈ E0 :=C
∫ xn

x=x1

p′′(x)2dx

It turns out that the complete cubic spline is the “smoothest possible interpolating function” in the following sense:

Among all functions p(x) (not only piecewise polynomials) satisfying

p(x1) = y1, . . . , p(xn) = yn, p′(x1) = s1, p′(xn) = sn

the complete cubic spline has the lowest possible “energy” E0.

Not-a-knot cubic spline

Now assume that we are not given any derivatives values. We are given only x1, . . . ,xn and the function values y1, . . . ,yn. In
this case the best way to proceed is as follows: First drop x2 and xn−1 and consider only the x-values x1,x3,x4, . . . ,xn−3,xn−2,xn

with the corresponding y-values. If we pick arbitrary values s1,sn we can find the interpolating cubic spline function p(x) as
explained above. The function p(x) is a cubic function on the interval [x1,x3] given by (4) with index 3 in place of 1 (“x2
is not a knot”). Similarly p(x) is a cubic function on the interval [xn−2,xn] given by (4) with indices n−2,n in place of 1,2
(“xn−1 is not a knot”).

In order to determine s1,sn we need two additional equations: We get them from the points (x2,y2) and (xn−1,yn−1) and
require

p(x2) = y2, p(xn−1) = yn−1

The first equation depends on s1,s3. The last equation depends on sn−2,sn. We therefore obtain a tridiagonal linear system
for the unknowns s1,s3,s4, . . . ,sn−3,sn−2,sn. We solve this linear system using Gaussian elimination without pivoting and
obtain a cubic spline function called the “not-a-not cubic spline”.

In Matlab we can find the not-a-knot cubic spline as follows: yt = spline([x1, . . . ,xn],[y1, . . . ,yn],xt)

Here xt is a vector of points where we want to evaluate the spline, and yt is the corresponding vector of function values.
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Proofs for complete cubic spline (you can skip this section)

We consider an interval [a,b] with a partition a = x1 < x2 < · · ·< xn = b.

We are given data values y1, . . . ,yn and s1,sn. We say a function f interpolates the given data iff

f (x j) = y j for j = 1, . . . ,n, f ′(x1) = s1, f ′(xn) = sn

We say a function f interpolates zero data iff

f (x j) = 0 for j = 1, . . . ,n, f ′(x1) = 0, f ′(xn) = 0

Let X denote the space of functions f on [a.b] with

• f , f ′ are continuous on [a,b]

• f ′′ is piecewise continuous on the partition x1, . . . ,xn (but may have jumps at x2, . . . ,xn−1)

Let S denote the space of cubic splines p: these are functions p on [a,b] satisfying

• p is piecewise cubic on the partition x1, . . . ,xn

• p, p′, p′′ are continuous on [a,b]

Obviously S⊂ X .

The following is the key tool for the proofs:

Lemma 1. Assume g ∈ X interpolates zero data and p ∈ S. Then∫ b

a
g′′(x)p′′(x)dx = 0

Proof. Note that p′′ is continuous and piecewise linear. Hence p′′′ exists as a piecewise constant function. We use integration
by parts: ∫ b

a
g′′ · p′′dx =

[
g′ · p′′

]b
a−

∫ b

a
g′ · p′′′dx

The first term on the right hand side is zero since g′(a) = 0, g′(b) = 0. Since p′′′ is piecewise constant with values c j on
(x j,x j+1) we obtain ∫ b

a
g′′ · p′′dx =−

n−1

∑
j=1

c j

∫ x j+1

x j

g′(x)dx =−
n−1

∑
j=1

c j (g(x j+1)−g(x j)) = 0

since g(xk) = 0 for k = 1, . . . ,n.

Theorem 2. There exists a unique p ∈ S interpolating the given data.

Proof. We have seen that this problem corresponds to a linear system of n−2 equations for the n−2 unknowns s j = p′(x j),
j = 2, . . . ,n−1. We need to show that the corresponding matrix A∈R(n−2)×(n−2) is nonsingular. Therefore we need to show:
Av =~0 implies v =~0.

Assume we have Av =~0. This corresponds to p ∈ S interpolating zero data.

Now Lemma 1 gives that
∫ b

a p′′(x)2dx = 0. Since p′′ is continuous this implies p′′(x) = 0 for all x ∈ [a,b].

By taking antiderivatives we obtain p′(x) =C1 and p(x) =C1x+C2. Since p(a) = 0, p(b) = 0 this implies p(x) = 0 on [a,b].
Hence v has the entries p′(x j) = 0, j = 2, . . . ,n−1, i.e., v =~0.

This unique interpolating function p ∈ S is called the complete cubic spline for the given data. This function p minimizes
the “energy”

∫ b
a f ′′(x)2dx among all interpolating functions f ∈ X :
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Theorem 3. Let p denote the complete cubic spline for the given data. For any f ∈ X interpolating the given data we have

∫ b

a
f ′′(x)2dx≥

∫ b

a
p′′(x)2dx

where equality only holds for f = p .

Proof. Let g := f − p. Then g interpolates zero data.

We obtain ∫ b

a
f ′′(x)2dx =

∫ b

a
(p′′+g′′)2dx =

∫ b

a
(p′′)2dx+2

∫ b

a
p′′ ·g′′ dx︸ ︷︷ ︸

0

+
∫ b

a
(g′′)2dx︸ ︷︷ ︸
≥ 0

Here Lemma 1 gives that
∫ b

a p′′ ·g′′ dx = 0. Hence
∫ b

a f ′′(x)2dx≥
∫ b

a (p′′)2dx. We have equality only if
∫ b

a (g
′′)2dx = 0. Since

g′′ is continuous this implies g′′(x) = 0 for all x ∈ [a,b]. By taking antiderivatives we obtain g′(x) =C1 and g(x) =C1x+C2.
Since g(a) = 0, g(b) = 0 this implies g(x) = 0 on [a,b].
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