Piecewise polynomial interpolation

For certain *x*-values $x_1 \le x_2 \le \cdots \le x_n$ we are given the function values $y_i = f(x_i)$. In some cases below we will also assume that we are additionally given some derivatives $s_i = f'(x_i)$. We want to find an interpolating function p(x) which satisfies all the given data and is hopefully close to the function f(x).

We could use a **single interpolating polynomial** p(x). But this is usually a **bad idea**: for a large value of *n* we will obtain large oscillations.

We should **only use an interpolating polynomial** if we know that this will not be a problem and several of the following conditions hold

- the derivatives $f^{(k)}$ do not grow very fast (e.g., $f(x) = \sin x$)
- the points x_1, \ldots, x_n are close together, and we evaluate p(x) at a point \tilde{x} inside of the interval $[x_1, x_n]$
- for equidistant nodes, we only evaluate p(x) for \tilde{x} near the center of the interval $[x_1, \ldots, x_n]$
- if we want to evaluate p(x) over a whole interval [a,b] we should choose x_1, \ldots, x_n as Chebyshev nodes for this interval.

In all other cases it is much better to use a piecewise polynomial: We break the interval [a,b] into smaller subintervals, and use polynomial interpolation with low degree polynomials on each subinterval. Typically we choose polynomial degree of about 3. This is a good compromise between small errors and control of oscillations.

Piecewise linear interpolation

We are given *x*-values $x_1, ..., x_n$ and *y*-values $y_i = f(x_i)$ for i = 1, ..., n. With $h_i := x_{i+1} - x_i$ we obtain for $x \in [x_i, x_{i+1}]$ the interpolating function

$$f[x_i] + f[x_i, x_{i+1}](x - x_i) = y_i + \frac{y_{i+1} - y_i}{h}(x - x_i).$$
(1)

We then define p(x) as the **piecewise linear function** with

for
$$x \in [x_i, x_{i+1}]$$
: $p(x) = y_i + \frac{y_{i+1} - y_i}{h}(x - x_i)$

We then have from the error formula for polynomial interpolation with 2 points that

for
$$x \in [x_i, x_{i+1}]$$
: $f(x) - p(x) = \frac{f''(t)}{2!}(x - x_i)(x - x_{i+1})$ (2)

$$|f(x) - p(x)| \le \frac{1}{2} \max_{t \in [x_i, x_{i+1}]} |f''(t)| \cdot \frac{h_i^2}{4}$$
(3)

since the function $|(x - x_i)(x - x_{i+1})|$ has its maximum $\frac{h_i}{2} \cdot \frac{h_i}{2}$ in the midpoint of the interval $[x_i, x_{i+1}]$.

We see that the interpolation error satisfies $|f(x) - p(x)| \le Ch_i^2$ where $C = \frac{1}{8} \max_{t \in [x_1, x_n]} |f''(t)|$. If we choose equidistant points with $h_i = (b-a)/(n-1)$ we have $|f(x) - p(x)| \le C(b-a)^2/n^2$, i.e., doubling the number of points reduces the error bound by a factor of 4.

However, if the function f(x) has different behavior on different parts of the interval we can get better results by choosing the points x_1, \ldots, x_n accordingly: If |f''(x)| is small in a certain region we can use a wider spacing h_i ; if |f''(x)| is large in another reason we should place the nodes more closely, so that h_i is small there. In this way we can achieve a small overall error

$$\max_{x \in [x_1, x_n]} |f(x) - p(x)| \le \frac{1}{8} \max_{i=1, \dots, n-1} \left(h_i^2 \max_{t \in [x_i, x_{i+1}]} |f''(t)| \right)$$

with a small number of nodes. We say the choice of the nodes x_1, \ldots, x_n is **adapted** to the behavior of the function *f*. One advantage of piecewise linear interpolation is that the behavior of *p* resembles the behavior of *f*:

• whereever the function f is increasing/decreasing, we have that the function p is increasing/decreasing

However, we have drawbacks:

- the function p(x) is not smooth: it has kinks (jumps of p'(x)) at the nodes x_2, \ldots, x_{n-1} in general
- the error $|f(x) p(x)| \le Ch_i^2$ for $x \in [x_i, x_{i+1}]$ only decreases fairly slowly with decreasing spacing h_i . We would rather have a higher power like Ch_i^4 .

Piecewise cubic Hermite interpolation

Both of these drawbacks can be fixed by using a piecewise cubic polynomial p(x).

We assume that we are given

- $x_1, ..., x_n$
- y_1, \ldots, y_n where $y_i = f(x_i)$
- s_1, \ldots, s_n where $s_i = f'(x_i)$

In this case we can construct on each interval $[x_i, x_{i+1}]$ a cubic Hermite polynomial $p_i(x)$ with

$$p_i(x_i) = y_i, \quad p'(x_i) = s_i, \qquad p(x_{i+1}) = y_{i+1}, \quad p'(x_{i+1}) = s_{i+1},$$

E.g., on the first interval we obtain the following divided difference table: Let $r_1 := \frac{y_2 - y_1}{h_1}$

$$\begin{array}{c|ccccc} x_1 & y_1 & s_1 & \frac{r_1 - s_1}{h_1} & \frac{s_2 - 2r_1 + s_1}{h_1^2} \\ x_1 & y_1 & r_1 & \frac{s_2 - r_1}{h_1} \\ x_2 & y_2 & s_2 \\ x_2 & y_2 \end{array}$$

yielding the following for the interpolating polynomial $p_1(x)$ on the interval $[x_1, x_2]$:

$$p_1(x) = y_1 + s_1(x - x_1) + \frac{r_1 - s_1}{h_1}(x - x_1)^2 + \frac{s_2 - 2r_1 + s_1}{h_1^2}(x - x_1)^2(x - x_2)$$
(4)

$$p_{1}''(x) = \frac{r_{1} - s_{1}}{h_{1}} \cdot 2 + \frac{s_{2} - 2r_{1} + s_{1}}{h_{1}^{2}} [2(x - x_{2}) + 4(x - x_{1})]$$

$$p_{1}''(x_{1}) = \frac{r_{1} - s_{1}}{h_{1}} \cdot 2 + \frac{s_{2} - 2r_{1} + s_{1}}{h_{1}^{2}} [-2h_{1}] = \frac{6r_{1} - 4s_{1} - 2s_{2}}{h_{1}}$$
(5)

$$p_1''(x_2) = \frac{r_1 - s_1}{h_1} \cdot 2 + \frac{s_2 - 2r_1 + s_1}{h_1^2} [4h_1] = \frac{-6r_1 + 2s_1 + 4s_2}{h_1}$$
(6)

(We will need the second derivative later). In the same way we define $p_i(x)$ on the interval $[x_i, x_{i+1}]$. The piecewise cubic Hermite polynomial p(x) is then given by

for
$$x \in [x_i, x_{i+1}]$$
: $p(x) = p_i(x)$ (7)

Then we obtain from the error formula for polynomial interpolation with 4 points $x_i, x_i, x_{i+1}, x_{i+1}$ that

for
$$x \in [x_i, x_{i+1}]$$
: $f(x) - p(x) = \frac{f^{(4)}(t)}{4!} (x - x_i)^2 (x - x_{i+1})^2$
 $|f(x) - p(x)| \le \frac{1}{24} \max_{t \in [x_i, x_{i+1}]} |f''(t)| \cdot \frac{h_i^4}{16}$

since the function $|(x - x_i)(x - x_{i+1})|$ has its maximum $\frac{h_i}{2} \cdot \frac{h_i}{2}$ in the midpoint of the interval $[x_i, x_{i+1}]$.

We see that the interpolation error satisfies $|f(x) - p(x)| \le Ch_i^4$ where $C = \frac{1}{24 \cdot 16} \max_{t \in [x_1, x_n]} |f^{(4)}(t)|$. If we choose equidistant points with $h_i = (b-a)/(n-1)$ we have $|f(x) - p(x)| \le C(b-a)^4/n^4$, i.e., doubling the number of points reduces the error bound by a factor of 16.

However, if the function f(x) has different behavior on different parts of the interval we can get better results by choosing the points x_1, \ldots, x_n accordingly: If $|f^{(4)}(x)|$ is small in a certain region we can use a wider spacing h_i ; if $|f^{(4)}(x)|$ is large in another reason we should place the nodes more closely, so that h_i is small there. In this way we can achieve a small overall error

$$\max_{x \in [x_1, x_n]} |f(x) - p(x)| \le \frac{1}{24 \cdot 16} \max_{i=1, \dots, n-1} \left(h_i^4 \max_{t \in [x_i, x_{i+1}]} \left| f^{(4)}(t) \right| \right)$$

with a small number of nodes.

Again, a major advantage of using piecewise polynomials is that we can pick a nonuniform spacing of the nodes adapted to the behavior of the function f.

The cubic Hermite spline has the following drawbacks:

- We need the derivatives $s_i = f'(x_i)$ at all nodes x_1, \ldots, x_n . In many cases these values are not available.
- We have that p'(x) is continuous, but p''(x) has jumps at the points x_2, \ldots, x_{n-1} in general. We would like to have a smoother function p(x).

Complete cubic spline

The complete cubic spline fixes these two problems. We now assume that we are given

- $x_1, ..., x_n$
- $y_1, ..., y_n$ where $y_i = f(x_i)$
- $s_1 = f'(x_1)$ and $s_n = f'(x_n)$,

i.e., we only need the derivatives at the two endpoints (see the section "Not-a-knot spline" below if these are not available). If these values are given, we can pick *arbitrary numbers* s_2, \ldots, s_{n-1} and obtain with (7) a piecewise cubic function p(x) which interpolates all the given data values.

How should we pick the n-2 numbers s_2, \ldots, s_{n-1} to obtain a "nice function" p(x)?

We can actually use this freedom to achieve a function p(x) where p''(x) is continuous at the points x_2, \ldots, x_{n-1} : We want to pick the n-2 numbers x_2, \ldots, x_{n-1} such that the n-2 equations

$$p_{i-1}''(x_i) = p_i''(x_i)$$
 $i = 2, \dots, n-1$ (8)

are satisfied.

This gives n - 2 linear equations for n - 2 unknowns s_2, \ldots, s_{n-1} .

E.g., we want that the second derivatives from the left and the right coincide at the point x_2 : Using (5) and (6) (with indices shifted by 1) we get for i = 2 the equation

$$p_1''(x_2) \stackrel{!}{=} p_2''(x_1)$$
$$\frac{-6r_1 + 2s_1 + 4s_2}{h_1} = \frac{6r_2 - 4s_2 - 2s_3}{h_2}$$
$$\frac{2}{h_1}s_1 + \left(\frac{4}{h_1} + \frac{4}{h_2}\right)s_2 + \frac{2}{h_2}s_3 = 6\left(\frac{r_1}{h_1} + \frac{r_2}{h_2}\right)$$

Note that the value s_1 in the first equation and the value s_n in the last equation are given, and should therefore be moved to the right hand side. Hence we obtain the tridiagonal linear system (after dividing each equation by 2)

$$\begin{bmatrix} \frac{2}{h_{1}} + \frac{2}{h_{2}} & \frac{1}{h_{2}} \\ \frac{1}{h_{2}} & \frac{2}{h_{2}} + \frac{2}{h_{3}} & \frac{1}{h_{3}} \\ & \ddots & \ddots & \ddots \\ & & \frac{1}{h_{n-3}} & \frac{2}{h_{n-3}} + \frac{2}{h_{n-2}} & \frac{1}{h_{n-2}} \\ & & & \frac{1}{h_{n-2}} & \frac{2}{h_{n-2}} + \frac{2}{h_{n-1}} \end{bmatrix} \begin{bmatrix} s_{2} \\ s_{3} \\ \vdots \\ s_{n-2} \\ s_{n-1} \end{bmatrix} = \begin{bmatrix} 3\left(\frac{r_{1}}{h_{1}} + \frac{r_{2}}{h_{2}}\right) - \frac{s_{1}}{h_{1}} \\ 3\left(\frac{r_{2}}{h_{2}} + \frac{r_{3}}{h_{3}}\right) \\ \vdots \\ 3\left(\frac{r_{2}}{h_{2}} + \frac{r_{3}}{h_{3}}\right) \\ \vdots \\ 3\left(\frac{r_{2}}{h_{2}} + \frac{r_{3}}{h_{3}}\right) \\ 3\left(\frac{r_{2}}{h_{2}} + \frac{r_{3}}{h_{3}}\right) \\ 3\left(\frac{r_{2}}{h_{2}} + \frac{r_{3}}{h_{2}}\right) \\ 3\left(\frac{r_{2}}{h_{2}} + \frac{r_{2}}{h_{2}}\right) \\ 3\left(\frac{r_{2}}{h_$$

This gives the following algorithm for finding the cubic spline interpolation:

- for i = 1, ..., n 1: let $h_i := x_{i+1} x_i, r_i := \frac{y_{i+1} y_i}{h_i}$
- define the matrix A on the left hand side of (9) and the vector b on the right hand side of (9)

• solve the tridiagonal linear system $A\begin{bmatrix} s_2\\ \vdots\\ s_{n-1}\end{bmatrix} = b$ using Gaussian elimination without pivoting

For a given point $\tilde{x} \in [x_1, x_n]$ we evaluate the cubic spline as follows:

- find the interval $[x_i, x_{i+1}]$ containing \tilde{x}
- evaluate $p_i(\tilde{x})$ using (4)

In **Matlab** we can find the **complete cubic spline** as follows: $yt = spline([x_1, ..., x_n], [s_1, y_1, ..., y_n, s_n], xt)$ Here xt is a vector of points where we want to evaluate the spline, and yt is the corresponding vector of function values.

"Optimal energy" property for complete cubic spline

It turns out that a complete cubic spline gives a "smooth" function p(x) "without large oscillations". In fact, the complete cubic spline is the optimal interpolating curve in a certain sense.

Historically, people constructing ships used thin flexible rulers made of wood (called "splines") to find "smooth curves" passing through given points (x_i, y_i) . For a thin piece of wood of length *L* one needs a certain energy to bend it into a curve with curvature $\kappa(s)$ along the arc length $s \in [0, L]$:

$$E = C \int_{s=0}^{L} \kappa(s)^2 ds$$

Here C is a stiffness constant. If one tries to pass a thin piece of wood through a number of points and allows it to relax it will assume the shape with lowest possible energy E.

If we describe the curve by a function y = p(x) we have for small slopes p'(x) that $\kappa(s) \approx p''(x)$ and

$$E \approx E_0 := C \int_{x=x_1}^{x_n} p''(x)^2 dx$$

It turns out that the complete cubic spline is the "smoothest possible interpolating function" in the following sense:

Among all functions p(x) (not only piecewise polynomials) satisfying

$$p(x_1) = y_1, \dots, p(x_n) = y_n, \qquad p'(x_1) = s_1, \quad p'(x_n) = s_n$$

the complete cubic spline has the lowest possible "energy" E_0 .

Not-a-knot cubic spline

Now assume that we are not given any derivatives values. We are given only x_1, \ldots, x_n and the function values y_1, \ldots, y_n . In this case the best way to proceed is as follows: First drop x_2 and x_{n-1} and consider only the *x*-values $x_1, x_3, x_4, \ldots, x_{n-3}, x_{n-2}, x_n$ with the corresponding *y*-values. If we pick arbitrary values s_1, s_n we can find the interpolating cubic spline function p(x) as explained above. The function p(x) is a cubic function on the interval $[x_1, x_3]$ given by (4) with index 3 in place of 1 (" x_2 is not a knot"). Similarly p(x) is a cubic function on the interval $[x_{n-2}, x_n]$ given by (4) with indices n - 2, n in place of 1,2 (" x_{n-1} is not a knot").

In order to determine s_1, s_n we need two additional equations: We get them from the points (x_2, y_2) and (x_{n-1}, y_{n-1}) and require

$$p(x_2) = y_2, \qquad p(x_{n-1}) = y_{n-1}$$

The first equation depends on s_1, s_3 . The last equation depends on s_{n-2}, s_n . We therefore obtain a tridiagonal linear system for the unknowns $s_1, s_3, s_4, \ldots, s_{n-3}, s_{n-2}, s_n$. We solve this linear system using Gaussian elimination without pivoting and obtain a cubic spline function called the "not-a-not cubic spline".

In **Matlab** we can find the **not-a-knot cubic spline** as follows: $yt = spline([x_1, ..., x_n], [y_1, ..., y_n], xt)$ Here xt is a vector of points where we want to evaluate the spline, and yt is the corresponding vector of function values.

Proofs for complete cubic spline (you can skip this section)

We consider an interval [a, b] with a partition $a = x_1 < x_2 < \cdots < x_n = b$.

We are given data values y_1, \ldots, y_n and s_1, s_n . We say a function f interpolates the given data iff

$$f(x_i) = y_i$$
 for $j = 1, ..., n$, $f'(x_1) = s_1$, $f'(x_n) = s_n$

We say a function f interpolates zero data iff

$$f(x_j) = 0$$
 for $j = 1, ..., n$, $f'(x_1) = 0$, $f'(x_n) = 0$

Let *X* denote the space of functions f on [a.b] with

- f, f' are continuous on [a, b]
- f'' is piecewise continuous on the partition x_1, \ldots, x_n (but may have jumps at x_2, \ldots, x_{n-1})

Let S denote the space of cubic splines p: these are functions p on [a,b] satisfying

- *p* is piecewise cubic on the partition x_1, \ldots, x_n
- p, p', p'' are continuous on [a, b]

Obviously $S \subset X$.

The following is the key tool for the proofs:

Lemma 1. Assume $g \in X$ interpolates zero data and $p \in S$. Then

$$\int_{a}^{b} g''(x) p''(x) dx = 0$$

Proof. Note that p'' is continuous and piecewise linear. Hence p''' exists as a piecewise constant function. We use integration by parts:

$$\int_a^b g'' \cdot p'' dx = \left[g' \cdot p''\right]_a^b - \int_a^b g' \cdot p''' dx$$

The first term on the right hand side is zero since g'(a) = 0, g'(b) = 0. Since p''' is piecewise constant with values c_j on (x_i, x_{i+1}) we obtain

$$\int_{a}^{b} g'' \cdot p'' dx = -\sum_{j=1}^{n-1} c_j \int_{x_j}^{x_{j+1}} g'(x) dx = -\sum_{j=1}^{n-1} c_j \left(g(x_{j+1}) - g(x_j) \right) = 0$$

since $g(x_k) = 0$ for k = 1, ..., n.

Theorem 2. There exists a unique $p \in S$ interpolating the given data.

Proof. We have seen that this problem corresponds to a linear system of n-2 equations for the n-2 unknowns $s_j = p'(x_j)$, j = 2, ..., n-1. We need to show that the corresponding matrix $A \in \mathbb{R}^{(n-2)\times(n-2)}$ is nonsingular. Therefore we need to show: $Av = \vec{0}$ implies $v = \vec{0}$.

Assume we have $Av = \vec{0}$. This corresponds to $p \in S$ interpolating zero data.

Now Lemma 1 gives that $\int_a^b p''(x)^2 dx = 0$. Since p'' is continuous this implies p''(x) = 0 for all $x \in [a,b]$.

By taking antiderivatives we obtain $p'(x) = C_1$ and $p(x) = C_1x + C_2$. Since p(a) = 0, p(b) = 0 this implies p(x) = 0 on [a, b]. Hence *v* has the entries $p'(x_j) = 0$, j = 2, ..., n-1, i.e., $v = \vec{0}$.

This unique interpolating function $p \in S$ is called the **complete cubic spline** for the given data. This function p minimizes the "**energy**" $\int_{a}^{b} f''(x)^{2} dx$ among all interpolating functions $f \in X$:

Theorem 3. Let *p* denote the complete cubic spline for the given data. For any $f \in X$ interpolating the given data we have

$$\int_{a}^{b} f''(x)^{2} dx \ge \int_{a}^{b} p''(x)^{2} dx$$

where equality only holds for f = p.

Proof. Let g := f - p. Then g interpolates zero data.

We obtain

$$\int_{a}^{b} f''(x)^{2} dx = \int_{a}^{b} (p'' + g'')^{2} dx = \int_{a}^{b} (p'')^{2} dx + 2 \underbrace{\int_{a}^{b} p'' \cdot g'' dx}_{0} + \underbrace{\int_{a}^{b} (g'')^{2} dx}_{\geq 0}$$

Here Lemma 1 gives that $\int_a^b p'' \cdot g'' dx = 0$. Hence $\int_a^b f''(x)^2 dx \ge \int_a^b (p'')^2 dx$. We have equality only if $\int_a^b (g'')^2 dx = 0$. Since g'' is continuous this implies g''(x) = 0 for all $x \in [a, b]$. By taking antiderivatives we obtain $g'(x) = C_1$ and $g(x) = C_1x + C_2$. Since g(a) = 0, g(b) = 0 this implies g(x) = 0 on [a, b]. \square