
1 Introduction: Errors and where they come from

This course is called “Computational Methods”, and the topic which it covers is also called “Numerical Analysis”. The idea
is to solve a complicated problem not exactly, but to obtain the answer as a number with a certain accuracy using a computer,
and doing it as efficiently as possible.

1.1 Exact symbolic results vs. approximate numerical results

For simple problems (such as problems in calculus text books as opposed to real-life problems) one can find a formula for
the result, e.g.,

I1 =
∫ 1

0
sin(x)dx = − cos(1) + cos(0) = 1− cos(1)

In many applications we would like to get a numerical answer with a certain number of digits. We can evaluate1 − cos(1)
with a calculator or Matlab and obtainI1 ≈ .45969769413186.

Now let us consider a slightly more complicated problem: We want to find

I2 =
∫ 1

0
sin(sin(x))dx.

We cannot proceed as above since the antiderivative ofsin(sin(x)) cannot be expressed using finitely many “elementary
functions” like sin(x), ln(x), We do know from calculus that the integral of a continuous function likesin(sin(x))
exists, so there should be a way to find a numerical value. Actually, we know from calculus that the Riemann sums of
rectangles converge to the exact integral. Therefore we can divide the interval[0, 1] into e.g.n = 1000 subintervals of size
h = 1

n , and use on each subinterval the function value in the midpoint. This gives an approximate value

Î2 := h

1000∑
j=1

sin(sin((j − 1
2

)h)) ≈ 0.430606129785715

where I used Matlab to compute the result. This is an example of a numerical algorithm.We would like to know: How large
is the error ofÎ2 compared toI2? How fast does the error decrease if we increase the numbern of subintervals? Are there
more efficient methods which give smaller errors with fewer operations?

1.2 How to measure errors

Assume that the exact value isx, and that we have an approximationx̂. Then we call̂x − x the absolute error, and we
would like |x̂− x| to be small. E.g., forx = 0.02 andx̂ = 0.03 we have an absolute error of0.01.

In many applixations an absolute error of, say,0.01 is more relevant in the casex = 0.02 than in the casex = 200 000.
Therefore one is interested in therelative error

εx =
x̂− x
x

⇐⇒ x̂ = x(1 + εx).

E.g., forx = 0.02 andx̂ = 0.03 we haveεx = 0.5 = 50%. Note that the relative error may be positive or negative. We
would like |εx| to be small.

1

Note that forx = 0 the relative error is not defined, and we can only use the absolute error.

What happens if we combine two relative errors? Assume thatx is the exact value,̂x has a relative error ofε1 with respect to
x, andx̃ has a relative error ofε2 with respect tôx. What is the relative error of̃x with respect tox? We havêx = x(1 + ε1)
and

x̃ = x̂(1 + ε2) = x(1 + ε1)(1 + ε2) = x(1 + ε1 + ε2 + ε1ε2),

hencex̃ = x(1 + ε) with ε = ε1 + ε2 + ε1ε2 ≈ ε1 + ε2 for small values of|ε1| , |ε2|.
Often it is easier to consider̃ε = x̂−x

x̂ instead ofε = x̂−x
x . Since

ε =
x̂− x
x

=
x̂− x

x̂− (x̂− x)
=

ε̃

1− ε̃

we have forδ < 1 ∣∣∣∣ x̂− xx̂
∣∣∣∣ ≤ δ =⇒

∣∣∣∣ x̂− xx
∣∣∣∣ ≤ δ

1− δ
(1)

1.3 The big picture: From real-life problem to computer output

In real life one does not make up problems like “FindI2 =
∫ 1

0 sin(sin(x))dx” out of thin air. One starts with a certain
problem from an area such as engineering, physics, biology, finance,. . . and wants to obtain a numerical answer. In order to
understand how meaningful or meaningless the final computer output is, we have to investigate all possible sources of errors.

1.3.1 Example: Dropping a mass from a height h

I drop a piece of chalk from a height ofh = 5 feet and want to find the timet0 it takes until the chalk hits the floor. I only
have a simple 4-function calculator.

Newton’s law says:

mass× acceleration= sum of all forces acting on the mass.

I drop the chalk at timet = 0. Let us denote the height of the chalk at timet by y(t). Theny′(t) is the velocity, andy′′

is the acceleration. The force from gravity acting on the mass is−mg whereg ≈ 9.81meter/second2 ≈ 32 feet/second2.
Therefore we havemy′′(t) = −mg andy(0) = h, y′(0) = 0. Taking antiderivatives we obtain

y′(t) = −gt, y(t) = h− g

2
t2

and the timet0 is obtained by solving

y(t0) = 0 ⇐⇒ g

2
t20 = h ⇐⇒ t0 =

√
2h
g
.

In our case the timet0 in seconds is obtained ast0 =
√

2·5
32 .

I need to computex =
√
a for a = 5

16 . Unfortunately my calculator does not have a√-button. I therefore use the following
algorithm: I start with an initial guess, e.g.,x = 1. If x is not the exact value of

√
a, we must have that

√
a is located

betweenx and a
x , and I can hope that the arithmetic mean(x + a

x)/2 is an improved guess for
√
a. I therefore use the

following algorithm:

2

x := 1
for i = 1 to 5:
x := (x+ a

x)/2

(Note that in generalx = 1 for the initial guess and 5 for the number of iterations may not be good choices). This is called
the “Babylonian algorithm” because it was supposedly known to the ancient Babylonians. If I use this algorithm fora = 5

16
I obtain an approximation0.5590169944 for

√
a using my calculator. Is this really the exact value for the timet0?

1.3.2 Error in given data

For every problem there are some input values. In general they are not known exactly because of measurement or other
errors. In our example the initial heighth is an input parameter, and in practice I might be able to measure it with a relative
error of10−5, but not exactly. Also the value of the accelerationg ≈ 9.81meter/second2 is an input value which I do not
know exactly.

Even if I do everything else exactly, the error of the given data propates through the whole problem and pollutes my final
result. If my problem is very sensitive to small perturbations in my given data (“ill-conditioned” problem) this will cause
very large errors in the result, and there is no way to avoid this.

1.3.3 Modeling error

I have to translate my real life problem into a mathematical problem. That means that I have to make some simplifications.
For our example problem I assumed that the only force is−mg. In reality there is another force which comes from the
friction with the air. Also, the force from gravity is not really constant, e.g., forh = 1000 miles I need to use a different
model.

Finding a mathematical model for a real life problem is a topic of application areas like engineering, biology, finance etc.
Therefore we will not investigate modeling errors in this class, but we should be aware that they are often the largest source
of error in a computed result.

1.3.4 Approximation error

Typically I cannot solve my mathematical problem exactly with a finite number of operations. Therefore I have to pick an
algorithm which gives a good approximation. In the example, we used 5 iterations of the Babylonian algorithm instead of
the exact value of

√
a. Another example is the approximation of functions using Taylor expansions (see below) where the

error is also called “truncation error”. Yet another example was the approximation of an integralI2 by a sum of rectangles
in section 1.1.

1.3.5 Roundoff error

Theoretically I can imagine that I perform my algorithm using arithmetic with infinite precision. In practice I have to pick
a certain computer which has finite precision machine numbers, and finite precision machine arithmetic. Therefore I will
obtain a different result, and the error between the infinite precision computation and the machine arithmetic computation is
calledroundoff error.

We will investigate how much roundoff error we can expect for a “good algorithm” (the so-called “unavoidable error”).
“Bad algorithms” can give unnecesserarily large roundoff errors (“numerically unstable” algorithms).

3

1.4 Taylor series

An important tool for approximation is the Taylor expansion. We will use this many times, and we will need a theorem for
the remainder term.

Theorem 1.1 Assume thatf has continuous derivatives up to ordern+ 1 betweenx andx0. Then

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
(x− x0)n

n!
+Rn+1

with the remainder term

Rn+1 = f (n+1)(t)
(x− x0)n+1

(n+ 1)!

wheret is betweenx andx0.

Example We want to computey = sin(0.1) using a simple four function calculator. We choosex0 = 0 (since we know
the values ofsin 0 andcos 0, and0 is close tox = 0.1). We approximatey = sin(0.1) by the Taylor series with terms up to
ordern = 6. Note thatf(x0) = sin(0) = 0, f ′(x0) = cos(0) = 1, f ′′(x0) = 0, f (3)(x0) = −1, f (4)(x0) = 0, f (5)(x0) = 1,
f (6)(x0) = 0 and therefore the approximation is

ỹ = 0 + x+ 0− x3

3!
+ 0 +

x5

5!
+ 0 = 0.1 +

0.13

6
− 0.15

120
= 0.099833416666 . . .

and

|y − ỹ| = |R7| =
∣∣∣∣− cos(t)

x7

7!

∣∣∣∣ ≤ 1 · 0.17

5040
≈ 1.98 · 10−11.

This is an estimate for the absolute error|ỹ − y|.

For the relative error
∣∣∣ ỹ−yy ∣∣∣ we first note that

∣∣∣ ỹ−yỹ ∣∣∣ ≤ 0.17/5040
ỹ =: δ ≈ 1.98744 · 10−10. Then we obtain with (1) that∣∣∣∣ ỹ − yy

∣∣∣∣ ≤ δ

1− δ
≈ 1.98744 · 10−10.

4

