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1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets A,B we write A C Biff x€¢ A = x € B. So A C A is true. Some people use the notation “C” instead.

1.1 Introduction
Consider a function y = g(x) where x,y € R":

V1 g1(x1,.. ., %)

Yn gn(X15- 5 Xn)
We assume that g(x) is defined for x € D where D is a subset of R".

The goal is to find a solution x* of the fixed point equation
8(x) = x.

A method to find x* is the fixed point iteration: Pick an initial guess x{*) € D and define for k =0,1,2,...
XK = g(x0)y

Note that this may not converge. But if the sequence x¥) converges, and the function g is continuous, the limit x* must be a
solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.
Theorem 1. Consider a set D C R" and a function g: D — R". Assume

1. Dis closed (i.e., it contains all limit points of sequences in D)

2.xeD = gx)eD

3. The mapping g is a contraction on D: There exists g < 1 such that
Vx,y € D: 18(x) =gl < qllx—ll )]

Then
1. there exists a unique x* € D with g(x*) = x*
2. for any x9) € D the fixed point iterates given by x**1) := g(x(k)) converge to x* as k — oo

3. x® satisfies the a-priori error estimate

[ =@ 2)

and the a-posteriori error estimate

10— < 77 e a0 3)
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Proof. Pick x(©) € D and define x*) for k = 1,2, ... by x%) = g(x(k_l)). We have from the contraction property (1)
D —x O = o) — g (E)| < ]9 =Y “
and hence
450 ) < ) ®
Letd := Hx(l) —x H We have from the triangle inequality and (5)
Hx(k) _x(k+£)H < Hx(k) _x(k+1)H et Hx(k+£—1) _x(k+£)H

qud+_..+qk+€71d:qkd(l_i_q_"__.__i_qffl)

0] < ®
—q

using the sum of the geometric series Zi;g) g’ < Yo g’ = 1/(1 — q). Note that (6) shows that the sequence x%) is a Cauchy
sequence. Therefore it must converge to a limit x* € R” (since the space R”" is complete). As D is closed, we must have
x*eD.

We need to show that x* = g(x*): We have x**1) = g(x%)), hence

]}im XKD = Jim g (x®))
—yo0 k—ro0

The limit of the left hand side is x*. Note that because of (1) the function g must be continuous. Therefore
lim g(x¥) = g(1lim x®¥)) = g(x*).
k—ro0 k—ro0

Next we need to show that the fixed point x* is unique. Assume that we have fixed points x* = g(x*) and y* = g(y*). Then
we obtain using the contraction property (1)

e =7l = [ls ) = g0 < al|x" =7
implying (1 —g¢g Hx —y H < 0 and therefore Hx -y H =0, 1e., x* =y"

The a-priori estimate (2) follows from (6) by letting ¢ tend to infinity. For the a-posteriori estimate use (2) with k = 1 for
7#0) .= xK) | (1) = yk+1) 0

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian g’(x) which is an n x n matrix for each point x € D. If the matrix norm
satisfies ||g’(x)|| < ¢ < 1 then the mapping g must be a contraction:

Theorem 2. Assume the set D C R" is convex and the function g: D — R" has continuous partial derivatives —= 8 k in D. If
for g < 1 the matrix norm of the Jacobian satisfies
weD: g <q @)

the mapping g is a contraction in D and satisfies (1).

Proof. Let x,y € D. Then the points on the straight line from x to y are given by x+¢(y —x) forz € [0, 1]. As D is convex all
these points are contained in D. Let G(¢) := g(x+1(y —x)), then by the chain rule we have G'(t) = g'(x+1(y —x)) (y — x)
and

1 1
80) ~8() = G(1)=G(0) = [ G'0dr = [ ¢/ (x+1(=2) G—vr

| < 12 1F @) d:

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies

1 1
80 =@ < [ [l¢ (x+10=0) =0t < [ |lg'(x10=0) Iy =xldr < qly—x|

<q

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections 1.5, 1.6.
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1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction

constant g (typically we get this from (7)).

A-priori estimate: For an initial guess x(*) we can find x(!). Without computing anything else we then have the error

bound Hx(k) —x* H < qukq Hx(l) —x© H for all future iterates x*), before (“a-priori”) we actually compute them. We can e.g.

use this to find a value & such that Hx(k) —x* H is below a given tolerance.

A-posteriori estimate: After we have actually computed x¥) (“a-posteriori”) we would like to know where the true

solution x* is located. Let
S = — 1| —x® | D= x| =W < &}
—q
The a-posteriori estimate states that x* is contained in the set Dy. Note:
e the “radius” § of Dy decreases at least by a factor of ¢ with each iteration: &1 < &
e the sets Dy are nested: Dy DD, D D3 D ---

To show Dy C Dy assume x € Dy 1. Then

@ 1
= = st =) < () ) S g ) =
N—— q q

<Okt
If we use the c-norm: Hx(k) —x* Hm < & means that for each component x}f we have a bracket

xi e - 8l 1 8],

i.e., the set Dy is a square/cube/hypercube with side length 28; centered in x(*).

1.5 Example

We want to solve the nonlinear system
1 .
X1 = 19 [1 —x2 —sin(x; +x2)]

Xy = % [2 +)C1 +COS()C1 —X2)]

1 —xp —sin(x; +x7)
_ 1 2 1+x2
where we have g(x) = 5 2431+ cos(x1 — x0) ] .
First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian g’(x):
() = - —cos(x; +x2) —1—cos(x;+x2)
J 10 1-— sin(x1 —XZ) sin(x1 —xz)

®)

Let A := g'(x). Let us use the co-norm. We need to find an upper bound for ||A||., = max{|aii|+ |ai2|,|az21| + |a22|}. We

obtain for any x;,x € R

cos(x1 +x2)| < 35, |aia| = §5 |1 —cos(x; +x2)| < 15(1+1)

jan| = 15 |— 0
e |1 —sin(x1 —)Cz)‘ < %(1—{-1), |a22\ < % |sin(x1 —)Cz)‘ < %

|a21| = 15
Therefore for any x € R? we have
3
¢l < g =a<1.

By Theorem 2 we therefore obtain that g is a contraction for all of R.

We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We

consider two choices:
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First choice D =R?: We can use the set D = R2. This set is closed. For any x € R? we certainly have that g(x) € R?. We
have also shown that g is a contraction for all of R?. Therefore we obtain from Theorem 1 that the nonlinear system g(x) = x
has exactly one solution x* in all of R?.

Second choice D =[—1,1] x[—1,1]: We can use for D the square with —1 <x; <1 and —1 <x, < 1. This is a closed
set (the boundary of the square is included). We now have to check that for x € D we have that y = g(x) € D: We have using
—1<sinax<l1,—-1<cosax <1

(1-1-1)
2-1-1)

= % [1—x —sin(x; +x2)]

l
0~
0= [2+x1 +cos(x; —x2)]

& o (1+14+1)=
L il
10 0

< 0
<A1+ =1

<y
<y

therefore y € D and the second assumption of the theorem is satisfied. We already showed that g is a contraction for all of
IR2, so the third assumption definitely holds for x,y € D. We can now apply Theorem 1 and obtain that the nonlinear system
has exactly one solution x* which is located in the square D = [—1,1] x [—1,1].

Numerical Computation: We start with the initial guess x(%) = (0,0) . After each iteration we find & and the square Dy,
containing x*:

k x&) O Dy

1 (.1,.3)" 1.3-107! | [—.02857, .2286] x [.1714, .4286]
2 | (.03106, .3080)" | 3.0-10-2 | [.00151, .06060] x [.2785, .3376]
3| (.03594, .2993)" | 3.7-1073 | [.03221, .03967] x [.2956, .3030]
4 | (.03717,.3001)" | 5.3-107* | [.03664, .03770] x [.2996, .3007]
5| (.03689, .3003)" | 1.2-10~* | [.03677, .03701] x [.3001, .3004]

Note: (i) & decreases at least by a factor of ¢ = 0.3 with each iteration.

(i1) The sets Dy are nested: D1 D D, D D3 D ---

1.6 Using the Fixed Point Theorem without the Assumption g(D) C D

The tricky part in using the contraction mapping theorem is to find a set D for which both the 2nd and 3rd assumption of the
fixed point theorem hold:

e xeD = g(x)eD
e g is a contraction on D

Typically we can prove that ||g’(x)|| < ¢ < 1 for x in some convex region D. We suspect that there is a solution x* of the fixed
point equation in D. But it may not be true that g(x) € D for all x € D.

In this case we may be able to prove a result by computing a few iterates x(*): Start with k = 0 and an initial guess x(*) € D.
Then repeat

o let k:=k+ 1 and compute x) := g(x(k=1)

e compute & :=

=¥ < &)

| <=1

until either Dy C D or x¥) ¢ D.

If the iterates exit from the set D) we cannot conclude anything. But as long as the points x(¥) stay inside D we have & < ¢&
and Dy C Dy. So we expect that for some & the condition Dy C D will be satisfied (if x(k)converges to a limit in the interior
of D the loop must terminate with D; C D; but in general it is possible that the loop never terminates). If the loop does
terminate with D; C D for k = K we have the following result:
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Theorem 3. Let D C R" and assume that the function g: D — R" satisfies for g < 1

VeyeD:  g(x)—gWl <qllx—yl
Let x9 € D and define for k =0,1,2,...

R ) T z x® —xED) D= x| = < &3

If for some K we have "8~V € D and Dg C D there holds
e the equation g(x) = x has a unique solution x* in D

e this solution satisfies x* € Dy, for all k > K

Proof. Let x € Dg. We want to show that g(x) € Dg: As Dg C D the contraction property gives using the definition of Dy
and 0
) ] < gffr <V < gflr—x] + gl —xED] < g+ (1 - )3k = ¢

As Dg is closed and Dx C D the set D := Dk satisfies all three assumptions of the fixed point theorem Theorem 1. Hence
there is a unique solution x* € D. The a-posteriori estimate (3) states that x* € Dy, for all iterates x*) with k > K. Assume
that there is another fixed point y* € D with g(y*) = y*. Then

Iy =x* [ =1lg(y") =) < qlly" — x|
As g < 1 we must have [[y* —x*|| = 0. O

Summary:
e Find a convex set D for which you suspect x* € D and where you can show ||g’(x)|| < g < 1
e Pick x(9 € D and perform the fixed point iteration:
for each iteration:
— find x¥) and Dy,
— if x® ¢ D: stop (we can’t conclude anything)
— if Dy C D: success: there is a unique solution x* € D, and there holds x* € Dy, for this and all following iterations

— +1 .. 1 —x; —X1
Example: Let =1 AR . Then the Jacobian is ¢’(x) = 1
p 8(x) =3 [ X2 —|—x1x% +1 §) =3 x% 14+ 2x1x;

Let us try to use D = [0,a] x [0.a] with a < 1 and the c-norm. We then obtain for x € D that

Hg H = 3maX{1+a a +1+2a2}
< 208

||oo —

< 3 which is too large. So we try a = 0.6 which gives ||g(x)
0.6 )= 0.41333
0.6 | | 0.60533

Fora =1 we get ||g’(x) =:¢q < 1. Therefore g is a

o
contraction on D = [0,.6] x [0, .6]. Note that g( [ ] ¢ D, so D does not satisfy all three assumptions of

Theorem 1.

For x(0) = [ 8 ] we obtain

(33333, .33333) " € = [—0.42029, 1.08696] x [—0.42029, 1.08696] ¢D
(40741, 45679)T € = [0.12829, 0.68653] x [0.17767, 0.73591] ¢ D
(.40710, .51393)" € D, =10.27791, 0.53629] x [0.38474, 0.64313] ¢ D
(39929, .54049)T €D, D4y =1[0.33926, 0.45933] x [0.48045, 0.60052] ¢ D
(.39449, 55238)T € D =[0.36761, 0.42138] x [0.52549, 0.57926] C D

Therefore we can conclude from Theorem 3 that there exists a unique solution x* € D = [0,0.6] x [0,0.6]. This solution x*
is located in the smaller square Ds. For k = 5,6,7,... we obtain x* € D; where Dy is a square with side length 26;. As
& < gF385 < (%ﬁ)k_S 0.027 we can obtain arbitrarily small squares containing the solution if we choose k sufficiently
large.



