1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets *A*, *B* we write $A \subset B$ iff $x \in A \implies x \in B$. So $A \subset A$ is true. Some people use the notation " \subseteq " instead.

1.1 Introduction

Consider a function y = g(x) where $x, y \in \mathbb{R}^n$:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} g_1(x_1, \dots, x_n) \\ \vdots \\ g_n(x_1, \dots, x_n) \end{bmatrix}$$

We assume that g(x) is defined for $x \in D$ where D is a subset of \mathbb{R}^n .

The goal is to find a solution x^* of the **fixed point equation**

$$g(x) = x$$

A method to find x^* is the **fixed point iteration**: Pick an initial guess $x^{(0)} \in D$ and define for k = 0, 1, 2, ...

$$x^{(k+1)} := g(x^{(k)})$$

Note that this may not converge. But if the sequence $x^{(k)}$ converges, and the function g is continuous, the limit x^* must be a solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.

Theorem 1. Consider a set $D \subset \mathbb{R}^n$ and a function $g: D \to \mathbb{R}^n$. Assume

- 1. D is closed (i.e., it contains all limit points of sequences in D)
- **2.** $x \in D \implies g(x) \in D$
- **3**. The mapping g is a contraction on D: There exists q < 1 such that

$$\forall x, y \in D: \qquad \|g(x) - g(y)\| \le q \|x - y\|$$
(1)

Then

- **1**. there exists a unique $x^* \in D$ with $g(x^*) = x^*$
- **2.** for any $x^{(0)} \in D$ the fixed point iterates given by $x^{(k+1)} := g(x^{(k)})$ converge to x^* as $k \to \infty$
- **3.** $x^{(k)}$ satisfies the *a*-priori error estimate

$$\left|x^{(k)} - x^*\right| \le \frac{q^k}{1 - q} \left\|x^{(1)} - x^{(0)}\right\|$$
⁽²⁾

and the *a-posteriori error estimate*

$$\|x^{(k)} - x^*\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|$$
(3)

Proof. Pick $x^{(0)} \in D$ and define $x^{(k)}$ for k = 1, 2, ... by $x^{(k)} := g(x^{(k-1)})$. We have from the contraction property (1)

$$\left\|x^{(k+1)} - x^{(k)}\right\| = \left\|g(x^{(k)}) - g(x^{(k-1)})\right\| \le q \left\|x^{(k)} - x^{(k-1)}\right\|$$
(4)

and hence

$$\left\|x^{(k+1)} - x^{(k)}\right\| \le q^k \left\|x^{(1)} - x^{(0)}\right\|$$
(5)

Let $d := ||x^{(1)} - x^{(0)}||$. We have from the triangle inequality and (5)

$$\begin{aligned} \|x^{(k)} - x^{(k+\ell)}\| &\leq \|x^{(k)} - x^{(k+1)}\| + \dots + \|x^{(k+\ell-1)} - x^{(k+\ell)}\| \\ &\leq q^k d + \dots + q^{k+\ell-1} d = q^k d \left(1 + q + \dots + q^{\ell-1}\right) \\ \|x^{(k)} - x^{(k+\ell)}\| &\leq q^k d \frac{1}{1-q} \end{aligned}$$
(6)

using the sum of the geometric series $\sum_{j=0}^{\ell-1} q^j \leq \sum_{j=0}^{\infty} q^j = 1/(1-q)$. Note that (6) shows that the sequence $x^{(k)}$ is a *Cauchy* sequence. Therefore it must converge to a limit $x^* \in \mathbb{R}^n$ (since the space \mathbb{R}^n is complete). As *D* is closed, we must have $x^* \in D$.

We need to show that $x^* = g(x^*)$: We have $x^{(k+1)} = g(x^{(k)})$, hence

$$\lim_{k\to\infty} x^{(k+1)} = \lim_{k\to\infty} g(x^{(k)})$$

The limit of the left hand side is x^* . Note that because of (1) the function g must be continuous. Therefore

$$\lim_{k \to \infty} g(x^{(k)}) = g(\lim_{k \to \infty} x^{(k)}) = g(x^*).$$

Next we need to show that the fixed point x^* is unique. Assume that we have fixed points $x^* = g(x^*)$ and $y^* = g(y^*)$. Then we obtain using the contraction property (1)

$$||x^* - y^*|| = ||g(x^*) - g(y^*)|| \le q ||x^* - y^*|$$

implying $(1-q) ||x^* - y^*|| \le 0$ and therefore $||x^* - y^*|| = 0$, i.e., $x^* = y^*$.

The a-priori estimate (2) follows from (6) by letting ℓ tend to infinity. For the a-posteriori estimate use (2) with k = 1 for $\tilde{x}^{(0)} := x^{(k)}, \tilde{x}^{(1)} = x^{(k+1)}$.

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian g'(x) which is an $n \times n$ matrix for each point $x \in D$. If the matrix norm satisfies $||g'(x)|| \le q < 1$ then the mapping g must be a contraction:

Theorem 2. Assume the set $D \subset \mathbb{R}^n$ is convex and the function $g: D \to \mathbb{R}^n$ has continuous partial derivatives $\frac{\partial g_j}{\partial k}$ in D. If for q < 1 the matrix norm of the Jacobian satisfies

$$\forall x \in D: \qquad \left\| g'(x) \right\| \le q \tag{7}$$

the mapping g is a contraction in D and satisfies (1).

Proof. Let $x, y \in D$. Then the points on the straight line from x to y are given by x + t(y - x) for $t \in [0, 1]$. As D is convex all these points are contained in D. Let G(t) := g(x + t(y - x)), then by the chain rule we have G'(t) = g'(x + t(y - x))(y - x) and

$$g(y) - g(x) = G(1) - G(0) = \int_0^1 G'(t)dt = \int_0^1 g'(x + t(y - x))(y - x)dt$$

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies $\left\|\int_{a}^{b} F(t)dt\right\| \leq \int_{a}^{b} \|F(t)\| dt$:

$$\|g(y) - g(x)\| \le \int_0^1 \|g'(x + t(y - x))(y - x)dt\| \le \int_0^1 \underbrace{\|g'(x + t(y - x))\|}_{\le q} \|y - x\| dt \le q \|y - x\|$$

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections 1.5, 1.6.

1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction constant q (typically we get this from (7)).

A-priori estimate: For an initial guess $x^{(0)}$ we can find $x^{(1)}$. Without computing anything else we then have the error bound $||x^{(k)} - x^*|| \le \frac{q^k}{1-q} ||x^{(1)} - x^{(0)}||$ for all future iterates $x^{(k)}$, before ("a-priori") we actually compute them. We can e.g. use this to find a value k such that $||x^{(k)} - x^*||$ is below a given tolerance.

A-posteriori estimate: After we have actually computed $x^{(k)}$ ("a-posteriori") we would like to know where the true solution x^* is located. Let

$$\delta_k := rac{q}{1-q} \| x^{(k)} - x^{(k-1)} \|, \qquad D_k := \{ x \mid \| x - x^{(k)} \| \le \delta_k \}$$

The a-posteriori estimate states that x^* is contained in the set D_k . Note:

- the "radius" δ_k of D_k decreases at least by a factor of q with each iteration: $\delta_{k+1} \leq q \delta_k$
- the sets D_k are nested: $D_1 \supset D_2 \supset D_3 \supset \cdots$

To show $D_{k+1} \subset D_k$ assume $x \in D_{k+1}$. Then

$$\|x - x^{(k)}\| \le \underbrace{\|x - x^{(k+1)}\|}_{\le \delta_{k+1}} + \|x^{(k+1)} - x^{(k)}\| \le \left(\frac{q}{1-q} + 1\right) \|x^{(k+1)} - x^{(k)}\| \le \frac{1}{1-q} q \|x^{(k)} - x^{(k-1)}\| = \delta_k$$
(8)

If we use the ∞ -norm: $||x^{(k)} - x^*||_{\infty} \leq \delta_k$ means that for each component x_i^* we have a bracket

$$x_j^* \in [x_j^{(k)} - \delta_k, x_j^{(k)} + \delta_k],$$

i.e., the set D_k is a square/cube/hypercube with side length $2\delta_k$ centered in $x^{(k)}$.

1.5 Example

We want to solve the nonlinear system

$$x_1 = \frac{1}{10} [1 - x_2 - \sin(x_1 + x_2)]$$

$$x_2 = \frac{1}{10} [2 + x_1 + \cos(x_1 - x_2)]$$

where we have $g(x) = \frac{1}{10} \begin{bmatrix} 1 - x_2 - \sin(x_1 + x_2) \\ 2 + x_1 + \cos(x_1 - x_2) \end{bmatrix}$.

First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian g'(x):

$$g'(x) = \frac{1}{10} \begin{bmatrix} -\cos(x_1 + x_2) & -1 - \cos(x_1 + x_2) \\ 1 - \sin(x_1 - x_2) & \sin(x_1 - x_2) \end{bmatrix}$$

Let A := g'(x). Let us use the ∞ -norm. We need to find an upper bound for $||A||_{\infty} = \max\{|a_{11}| + |a_{12}|, |a_{21}| + |a_{22}|\}$. We obtain for any $x_1, x_2 \in \mathbb{R}$

$$\begin{aligned} |a_{11}| &= \frac{1}{10} \left| -\cos(x_1 + x_2) \right| \le \frac{1}{10}, \qquad |a_{12}| = \frac{1}{10} \left| -1 - \cos(x_1 + x_2) \right| \le \frac{1}{10} (1+1) \\ |a_{21}| &= \frac{1}{10} \left| 1 - \sin(x_1 - x_2) \right| \le \frac{1}{10} (1+1), \qquad |a_{22}| \le \frac{1}{10} \left| \sin(x_1 - x_2) \right| \le \frac{1}{10} \end{aligned}$$

Therefore for any $x \in \mathbb{R}^2$ we have

$$\left\|g'(x)\right\|_{\infty} \leq \frac{3}{10} = q < 1.$$

By Theorem 2 we therefore obtain that *g* is a contraction for all of \mathbb{R}^2 .

We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We consider two choices:

First choice $D = \mathbb{R}^2$: We can use the set $D = \mathbb{R}^2$. This set is closed. For any $x \in \mathbb{R}^2$ we certainly have that $g(x) \in \mathbb{R}^2$. We have also shown that g is a contraction for all of \mathbb{R}^2 . Therefore we obtain from Theorem 1 that the nonlinear system g(x) = x has exactly one solution x^* in all of \mathbb{R}^2 .

Second choice $D = [-1,1] \times [-1,1]$: We can use for *D* the square with $-1 \le x_1 \le 1$ and $-1 \le x_2 \le 1$. This is a closed set (the boundary of the square is included). We now have to check that for $x \in D$ we have that $y = g(x) \in D$: We have using $-1 \le \sin \alpha \le 1, -1 \le \cos \alpha \le 1$

$$\begin{aligned} -\frac{2}{10} &= \frac{1}{10} \left(1 - 1 - 1 \right) \le y_1 = \frac{1}{10} \left[1 - x_2 - \sin(x_1 + x_2) \right] \le \frac{1}{10} \left(1 + 1 + 1 \right) = \frac{3}{10} \\ 0 &= \frac{1}{10} \left(2 - 1 - 1 \right) \le y_2 = \frac{1}{10} \left[2 + x_1 + \cos(x_1 - x_2) \right] \le \frac{1}{10} \left(2 + 1 + 1 \right) = \frac{4}{10} \end{aligned}$$

therefore $y \in D$ and the second assumption of the theorem is satisfied. We already showed that *g* is a contraction for all of \mathbb{R}^2 , so the third assumption definitely holds for $x, y \in D$. We can now apply Theorem 1 and obtain that the nonlinear system has exactly one solution x^* which is located in the square $D = [-1, 1] \times [-1, 1]$.

Numerical Computation: We start with the initial guess $x^{(0)} = (0,0)^{\top}$. After each iteration we find δ_k and the square D_k containing x^* :

k	$x^{(k)}$	δ_k	D_k
1	$(.1, .3)^{ op}$	$1.3 \cdot 10^{-1}$	$[02857, .2286] \times [.1714, .4286]$
2	$(.03106, .3080)^{ op}$	$3.0 \cdot 10^{-2}$	$[.00151, .06060] \times [.2785, .3376]$
3	$(.03594, .2993)^{\top}$	$3.7 \cdot 10^{-3}$	$[.03221, .03967] \times [.2956, .3030]$
4	$(.03717, .3001)^{\top}$	$5.3 \cdot 10^{-4}$	$[.03664, .03770] \times [.2996, .3007]$
5	$(.03689, .3003)^{\top}$	$1.2 \cdot 10^{-4}$	$[.03677, .03701] \times [.3001, .3004]$

Note: (i) δ_k decreases at least by a factor of q = 0.3 with each iteration.

(ii) The sets D_k are nested: $D_1 \supset D_2 \supset D_3 \supset \cdots$

1.6 Using the Fixed Point Theorem *without* the Assumption $g(D) \subset D$

The tricky part in using the contraction mapping theorem is to find a set *D* for which *both* the 2nd and 3rd assumption of the fixed point theorem hold:

- $x \in D \implies g(x) \in D$
- g is a contraction on D

Typically we can prove that $||g'(x)|| \le q < 1$ for x in some convex region \tilde{D} . We suspect that there is a solution x^* of the fixed point equation in \tilde{D} . But it may not be true that $g(x) \in \tilde{D}$ for all $x \in \tilde{D}$.

In this case we may be able to prove a result by computing a few iterates $x^{(k)}$: Start with k = 0 and an initial guess $x^{(0)} \in \tilde{D}$. Then repeat

- let k := k + 1 and compute $x^{(k)} := g(x^{(k-1)})$
- compute $\delta_k := \frac{q}{1-q} \| x^{(k)} x^{(k-1)} \|$, let $D_k := \{ x \mid \| x x^{(k)} \| \le \delta_k \}$

until either $D_k \subset \tilde{D}$ or $x^{(k)} \notin \tilde{D}$.

If the iterates exit from the set \tilde{D} we cannot conclude anything. But as long as the points $x^{(k)}$ stay inside \tilde{D} we have $\delta_{k+1} \leq q \delta_k$ and $D_{k+1} \subset D_k$. So we expect that for some *k* the condition $D_k \subset \tilde{D}$ will be satisfied (if $x^{(k)}$ converges to a limit in the interior of \tilde{D} the loop must terminate with $D_k \subset \tilde{D}$; but in general it is possible that the loop never terminates). If the loop does terminate with $D_k \subset \tilde{D}$ for k = K we have the following result: **Theorem 3.** Let $\tilde{D} \subset \mathbb{R}^n$ and assume that the function $g : \tilde{D} \to \mathbb{R}^n$ satisfies for q < 1

$$\forall x, y \in \tilde{D}$$
: $||g(x) - g(y)|| \le q ||x - y||$

Let $x^{(0)} \in \tilde{D}$ and define for k = 0, 1, 2, ...

$$x^{(k+1)} := g(x^{(k)}), \qquad \delta_k := \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|, \qquad D_k := \{x \mid \|x - x^{(k)}\| \le \delta_k\}$$

If for some K we have $x^{(K-1)} \in \tilde{D}$ and $D_K \subset \tilde{D}$ there holds

- the equation g(x) = x has a unique solution x^* in \tilde{D}
- this solution satisfies $x^* \in D_k$ for all $k \ge K$

Proof. Let $x \in D_K$. We want to show that $g(x) \in D_K$: As $D_K \subset \tilde{D}$ the contraction property gives using the definition of D_k and δ_k

$$\|g(x) - x^{(K)}\| \le q \|x - x^{(K-1)}\| \le q \|x - x^{(K)}\| + q \|x^{(K)} - x^{(K-1)}\| \le q \delta_K + (1-q)\delta_K = \delta_K$$

As D_K is closed and $D_K \subset \tilde{D}$ the set $D := D_K$ satisfies all three assumptions of the fixed point theorem Theorem 1. Hence there is a unique solution $x^* \in D$. The a-posteriori estimate (3) states that $x^* \in D_k$ for all iterates $x^{(k)}$ with $k \ge K$. Assume that there is another fixed point $y^* \in \tilde{D}$ with $g(y^*) = y^*$. Then

$$\|y^* - x^*\| = \|g(y^*) - g(x^*)\| \le q \|y^* - x^*\|$$

As q < 1 we must have $||y^* - x^*|| = 0$.

Summary:

- Find a convex set \tilde{D} for which you suspect $x^* \in \tilde{D}$ and where you can show $||g'(x)|| \le q < 1$
- Pick x⁽⁰⁾ ∈ D̃ and perform the fixed point iteration: for each iteration:
 - find $x^{(k)}$ and D_k
 - if $x^{(k)} \notin \tilde{D}$: stop (we can't conclude anything)
 - if $D_k \subset \tilde{D}$: success: there is a unique solution $x^* \in \tilde{D}$, and there holds $x^* \in D_k$ for this and all following iterations

Example: Let $g(x) := \frac{1}{3} \begin{bmatrix} x_1 - x_1 x_2 + 1 \\ x_2 + x_1 x_2^2 + 1 \end{bmatrix}$. Then the Jacobian is $g'(x) = \frac{1}{3} \begin{bmatrix} 1 - x_2 & -x_1 \\ x_2^2 & 1 + 2x_1 x_2 \end{bmatrix}$. Let us try to use $\tilde{D} = [0, a] \times [0.a]$ with $a \le 1$ and the ∞ -norm. We then obtain for $x \in \tilde{D}$ that

$$\|g'(x)\|_{\infty} \le \frac{1}{3} \max\{1+a, a^2+1+2a^2\}$$

For a = 1 we get $||g'(x)||_{\infty} \le \frac{4}{3}$ which is too large. So we try a = 0.6 which gives $||g'(x)||_{\infty} \le \frac{2.08}{3} =: q < 1$. Therefore g is a contraction on $\tilde{D} = [0, .6] \times [0, .6]$. Note that $g(\begin{bmatrix} 0.6\\0.6\end{bmatrix}) = \begin{bmatrix} 0.41333\\0.60533\end{bmatrix} \notin \tilde{D}$, so \tilde{D} does *not* satisfy all three assumptions of Theorem 1.

For
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 we obtain
 $x^{(1)} = (.33333, .33333)^{\top} \in \tilde{D},$ $D_1 = [-0.42029, 1.08696] \times [-0.42029, 1.08696] \not\subset \tilde{D}$
 $x^{(2)} = (.40741, .45679)^{\top} \in \tilde{D},$ $D_2 = [0.12829, 0.68653] \times [0.17767, 0.73591] \not\subset \tilde{D}$
 $x^{(3)} = (.40710, .51393)^{\top} \in \tilde{D},$ $D_3 = [0.27791, 0.53629] \times [0.38474, 0.64313] \not\subset \tilde{D}$
 $x^{(4)} = (.39929, .54049)^{\top} \in \tilde{D},$ $D_4 = [0.33926, 0.45933] \times [0.48045, 0.60052] \not\subset \tilde{D}$
 $x^{(5)} = (.39449, .55238)^{\top} \in \tilde{D},$ $D_5 = [0.36761, 0.42138] \times [0.52549, 0.57926] \subset \tilde{D}$

Therefore we can conclude from Theorem 3 that there exists a unique solution $x^* \in \tilde{D} = [0, 0.6] \times [0, 0.6]$. This solution x^* is located in the smaller square D_5 . For k = 5, 6, 7, ... we obtain $x^* \in D_k$ where D_k is a square with side length $2\delta_k$. As $\delta_k \leq q^{k-5}\delta_5 \leq \left(\frac{2.08}{3}\right)^{k-5} 0.027$ we can obtain arbitrarily small squares containing the solution if we choose k sufficiently large.