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1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets A,B we write A⊂ B iff x ∈ A =⇒ x ∈ B. So A⊂ A is true. Some people use the notation “⊆” instead.

1.1 Introduction

Consider a function y = g(x) where x,y ∈ Rn:  y1
...

yn

=

 g1(x1, . . . ,xn)
...

gn(x1, . . . ,xn)


We assume that g(x) is defined for x ∈ D where D is a subset of Rn.

The goal is to find a solution x∗ of the fixed point equation

g(x) = x.

A method to find x∗ is the fixed point iteration: Pick an initial guess x(0) ∈ D and define for k = 0,1,2, . . .

x(k+1) := g(x(k))

Note that this may not converge. But if the sequence x(k) converges, and the function g is continuous, the limit x∗ must be a
solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.

Theorem 1. Consider a set D⊂ Rn and a function g : D→ Rn. Assume

1. D is closed (i.e., it contains all limit points of sequences in D)

2. x ∈ D =⇒ g(x) ∈ D

3. The mapping g is a contraction on D: There exists q < 1 such that

∀x,y ∈ D : ‖g(x)−g(y)‖ ≤ q‖x− y‖ (1)

Then

1. there exists a unique x∗ ∈ D with g(x∗) = x∗

2. for any x(0) ∈ D the fixed point iterates given by x(k+1) := g(x(k)) converge to x∗ as k→ ∞

3. x(k) satisfies the a-priori error estimate

∥∥x(k)− x∗
∥∥≤ qk

1−q

∥∥x(1)− x(0)
∥∥ (2)

and the a-posteriori error estimate ∥∥x(k)− x∗
∥∥≤ q

1−q

∥∥x(k)− x(k−1)∥∥ (3)
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Proof. Pick x(0) ∈ D and define x(k) for k = 1,2, . . . by x(k) := g(x(k−1)). We have from the contraction property (1)∥∥x(k+1)− x(k)
∥∥= ∥∥g(x(k))−g(x(k−1))

∥∥≤ q
∥∥x(k)− x(k−1)∥∥ (4)

and hence ∥∥x(k+1)− x(k)
∥∥≤ qk

∥∥x(1)− x(0)
∥∥ (5)

Let d :=
∥∥x(1)− x(0)

∥∥. We have from the triangle inequality and (5)∥∥x(k)− x(k+`)
∥∥≤ ∥∥x(k)− x(k+1)∥∥+ · · ·+∥∥x(k+`−1)− x(k+`)

∥∥
≤ qkd + · · ·+qk+`−1d = qkd (1+q+ · · ·+q`−1)∥∥x(k)− x(k+`)
∥∥≤ qkd

1
1−q

(6)

using the sum of the geometric series ∑
`−1
j=0 q j ≤ ∑

∞
j=0 q j = 1/(1−q). Note that (6) shows that the sequence x(k) is a Cauchy

sequence. Therefore it must converge to a limit x∗ ∈ Rn (since the space Rn is complete). As D is closed, we must have
x∗ ∈ D.

We need to show that x∗ = g(x∗): We have x(k+1) = g(x(k)), hence

lim
k→∞

x(k+1) = lim
k→∞

g(x(k))

The limit of the left hand side is x∗. Note that because of (1) the function g must be continuous. Therefore

lim
k→∞

g(x(k)) = g( lim
k→∞

x(k)) = g(x∗).

Next we need to show that the fixed point x∗ is unique. Assume that we have fixed points x∗ = g(x∗) and y∗ = g(y∗). Then
we obtain using the contraction property (1)∥∥x∗− y∗

∥∥= ∥∥g(x∗)−g(y∗)
∥∥≤ q

∥∥x∗− y∗
∥∥

implying (1−q)
∥∥x∗− y∗

∥∥≤ 0 and therefore
∥∥x∗− y∗

∥∥= 0, i.e., x∗ = y∗.

The a-priori estimate (2) follows from (6) by letting ` tend to infinity. For the a-posteriori estimate use (2) with k = 1 for
x̃(0) := x(k), x̃(1) = x(k+1).

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian g′(x) which is an n× n matrix for each point x ∈ D. If the matrix norm
satisfies ‖g′(x)‖ ≤ q < 1 then the mapping g must be a contraction:

Theorem 2. Assume the set D ⊂ Rn is convex and the function g : D→ Rn has continuous partial derivatives
∂g j

∂k
in D. If

for q < 1 the matrix norm of the Jacobian satisfies

∀x ∈ D :
∥∥g′(x)

∥∥≤ q (7)

the mapping g is a contraction in D and satisfies (1).

Proof. Let x,y ∈ D. Then the points on the straight line from x to y are given by x+ t(y− x) for t ∈ [0,1]. As D is convex all
these points are contained in D. Let G(t) := g

(
x+ t(y− x)

)
, then by the chain rule we have G′(t) = g′

(
x+ t(y− x)

)
(y− x)

and

g(y)−g(x) = G(1)−G(0) =
∫ 1

0
G′(t)dt =

∫ 1

0
g′
(
x+ t(y− x)

)
(y− x)dt

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies
∥∥∥∫ b

a F(t)dt
∥∥∥≤ ∫ b

a ‖F(t)‖dt:

‖g(y)−g(x)‖ ≤
∫ 1

0

∥∥g′
(
x+ t(y− x)

)
(y− x)dt

∥∥≤ ∫ 1

0

∥∥g′
(
x+ t(y− x)

)∥∥︸ ︷︷ ︸
≤q

‖y− x‖dt ≤ q‖y− x‖

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections 1.5, 1.6.

2



AMSC/CMSC 466 Tobias von Petersdorff

1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction
constant q (typically we get this from (7)).

A-priori estimate: For an initial guess x(0) we can find x(1). Without computing anything else we then have the error
bound

∥∥x(k)− x∗
∥∥ ≤ qk

1−q

∥∥x(1)− x(0)
∥∥ for all future iterates x(k), before (“a-priori”) we actually compute them. We can e.g.

use this to find a value k such that
∥∥x(k)− x∗

∥∥ is below a given tolerance.

A-posteriori estimate: After we have actually computed x(k) (“a-posteriori”) we would like to know where the true
solution x∗ is located. Let

δk :=
q

1−q

∥∥x(k)− x(k−1)∥∥, Dk := {x |
∥∥x− x(k)

∥∥≤ δk}

The a-posteriori estimate states that x∗ is contained in the set Dk. Note:

• the “radius” δk of Dk decreases at least by a factor of q with each iteration: δk+1 ≤ qδk

• the sets Dk are nested: D1 ⊃ D2 ⊃ D3 ⊃ ·· ·
To show Dk+1 ⊂ Dk assume x ∈ Dk+1. Then∥∥x− x(k)

∥∥≤ ∥∥x− x(k+1)∥∥︸ ︷︷ ︸
≤δk+1

+
∥∥x(k+1)− x(k)

∥∥≤ ( q
1−q

+1
)∥∥x(k+1)− x(k)

∥∥ (4)
≤ 1

1−q
q
∥∥x(k)− x(k−1)∥∥= δk (8)

If we use the ∞-norm:
∥∥x(k)− x∗

∥∥
∞
≤ δk means that for each component x∗j we have a bracket

x∗j ∈ [x(k)j −δk,x
(k)
j +δk],

i.e., the set Dk is a square/cube/hypercube with side length 2δk centered in x(k).

1.5 Example

We want to solve the nonlinear system

x1 =
1

10 [1− x2− sin(x1 + x2)]

x2 =
1

10 [2+ x1 + cos(x1− x2)]

where we have g(x) = 1
10

[
1− x2− sin(x1 + x2)
2+ x1 + cos(x1− x2)

]
.

First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian g′(x):

g′(x) = 1
10

[
−cos(x1 + x2) −1− cos(x1 + x2)

1− sin(x1− x2) sin(x1− x2)

]
Let A := g′(x). Let us use the ∞-norm. We need to find an upper bound for ‖A‖

∞
= max{|a11|+ |a12| , |a21|+ |a22|}. We

obtain for any x1,x2 ∈ R

|a11|= 1
10 |−cos(x1 + x2)| ≤ 1

10 , |a12|= 1
10 |−1− cos(x1 + x2)| ≤ 1

10(1+1)

|a21|= 1
10 |1− sin(x1− x2)| ≤ 1

10(1+1), |a22| ≤ 1
10 |sin(x1− x2)| ≤ 1

10

Therefore for any x ∈ R2 we have ∥∥g′(x)
∥∥

∞
≤ 3

10
= q < 1.

By Theorem 2 we therefore obtain that g is a contraction for all of R2.

We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We
consider two choices:
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First choice D =R2: We can use the set D =R2. This set is closed. For any x ∈R2 we certainly have that g(x) ∈R2. We
have also shown that g is a contraction for all of R2. Therefore we obtain from Theorem 1 that the nonlinear system g(x) = x
has exactly one solution x∗ in all of R2.

Second choice D = [−1,1]× [−1,1]: We can use for D the square with −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. This is a closed
set (the boundary of the square is included). We now have to check that for x ∈D we have that y = g(x) ∈D: We have using
−1≤ sinα ≤ 1, −1≤ cosα ≤ 1

− 2
10 = 1

10 (1−1−1)≤ y1 =
1
10 [1− x2− sin(x1 + x2)]≤ 1

10 (1+1+1) = 3
10

0 = 1
10 (2−1−1)≤ y2 =

1
10 [2+ x1 + cos(x1− x2)]≤ 1

10 (2+1+1) = 4
10

therefore y ∈ D and the second assumption of the theorem is satisfied. We already showed that g is a contraction for all of
R2, so the third assumption definitely holds for x,y ∈ D. We can now apply Theorem 1 and obtain that the nonlinear system
has exactly one solution x∗ which is located in the square D = [−1,1]× [−1,1].

Numerical Computation: We start with the initial guess x(0) = (0,0)>. After each iteration we find δk and the square Dk
containing x∗:

k x(k) δk Dk

1 (.1, .3)> 1.3 ·10−1 [−.02857, .2286]× [.1714, .4286]
2 (.03106, .3080)> 3.0 ·10−2 [.00151, .06060]× [.2785, .3376]
3 (.03594, .2993)> 3.7 ·10−3 [.03221, .03967]× [.2956, .3030]
4 (.03717, .3001)> 5.3 ·10−4 [.03664, .03770]× [.2996, .3007]
5 (.03689, .3003)> 1.2 ·10−4 [.03677, .03701]× [.3001, .3004]

Note: (i) δk decreases at least by a factor of q = 0.3 with each iteration.

(ii) The sets Dk are nested: D1 ⊃ D2 ⊃ D3 ⊃ ·· ·

1.6 Using the Fixed Point Theorem without the Assumption g(D)⊂ D

The tricky part in using the contraction mapping theorem is to find a set D for which both the 2nd and 3rd assumption of the
fixed point theorem hold:

• x ∈ D =⇒ g(x) ∈ D

• g is a contraction on D

Typically we can prove that ‖g′(x)‖ ≤ q < 1 for x in some convex region D̃. We suspect that there is a solution x∗ of the fixed
point equation in D̃. But it may not be true that g(x) ∈ D̃ for all x ∈ D̃.

In this case we may be able to prove a result by computing a few iterates x(k): Start with k = 0 and an initial guess x(0) ∈ D̃.
Then repeat

• let k := k+1 and compute x(k) := g(x(k−1))

• compute δk :=
q

1−q

∥∥x(k)− x(k−1)∥∥, let Dk := {x |
∥∥x− x(k)

∥∥≤ δk}

until either Dk ⊂ D̃ or x(k) /∈ D̃.

If the iterates exit from the set D̃ we cannot conclude anything. But as long as the points x(k) stay inside D̃ we have δk+1≤ qδk
and Dk+1 ⊂Dk. So we expect that for some k the condition Dk ⊂ D̃ will be satisfied (if x(k)converges to a limit in the interior
of D̃ the loop must terminate with Dk ⊂ D̃; but in general it is possible that the loop never terminates). If the loop does
terminate with Dk ⊂ D̃ for k = K we have the following result:
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Theorem 3. Let D̃⊂ Rn and assume that the function g : D̃→ Rn satisfies for q < 1

∀x,y ∈ D̃ : ‖g(x)−g(y)‖ ≤ q‖x− y‖

Let x(0) ∈ D̃ and define for k = 0,1,2, . . .

x(k+1) := g(x(k)), δk :=
q

1−q

∥∥x(k)− x(k−1)∥∥, Dk := {x |
∥∥x− x(k)

∥∥≤ δk}

If for some K we have x(K−1) ∈ D̃ and DK ⊂ D̃ there holds

• the equation g(x) = x has a unique solution x∗ in D̃

• this solution satisfies x∗ ∈ Dk for all k ≥ K

Proof. Let x ∈ DK . We want to show that g(x) ∈ DK : As DK ⊂ D̃ the contraction property gives using the definition of Dk
and δk ∥∥g(x)− x(K)

∥∥≤ q
∥∥x− x(K−1)∥∥≤ q

∥∥x− x(K)
∥∥+q

∥∥x(K)− x(K−1)∥∥≤ qδK +(1−q)δK = δK

As DK is closed and DK ⊂ D̃ the set D := DK satisfies all three assumptions of the fixed point theorem Theorem 1. Hence
there is a unique solution x∗ ∈ D. The a-posteriori estimate (3) states that x∗ ∈ Dk for all iterates x(k) with k ≥ K. Assume
that there is another fixed point y∗ ∈ D̃ with g(y∗) = y∗. Then

‖y∗− x∗‖= ‖g(y∗)−g(x∗)‖ ≤ q‖y∗− x∗‖

As q < 1 we must have ‖y∗− x∗‖= 0.

Summary:

• Find a convex set D̃ for which you suspect x∗ ∈ D̃ and where you can show ‖g′(x)‖ ≤ q < 1

• Pick x(0) ∈ D̃ and perform the fixed point iteration:
for each iteration:

– find x(k) and Dk

– if x(k) /∈ D̃: stop (we can’t conclude anything)

– if Dk ⊂ D̃: success: there is a unique solution x∗ ∈ D̃, and there holds x∗ ∈Dk for this and all following iterations

Example: Let g(x) := 1
3

[
x1− x1x2 +1
x2 + x1x2

2 +1

]
. Then the Jacobian is g′(x) = 1

3

[
1− x2 −x1

x2
2 1+2x1x2

]
.

Let us try to use D̃ = [0,a]× [0.a] with a≤ 1 and the ∞-norm. We then obtain for x ∈ D̃ that∥∥g′(x)
∥∥

∞
≤ 1

3 max{1+a,a2 +1+2a2}

For a = 1 we get ‖g′(x)‖
∞
≤ 4

3 which is too large. So we try a = 0.6 which gives ‖g′(x)‖
∞
≤ 2.08

3 =: q < 1. Therefore g is a

contraction on D̃ = [0, .6]× [0, .6]. Note that g(
[

0.6
0.6

]
) =

[
0.41333
0.60533

]
/∈ D̃, so D̃ does not satisfy all three assumptions of

Theorem 1.

For x(0) =
[

0
0

]
we obtain

x(1) = (.33333, .33333)> ∈ D̃, D1 = [−0.42029, 1.08696]× [−0.42029, 1.08696] 6⊂ D̃

x(2) = (.40741, .45679)> ∈ D̃, D2 = [0.12829, 0.68653]× [0.17767, 0.73591] 6⊂ D̃

x(3) = (.40710, .51393)> ∈ D̃, D3 = [0.27791, 0.53629]× [0.38474, 0.64313] 6⊂ D̃

x(4) = (.39929, .54049)> ∈ D̃, D4 = [0.33926, 0.45933]× [0.48045, 0.60052] 6⊂ D̃

x(5) = (.39449, .55238)> ∈ D̃, D5 = [0.36761, 0.42138]× [0.52549, 0.57926]⊂ D̃

Therefore we can conclude from Theorem 3 that there exists a unique solution x∗ ∈ D̃ = [0,0.6]× [0,0.6]. This solution x∗

is located in the smaller square D5. For k = 5,6,7, . . . we obtain x∗ ∈ Dk where Dk is a square with side length 2δk. As
δk ≤ qk−5δ5 ≤

(2.08
3

)k−5 0.027 we can obtain arbitrarily small squares containing the solution if we choose k sufficiently
large.
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