1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets A, B we write $A \subset B$ iff $x \in A \Longrightarrow x \in B$. So $A \subset A$ is true. Some people use the notation " \subseteq " instead.

1.1 Introduction

Consider a function $y=g(x)$ where $x, y \in \mathbb{R}^{n}$:

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
g_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
g_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
$$

We assume that $g(x)$ is defined for $x \in D$ where D is a subset of \mathbb{R}^{n}.
The goal is to find a solution x^{*} of the fixed point equation

$$
g(x)=x .
$$

A method to find x^{*} is the fixed point iteration: Pick an initial guess $x^{(0)} \in D$ and define for $k=0,1,2, \ldots$

$$
x^{(k+1)}:=g\left(x^{(k)}\right)
$$

Note that this may not converge. But if the sequence $x^{(k)}$ converges, and the function g is continuous, the limit x^{*} must be a solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.
Theorem 1. Consider a set $D \subset \mathbb{R}^{n}$ and a function $g: D \rightarrow \mathbb{R}^{n}$. Assume

1. D is closed (i.e., it contains all limit points of sequences in D)
2. $x \in D \Longrightarrow g(x) \in D$
3. The mapping g is a contraction on D : There exists $q<1$ such that

$$
\begin{equation*}
\forall x, y \in D: \quad\|g(x)-g(y)\| \leq q\|x-y\| \tag{1}
\end{equation*}
$$

Then

1. there exists a unique $x^{*} \in D$ with $g\left(x^{*}\right)=x^{*}$
2. for any $x^{(0)} \in D$ the fixed point iterates given by $x^{(k+1)}:=g\left(x^{(k)}\right)$ converge to x^{*} as $k \rightarrow \infty$
3. $x^{(k)}$ satisfies the a-priori error estimate

$$
\begin{equation*}
\left\|x^{(k)}-x^{*}\right\| \leq \frac{q^{k}}{1-q}\left\|x^{(1)}-x^{(0)}\right\| \tag{2}
\end{equation*}
$$

and the a-posteriori error estimate

$$
\begin{equation*}
\left\|x^{(k)}-x^{*}\right\| \leq \frac{q}{1-q}\left\|x^{(k)}-x^{(k-1)}\right\| \tag{3}
\end{equation*}
$$

Proof. Pick $x^{(0)} \in D$ and define $x^{(k)}$ for $k=1,2, \ldots$ by $x^{(k)}:=g\left(x^{(k-1)}\right)$. We have from the contraction property (1)

$$
\begin{equation*}
\left\|x^{(k+1)}-x^{(k)}\right\|=\left\|g\left(x^{(k)}\right)-g\left(x^{(k-1)}\right)\right\| \leq q\left\|x^{(k)}-x^{(k-1)}\right\| \tag{4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|x^{(k+1)}-x^{(k)}\right\| \leq q^{k}\left\|x^{(1)}-x^{(0)}\right\| \tag{5}
\end{equation*}
$$

Let $d:=\left\|x^{(1)}-x^{(0)}\right\|$. We have from the triangle inequality and (5)

$$
\begin{align*}
\left\|x^{(k)}-x^{(k+\ell)}\right\| & \leq\left\|x^{(k)}-x^{(k+1)}\right\|+\cdots+\left\|x^{(k+\ell-1)}-x^{(k+\ell)}\right\| \\
& \leq q^{k} d+\cdots+q^{k+\ell-1} d=q^{k} d\left(1+q+\cdots+q^{\ell-1}\right) \\
\left\|x^{(k)}-x^{(k+\ell)}\right\| & \leq q^{k} d \frac{1}{1-q} \tag{6}
\end{align*}
$$

using the sum of the geometric series $\sum_{j=0}^{\ell-1} q^{j} \leq \sum_{j=0}^{\infty} q^{j}=1 /(1-q)$. Note that (6) shows that the sequence $x^{(k)}$ is a Cauchy sequence. Therefore it must converge to a limit $x^{*} \in \mathbb{R}^{n}$ (since the space \mathbb{R}^{n} is complete). As D is closed, we must have $x^{*} \in D$.
We need to show that $x^{*}=g\left(x^{*}\right)$: We have $x^{(k+1)}=g\left(x^{(k)}\right)$, hence

$$
\lim _{k \rightarrow \infty} x^{(k+1)}=\lim _{k \rightarrow \infty} g\left(x^{(k)}\right)
$$

The limit of the left hand side is x^{*}. Note that because of (1) the function g must be continuous. Therefore

$$
\lim _{k \rightarrow \infty} g\left(x^{(k)}\right)=g\left(\lim _{k \rightarrow \infty} x^{(k)}\right)=g\left(x^{*}\right) .
$$

Next we need to show that the fixed point x^{*} is unique. Assume that we have fixed points $x^{*}=g\left(x^{*}\right)$ and $y^{*}=g\left(y^{*}\right)$. Then we obtain using the contraction property (1)

$$
\left\|x^{*}-y^{*}\right\|=\left\|g\left(x^{*}\right)-g\left(y^{*}\right)\right\| \leq q\left\|x^{*}-y^{*}\right\|
$$

implying $(1-q)\left\|x^{*}-y^{*}\right\| \leq 0$ and therefore $\left\|x^{*}-y^{*}\right\|=0$, i.e., $x^{*}=y^{*}$.
The a-priori estimate (2) follows from (6) by letting ℓ tend to infinity. For the a-posteriori estimate use (2) with $k=1$ for $\tilde{x}^{(0)}:=x^{(k)}, \tilde{x}^{(1)}=x^{(k+1)}$.

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian $g^{\prime}(x)$ which is an $n \times n$ matrix for each point $x \in D$. If the matrix norm satisfies $\left\|g^{\prime}(x)\right\| \leq q<1$ then the mapping g must be a contraction:
Theorem 2. Assume the set $D \subset \mathbb{R}^{n}$ is convex and the function $g: D \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $\frac{\partial g_{j}}{\partial k}$ in D. If for $q<1$ the matrix norm of the Jacobian satisfies

$$
\begin{equation*}
\forall x \in D: \quad\left\|g^{\prime}(x)\right\| \leq q \tag{7}
\end{equation*}
$$

the mapping g is a contraction in D and satisfies (1).
Proof. Let $x, y \in D$. Then the points on the straight line from x to y are given by $x+t(y-x)$ for $t \in[0,1]$. As D is convex all these points are contained in D. Let $G(t):=g(x+t(y-x))$, then by the chain rule we have $G^{\prime}(t)=g^{\prime}(x+t(y-x))(y-x)$ and

$$
g(y)-g(x)=G(1)-G(0)=\int_{0}^{1} G^{\prime}(t) d t=\int_{0}^{1} g^{\prime}(x+t(y-x))(y-x) d t
$$

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies $\left\|\int_{a}^{b} F(t) d t\right\| \leq \int_{a}^{b}\|F(t)\| d t$:

$$
\|g(y)-g(x)\| \leq \int_{0}^{1}\left\|g^{\prime}(x+t(y-x))(y-x) d t\right\| \leq \int_{0}^{1} \underbrace{\left\|g^{\prime}(x+t(y-x))\right\|}_{\leq q}\|y-x\| d t \leq q\|y-x\|
$$

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections $1.5,1.6$.

1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction constant q (typically we get this from (7)).

A-priori estimate: For an initial guess $x^{(0)}$ we can find $x^{(1)}$. Without computing anything else we then have the error bound $\left\|x^{(k)}-x^{*}\right\| \leq \frac{q^{k}}{1-q}\left\|x^{(1)}-x^{(0)}\right\|$ for all future iterates $x^{(k)}$, before ("a-priori") we actually compute them. We can e.g. use this to find a value k such that $\left\|x^{(k)}-x^{*}\right\|$ is below a given tolerance.

A-posteriori estimate: After we have actually computed $x^{(k)}$ ("a-posteriori") we would like to know where the true solution x^{*} is located. Let

$$
\delta_{k}:=\frac{q}{1-q}\left\|x^{(k)}-x^{(k-1)}\right\|, \quad D_{k}:=\left\{x \mid\left\|x-x^{(k)}\right\| \leq \delta_{k}\right\}
$$

The a-posteriori estimate states that x^{*} is contained in the set D_{k}. Note:

- the "radius" δ_{k} of D_{k} decreases at least by a factor of q with each iteration: $\delta_{k+1} \leq q \delta_{k}$
- the sets D_{k} are nested: $D_{1} \supset D_{2} \supset D_{3} \supset \cdots$

To show $D_{k+1} \subset D_{k}$ assume $x \in D_{k+1}$. Then

$$
\begin{equation*}
\left\|x-x^{(k)}\right\| \leq \underbrace{\left\|x-x^{(k+1)}\right\|}_{\leq \delta_{k+1}}+\left\|x^{(k+1)}-x^{(k)}\right\| \leq\left(\frac{q}{1-q}+1\right)\left\|x^{(k+1)}-x^{(k)}\right\| \stackrel{(4)}{\leq} \frac{1}{1-q} q\left\|x^{(k)}-x^{(k-1)}\right\|=\delta_{k} \tag{8}
\end{equation*}
$$

If we use the ∞-norm: $\left\|x^{(k)}-x^{*}\right\|_{\infty} \leq \delta_{k}$ means that for each component x_{j}^{*} we have a bracket

$$
x_{j}^{*} \in\left[x_{j}^{(k)}-\delta_{k}, x_{j}^{(k)}+\delta_{k}\right],
$$

i.e., the set D_{k} is a square/cube/hypercube with side length $2 \delta_{k}$ centered in $x^{(k)}$.

1.5 Example

We want to solve the nonlinear system

$$
\begin{aligned}
& x_{1}=\frac{1}{10}\left[1-x_{2}-\sin \left(x_{1}+x_{2}\right)\right] \\
& x_{2}=\frac{1}{10}\left[2+x_{1}+\cos \left(x_{1}-x_{2}\right)\right]
\end{aligned}
$$

where we have $g(x)=\frac{1}{10}\left[\begin{array}{c}1-x_{2}-\sin \left(x_{1}+x_{2}\right) \\ 2+x_{1}+\cos \left(x_{1}-x_{2}\right)\end{array}\right]$.
First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian $g^{\prime}(x)$:

$$
g^{\prime}(x)=\frac{1}{10}\left[\begin{array}{cc}
-\cos \left(x_{1}+x_{2}\right) & -1-\cos \left(x_{1}+x_{2}\right) \\
1-\sin \left(x_{1}-x_{2}\right) & \sin \left(x_{1}-x_{2}\right)
\end{array}\right]
$$

Let $A:=g^{\prime}(x)$. Let us use the ∞-norm. We need to find an upper bound for $\|A\|_{\infty}=\max \left\{\left|a_{11}\right|+\left|a_{12}\right|,\left|a_{21}\right|+\left|a_{22}\right|\right\}$. We obtain for any $x_{1}, x_{2} \in \mathbb{R}$

$$
\begin{aligned}
& \left|a_{11}\right|=\frac{1}{10}\left|-\cos \left(x_{1}+x_{2}\right)\right| \leq \frac{1}{10}, \quad\left|a_{12}\right|=\frac{1}{10}\left|-1-\cos \left(x_{1}+x_{2}\right)\right| \leq \frac{1}{10}(1+1) \\
& \left|a_{21}\right|=\frac{1}{10}\left|1-\sin \left(x_{1}-x_{2}\right)\right| \leq \frac{1}{10}(1+1), \quad\left|a_{22}\right| \leq \frac{1}{10}\left|\sin \left(x_{1}-x_{2}\right)\right| \leq \frac{1}{10}
\end{aligned}
$$

Therefore for any $x \in \mathbb{R}^{2}$ we have

$$
\left\|g^{\prime}(x)\right\|_{\infty} \leq \frac{3}{10}=q<1
$$

By Theorem 2 we therefore obtain that g is a contraction for all of \mathbb{R}^{2}.
We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We consider two choices:

First choice $D=\mathbb{R}^{2}$: We can use the set $D=\mathbb{R}^{2}$. This set is closed. For any $x \in \mathbb{R}^{2}$ we certainly have that $g(x) \in \mathbb{R}^{2}$. We have also shown that g is a contraction for all of \mathbb{R}^{2}. Therefore we obtain from Theorem 1 that the nonlinear system $g(x)=x$ has exactly one solution x^{*} in all of \mathbb{R}^{2}.

Second choice $D=[-1,1] \times[-1,1]$: We can use for D the square with $-1 \leq x_{1} \leq 1$ and $-1 \leq x_{2} \leq 1$. This is a closed set (the boundary of the square is included). We now have to check that for $x \in D$ we have that $y=g(x) \in D$: We have using $-1 \leq \sin \alpha \leq 1,-1 \leq \cos \alpha \leq 1$

$$
\begin{aligned}
-\frac{2}{10} & =\frac{1}{10}(1-1-1) \leq y_{1}=\frac{1}{10}\left[1-x_{2}-\sin \left(x_{1}+x_{2}\right)\right] \leq \frac{1}{10}(1+1+1)=\frac{3}{10} \\
0 & =\frac{1}{10}(2-1-1) \leq y_{2}=\frac{1}{10}\left[2+x_{1}+\cos \left(x_{1}-x_{2}\right)\right] \leq \frac{1}{10}(2+1+1)=\frac{4}{10}
\end{aligned}
$$

therefore $y \in D$ and the second assumption of the theorem is satisfied. We already showed that g is a contraction for all of \mathbb{R}^{2}, so the third assumption definitely holds for $x, y \in D$. We can now apply Theorem 1 and obtain that the nonlinear system has exactly one solution x^{*} which is located in the square $D=[-1,1] \times[-1,1]$.

Numerical Computation: We start with the initial guess $x^{(0)}=(0,0)^{\top}$. After each iteration we find δ_{k} and the square D_{k} containing x^{*} :

k	$x^{(k)}$	δ_{k}	D_{k}
1	$(.1, .3)^{\top}$	$1.3 \cdot 10^{-1}$	$[-.02857, .2286] \times[.1714, .4286]$
2	$(.03106, .3080)^{\top}$	$3.0 \cdot 10^{-2}$	$[.00151, .06060] \times[.2785, .3376]$
3	$(.03594, .2993)^{\top}$	$3.7 \cdot 10^{-3}$	$[.03221, .03967] \times[.2956, .3030]$
4	$(.03717, .3001)^{\top}$	$5.3 \cdot 10^{-4}$	$[.03664, .03770] \times[.2996, .3007]$
5	$(.03689, .3003)^{\top}$	$1.2 \cdot 10^{-4}$	$[.03677, .03701] \times[.3001, .3004]$

Note: (i) δ_{k} decreases at least by a factor of $q=0.3$ with each iteration.
(ii) The sets D_{k} are nested: $D_{1} \supset D_{2} \supset D_{3} \supset \cdots$

1.6 Using the Fixed Point Theorem without the Assumption $g(D) \subset D$

The tricky part in using the contraction mapping theorem is to find a set D for which both the 2 nd and 3rd assumption of the fixed point theorem hold:

- $x \in D \Longrightarrow g(x) \in D$
- g is a contraction on D

Typically we can prove that $\left\|g^{\prime}(x)\right\| \leq q<1$ for x in some convex region \tilde{D}. We suspect that there is a solution x^{*} of the fixed point equation in \tilde{D}. But it may not be true that $g(x) \in \tilde{D}$ for all $x \in \tilde{D}$.
In this case we may be able to prove a result by computing a few iterates $x^{(k)}$: Start with $k=0$ and an initial guess $x^{(0)} \in \tilde{D}$. Then repeat

- let $k:=k+1$ and compute $x^{(k)}:=g\left(x^{(k-1)}\right)$
- compute $\delta_{k}:=\frac{q}{1-q}\left\|x^{(k)}-x^{(k-1)}\right\|$, let $D_{k}:=\left\{x \mid\left\|x-x^{(k)}\right\| \leq \delta_{k}\right\}$
until either $D_{k} \subset \tilde{D}$ or $x^{(k)} \notin \tilde{D}$.
If the iterates exit from the set \tilde{D} we cannot conclude anything. But as long as the points $x^{(k)}$ stay inside \tilde{D} we have $\delta_{k+1} \leq q \delta_{k}$ and $D_{k+1} \subset D_{k}$. So we expect that for some k the condition $D_{k} \subset \tilde{D}$ will be satisfied (if $x^{(k)}$ converges to a limit in the interior of \tilde{D} the loop must terminate with $D_{k} \subset \tilde{D}$; but in general it is possible that the loop never terminates). If the loop does terminate with $D_{k} \subset \tilde{D}$ for $k=K$ we have the following result:

Theorem 3. Let $\tilde{D} \subset \mathbb{R}^{n}$ and assume that the function $g: \tilde{D} \rightarrow \mathbb{R}^{n}$ satisfies for $q<1$

$$
\forall x, y \in \tilde{D}: \quad\|g(x)-g(y)\| \leq q\|x-y\|
$$

Let $x^{(0)} \in \tilde{D}$ and define for $k=0,1,2, \ldots$

$$
x^{(k+1)}:=g\left(x^{(k)}\right), \quad \delta_{k}:=\frac{q}{1-q}\left\|x^{(k)}-x^{(k-1)}\right\|, \quad D_{k}:=\left\{x \mid\left\|x-x^{(k)}\right\| \leq \delta_{k}\right\}
$$

If for some K we have $x^{(K-1)} \in \tilde{D}$ and $D_{K} \subset \tilde{D}$ there holds

- the equation $g(x)=x$ has a unique solution x^{*} in \tilde{D}
- this solution satisfies $x^{*} \in D_{k}$ for all $k \geq K$

Proof. Let $x \in D_{K}$. We want to show that $g(x) \in D_{K}$: As $D_{K} \subset \tilde{D}$ the contraction property gives using the definition of D_{k} and δ_{k}

$$
\left\|g(x)-x^{(K)}\right\| \leq q\left\|x-x^{(K-1)}\right\| \leq q\left\|x-x^{(K)}\right\|+q\left\|x^{(K)}-x^{(K-1)}\right\| \leq q \delta_{K}+(1-q) \delta_{K}=\delta_{K}
$$

As D_{K} is closed and $D_{K} \subset \tilde{D}$ the set $D:=D_{K}$ satisfies all three assumptions of the fixed point theorem Theorem 1. Hence there is a unique solution $x^{*} \in D$. The a-posteriori estimate (3) states that $x^{*} \in D_{k}$ for all iterates $x^{(k)}$ with $k \geq K$. Assume that there is another fixed point $y^{*} \in \tilde{D}$ with $g\left(y^{*}\right)=y^{*}$. Then

$$
\left\|y^{*}-x^{*}\right\|=\left\|g\left(y^{*}\right)-g\left(x^{*}\right)\right\| \leq q\left\|y^{*}-x^{*}\right\|
$$

As $q<1$ we must have $\left\|y^{*}-x^{*}\right\|=0$.

Summary:

- Find a convex set \tilde{D} for which you suspect $x^{*} \in \tilde{D}$ and where you can show $\left\|g^{\prime}(x)\right\| \leq q<1$
- Pick $x^{(0)} \in \tilde{D}$ and perform the fixed point iteration:
for each iteration:
- find $x^{(k)}$ and D_{k}
- if $x^{(k)} \notin \tilde{D}:$ stop (we can't conclude anything)
- if $D_{k} \subset \tilde{D}$: success: there is a unique solution $x^{*} \in \tilde{D}$, and there holds $x^{*} \in D_{k}$ for this and all following iterations

Example: Let $g(x):=\frac{1}{3}\left[\begin{array}{l}x_{1}-x_{1} x_{2}+1 \\ x_{2}+x_{1} x_{2}^{2}+1\end{array}\right]$. Then the Jacobian is $g^{\prime}(x)=\frac{1}{3}\left[\begin{array}{cc}1-x_{2} & -x_{1} \\ x_{2}^{2} & 1+2 x_{1} x_{2}\end{array}\right]$.
Let us try to use $\tilde{D}=[0, a] \times[0 . a]$ with $a \leq 1$ and the ∞-norm. We then obtain for $x \in \tilde{D}$ that

$$
\left\|g^{\prime}(x)\right\|_{\infty} \leq \frac{1}{3} \max \left\{1+a, a^{2}+1+2 a^{2}\right\}
$$

For $a=1$ we get $\left\|g^{\prime}(x)\right\|_{\infty} \leq \frac{4}{3}$ which is too large. So we try $a=0.6$ which gives $\left\|g^{\prime}(x)\right\|_{\infty} \leq \frac{2.08}{3}=: q<1$. Therefore g is a contraction on $\tilde{D}=[0, .6] \times[0, .6]$. Note that $g\left(\left[\begin{array}{c}0.6 \\ 0.6\end{array}\right]\right)=\left[\begin{array}{l}0.41333 \\ 0.60533\end{array}\right] \notin \tilde{D}$, so \tilde{D} does not satisfy all three assumptions of Theorem 1.
For $x^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ we obtain

$$
\begin{array}{lll}
x^{(1)}=(.33333, .33333)^{\top} \in \tilde{D}, & & D_{1}=[-0.42029,1.08696] \times[-0.42029,1.08696] \not \subset \tilde{D} \\
x^{(2)}=(.40741, .45679)^{\top} \in \tilde{D}, & & D_{2}=[0.12829,0.68653] \times[0.17767,0.73591] \not \subset \tilde{D} \\
x^{(3)}=(.40710, .51393)^{\top} \in \tilde{D}, & D_{3}=[0.27791,0.53629] \times[0.38474,0.64313] \not \subset \tilde{D} \\
x^{(4)}=(.39929, .54049)^{\top} \in \tilde{D}, & D_{4}=[0.33926,0.45933] \times[0.48045,0.60052] \not \subset \tilde{D} \\
x^{(5)}=(.39449, .55238)^{\top} \in \tilde{D}, & & D_{5}=[0.36761,0.42138] \times[0.52549,0.57926] \subset \tilde{D}
\end{array}
$$

Therefore we can conclude from Theorem 3 that there exists a unique solution $x^{*} \in \tilde{D}=[0,0.6] \times[0,0.6]$. This solution x^{*} is located in the smaller square D_{5}. For $k=5,6,7, \ldots$ we obtain $x^{*} \in D_{k}$ where D_{k} is a square with side length $2 \delta_{k}$. As $\delta_{k} \leq q^{k-5} \delta_{5} \leq\left(\frac{2.08}{3}\right)^{k-5} 0.027$ we can obtain arbitrarily small squares containing the solution if we choose k sufficiently large.

