
Gaussian Elimination without/with Pivoting and Cholesky Decomposition

Gaussian Elimination WITHOUT pivoting

Notation: For a matrix A ∈ Rn×n we define for k ∈ {1, . . . ,n} the leading principal submatrix

A(k) :=

 a11 · · · a1k
...

...
ak1 · · · akk


We found out that Gaussian elimination without pivoting can fail even if the matrix A is nonsingular.

Example: For A=

 4 −2 2
−2 1 3
2 −2 2

we use `21 =
−2
4 , `31 =

2
4 and obtain after step 1 of the elimination U =

 4 −2 2
0 0 4
0 −1 2


Now we have u22 = 0 and the algorithm fails in column 2. Note that a linear system with the matrix A(2) =

[
4 −2
−2 1

]
is

equivalent to a linear system with the matrix U(2) =

[
4 −2
0 0

]
. This matrix is singular, hence the matrix A(2) is singular.

This explains why Gaussian elimination fails in column 2: The matrix A(1) = [4] was nonsingular, so elimination worked in
column 1. But the matrix A(2) is singular, so the elimination fails in column 2.

For a matrix A ∈ Rn×n we consider the submatrices A(1), . . . ,A(n). If all of these matrices are nonsingular, then Gaussian
elimination WITHOUT pivoting succeeds, and we obtain an upper triangular matrix U with nonzero elements on the diag-
onal. If one of these submatrices is singular: let A(k) be the first submatrix which is singular. Then Gaussian elimination
WITHOUT pivoting works in columns 1, . . . ,k−1, but fails in column k.

Theorem: For a matrix A ∈ Rn×n the following three statements are equivalent:

1. All the submatrices A(1), . . . ,A(n) are nonsingular

2. Gaussian elimination WITHOUT pivoting succeeds and yields u j j 6= 0 for j = 1, . . . ,n

3. The matrix A has a decomposition A = LU where L is lower triangular with 1’s on the diagonal and U is upper
triangular with nonzero diagonal elements.

Proof:

(1.) =⇒ (2.): Assume Gaussian elimination fails in column k, yielding a matrix U with ukk = 0. Then a linear system with
the matrix A(k) is equivalent to a linear system with the matrix

U(k) =


~ ∗ · · · ∗

0
. . . . . .

...
...

. . . ~ ∗
0 · · · 0 0


This matrix is singular, hence the matrix A(k) is singular.

(2.) =⇒ (3.): The row operations given by the multipliers `i j turn the matrix A into the matrix U . Hence reversing these row
operations turns the matrix U back into the matrix A, yielding the equation A = LU .

(3.) =⇒ (1.) Let j ∈ {1, . . . ,n}. A = LU implies A( j) = L( j)U( j). Hence solving a linear system with the matrix A( j) is
equivalent to solving a linear system with the matrix U( j). Since U( j) is nonsingular the matrix A( j) is nonsingular.
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Gaussian Elimination WITH Pivoting

We now have for each column several pivot candidates: the diagonal element and all elements below it.

If one of the pivot candidates is nonzero we use a row interchange to move it to the diagonal position, and we can perform
elimination in this column.

If all pivot candidates are zero the algorithm breaks down. If we can perform elimination for columns 1, . . . ,n−1 and then
obtain unn = 0 we say that the algorithm breaks down in column n.

The algorithm succeeds if we can perform elimination in columns 1, . . . ,n−1 and we obtain unn 6= 0. In this case we obtain
an upper triangular matrix U with nonzero diagonal elements.

If we start with a nonsingular matrix A, then Gaussian elimination with pivoting succeeds. Solving a linear system Ax = b is
then equivalent to a linear system Ux = y which we can solve by back substitution.

Theorem: For a matrix A ∈ Rn×n the following three statements are equivalent:

1. The matrix A ∈ Rn×n is nonsingular

2. Gaussian elimination WITH pivoting succeeds and yields u j j 6= 0 for j = 1, . . . ,n

3. There exists a decomposition  row p1 of A
...

row pn of A

= LU

where L is lower triangular with 1’s on the diagonal, U is upper triangular with nonzero diagonal elements, and
p1, . . . , pn is a permutation of the numbers 1, . . . ,n.

Proof:

(1.) =⇒ (2.): Assume Gaussian elimination fails in column k, yielding a matrix U where all pivot candidates ukk, . . . ,unk are
zero. Since elimination succeeded in columns 1, . . . ,k−1 the diagonal elements u11, . . . ,uk−1,k−1 are all nonzero:

U =



~ ∗ · · · · · · · · · · · · ∗

0
. . . . . .

...
...

. . . ~ ∗
...

... 0 0 ∗ · · · ∗

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗



We want to show that the linear system Ax =

 0
...
0

 has a solution x 6=

 0
...
0

: The linear system Ax =

 0
...
0

 is equivalent

to the linear system Ux =

 0
...
0

. Consider a vector x with xk = 1, xk+1 = · · ·= xn = 0, i.e., x =



x1
...

xk−1
1
0
...
0


. Then equations

k,k+1, . . . ,n are satisfied. We can find x1, . . . ,xk−1 such that equations 1, . . . ,k−1 are satisfied by using back substitution:
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equation k− 1 yields a unique xk−1 (since uk−1,k−1 6= 0),. . . , equation 1 yields a unique x1 (since u11 6= 0). We found a

nonzero vector x such that Ax =

 0
...
0

, hence A is singular.

(2.) =⇒ (3.): Let Ã :=

 row p1of A
...

row pnof A

. Then applying Gaussian elimination WITHOUT pivoting to the matrix Ã yields

exactly the same L,U . Hence we have Ã = LU .

(3.) =⇒ (1.) The linear system with the matrix Ax = b is equivalent to solving a linear system Ux = y. Since U is nonsingular
the matrix A is nonsingular.

Quadratic forms

A symmetric matrix A ∈ Rn×n defines a quadratic function q(x1, . . . ,xn):

q(x1, . . .xn) =
n

∑
i=1

n

∑
j=1

ai jxix j = x>Ax

Such a function is called a quadratic form. For x =


0
...
0

 we obviously have q(x) = 0. What happens for x 6=


0
...
0

 ?

Examples:

A =

[
2 1
1 2

]
A =

[
2 2
2 2

]
A =

[
2 3
3 2

]
q(x1,x2) = 2x2

1 +2x1x2 +2x2
2 q(x1,x2) = 2x2

1 +4x1x2 +2x2
2 q(x1,x2) = 2x2

1 +6x1x2 +2x2
2

for x 6=
[

0
0

]
: q(x) is positive for x 6=

[
0
0

]
: q(x) is positive or zero for x 6=

[
0
0

]
: q(x) is positive or zero or negative

eigenvalues of A are 3,1 eigenvalues of A are 4, 0 eigenvalues of A are 5,−1

If q(x) = x>Ax > 0 for all x 6=

 0
...
0

 we call the matrix A positive definite.

A symmetric matrix has real eigenvalues λ1, . . . ,λn and an orthonormal basis of eigenvectors v(1), . . . ,v(n). If we write the
vector x in terms of eigenvectors we obtain

x = c1v(1)+ · · ·+ cnv(n), q(x) = [c1, . . . ,cn]

 λ1
. . .

λn


 c1

...
cn

= λ1c2
1 + · · ·+λnc2

n

We see: a symmetric matrix is positive definite ⇐⇒ all eigenvalues are positive.
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Cholesky decomposition

Many application problems give a linear system with a symmetric matrix A ∈ Rn×n, i.e., ai j = a ji for all i, j.

Example 1: Consider the matrix A =

 9 −6 6
−6 5 −1
6 −1 15

. We perform Gaussian elimination WITHOUT pivoting and

obtain A = LU :  9 −6 6
−6 5 −1
6 −1 15

=

 1 0 0
−2

3 1 0
2
3 3 1

 9 −6 6
0 1 3
0 0 2


We can then use this to solve a linear system Ax = b: First solve Ly = b using forward substitution, then solve Ux = b using
back substitution.

We would like to exploit the fact that A is symmetric and use a decomposition which reflects this:

we want to find an upper triangular matrix C ∈ Rn×nwith A =C>C

 9 −6 6
−6 5 −1
6 −1 15

=

 c11 0 0
c12 c22 0
c13 c23 c33

 c11 c12 c13
0 c22 c23
0 0 c33


=

 3 0 0
−2 1 0
2 3

√
2

  3 −2 2
0 1 3
0 0

√
2


Note:

• this decomposition A =C>C is called Cholesky decomposition

• A =C>C implies A> =C>C = A, i.e., such a decomposition can only be obtained for symmetric A.

• We can then use this decomposition to solve a linear system Ax = b: First solve C>y = b using forward substitution,
then solve Cx = y using back substitution.

How can we find the matrix C?

• row 1 of A:
diagonal element: a11 = c11c11 =⇒ c11 =

√
a11

for k = 2, . . .n: a1k = c1kc11 =⇒ c1k = a1k/c11

• row 2 of A:

diagonal element: a22 = c2
12 + c2

22 =⇒ c22 =
√

a22− c2
12

for k = 3, . . . ,n: a2k = c1kc12 + c2kc22 =⇒ c2k = (a2k− c1kc12)/c22

...

Algorithm:
For j = 1, . . . ,n:

s := a j j−∑
j−1
`=1 c2

` j
If s≤ 0: stop with error “matrix not positive definite”
c j j =

√
s

For k = j+1, . . . ,n:

c jk =
(

a jk−
j−1

∑
`=1

c` jc`k
)
/c j j
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How to compute row j = 3 of C:

A =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 C =



~ ∗ ∗ ∗ ∗ ∗
~ ∗ ∗ ∗ ∗

 7−→


~ ∗ ∗ ∗ ∗ ∗
~ ∗ ∗ ∗ ∗√

�− v>v (�− v>M)/c j j



v M

Here v =C(1:j-1,j) and M =C(1:j-1,j+1:n). We obtain the following Matlab code:

function C = cholesky(A)
n = size(A,1);
C = zeros(n,n);
for j=1:n
v = C(1:j-1,j);
s = A(j,j) - v’*v;
if s<=0
error(’matrix is not positive definite’)

end
C(j,j) = sqrt(s);
C(j,j+1:n) = (A(j,j+1:n)-v’*C(1:j-1,j+1:n))/C(j,j);

end
Work of Cholesky decomposition: For row j:

• compute c j j: ( j−1) multiplications and 1 square root

• compute c jk for k = j+1, . . . ,n: (n− j) times (( j−1) multiplications and 1 division )

If we count multiplications, divisions and square roots we have j+(n− j) j = (n− j+1) j operations for row j.

The total is therefore
n

∑
j=1

(n− j+1) j =
n(n+1)(n+2)

6
=

n3

6
+O(n2) operations. This is half the work of the LU decompo-

sition which was
n3

3
operations.

Example 2: Consider the matrix A =

 9 −6 6
−6 5 −1
6 −1 12

.

The algorithm breaks down when we try to compute c33: s = 12− (22 +32) =−1≤ 0:

C>C =

 3 0 0
−2 1 0
2 3 0

 3 −2 2
0 1 3
0 0 0

=

 9 −6 6
−6 5 −1
6 −1 13


Therefore we have s = 12−13 =−1≤ 0, and the Cholesky decomposition does not exist.

The matrix A is symmetric and nonsingular. Why is there no Cholesky decomposition?

Assme that a matrix A has a Cholesky decomposition A =C>C where C has nonzero elements.

For a vector x ∈ Rn we consider the scalar x>Ax = ∑
n
i, j=1 ai jxix j (this is called a “quadratic form”).

For any vector x 6=

 0
0
0

 we have y :=Cx 6=

 0
0
0

 since C is nonsingular (upper triangular with nonzero diagonal entries).

Hence the quadratic form is positive:
x>Ax = x>C>Cx = y>y > 0 (1)
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Definition: A symmetric matrix A ∈ Rn×n is called positive definite if for all x 6=

 0
...
0

 we have x>Ax > 0.

E.g., the matrix A =

[
2 0
0 3

]
is positive definite since x>Ax = 2x2

1 +3x2
2 > 0 for x 6=

[
0
0

]
.

On the other hand the matrix A =

[
2 0
0 −1

]
is not positive definite since [0,1]>A

[
0
1

]
=−1≤ 0.

Note: A symmetric matrix A has real eigenvalues. The matrix is positive definite if and only if all eigenvalues are positive.

We can check whether a matrix is positive definite by trying to find the Cholesky decomposition. If C with nonzero diagonal
elements exists, the matrix is positive definite because of (1).

If the algorithm breaks down we claim that the matrix is not positive definite.

E.g., the matrix A from Example 2 is not positive definite:

Pick x3 = 1. Solve Cx = [0,0,0]> using back substitution:

x =

 −8/3
−3
1

 , x>Ax = x>C>Cx+ x>

 0 0 0
0 0 0
0 0 −1

x =−1

Theorem: For a symmetric matrix A ∈ Rn×n the following three statements are equivalent:

1. The matrix is positive definite.

2. The Cholesky algorithm succeeds and gives C ∈ Rn×n with nonzero diagonal elements.

3. There exists a decomposition A =C>C where C ∈ Rn×n is upper triangular with nonzero diagonal elements.

Proof:
(1.) =⇒ (2.): Assume the algorithm breaks down in row j with s ≤ 0. We want to show that A is not positive definite by
finding a nonzero vector x with x>Ax ≤ 0: Let, e.g., j = 3. We have already computed the first two rows of C with c11 6= 0,
c22 6= 0 and have s = a33− (c2

13 + c2
23)≤ 0

C>(3)C(3) =

 c11 0 0
c12 c22 0
c13 c23 0

 c11 c12 c13
0 c22 c23
0 0 0

=

 a11 a12 a13
a21 a22 a23
a31 a31 c2

13 + c2
23


A(3) =C>(3)C(3)+

 0 0 0
0 0 0
0 0 s



Now we construct a vector x̃ =

 x1
x2
1

 with

 c11 c12 c13
0 c22 c23
0 0 0


︸ ︷︷ ︸

C(3)

 x1
x2
1

 =

 0
0
0

: We use back substitution to find x2 and

then x1. This works since c11,c22 6= 0. Hence

x̃>A(3)x̃ = x̃>C>(3) C(3)x̃︸︷︷︸
0
0
0



+x̃>

 0 0 0
0 0 0
0 0 s

 x̃ = 0+ s≤ 0
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Now we define x =


x1
x2
0
...
0

 and obtain x>Ax = x̃>A(3)x̃ = s≤ 0.

(2.) =⇒ (3.): The algorithm gives C with C>C = A.

(3.) =⇒ (1.): as shown above in (1) �
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