Nonlinear Equations

1 Introduction

In applications we usually need to find several unknown values x,...,x,. We have n equations for xy,...,x,
fl(xla"'axn) =0
fa(x1,..0,x,) =0

and we want to find the solutions.

In many cases the problem can be (approximatively) described by linear equations. In this case we have n linear equations
for n unknowns. We will get a unique solution if the matrix is nonsingular.
Example with n = 2: Find x;,x; such that
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In other cases the problem is nonlinear, and we obtain » nonlinear equations.
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Here we have one solution [ ] which is the intersection of the red and the green line.

Example with n = 2: Find x1,x; such that

zero contours of f‘ (red) and f2 (green)

2x14+x+x1x0—1=0
X1 +220 4+ —1=0

4 -
-4 -3 -2 -1 0 1 2
X‘

.3028

) .3028 1 —3.3028
Here we have three solutions [ ], [ _5 ], [ 33028 }

f = @(x)
xs = fsolve(f,[0;0])

[ 2&«x(1)+x(2)+x(1)*x(2)-1 ; X(1)+2*x(2)+x(1)"2-1 1]

% Define function f
% Find solution near [0;0]



2 One nonlinear equation

2.1 Introduction

2.2 Bisection Method

Assume that the function f is continuous. If we have two function values f(a), f(b) with opposite signs then the intermediate
value theorem guarantees that there must be a point x, € (a,b) with f(x,) = 0. This motivates the bisection method:
Algorithm: Bisection method

The algorithm gives a sequence of intervals [ay, bx]. There exists a solution x, with

e Initial guesses ag, by where f(ao) and f(bo) have different signs

e Fork=0,1,2,...
Cf = (ak—l—bk)/Z
If f(ck), f(ax) have different sign: [agi1,bx+1] := [a, ck]
If f(ck), f (ar) have same sign: (a1, bii1] := [cx, bi]

If f(cx) = 0: stop

Theorem 2.1. Assume that the function f is continuous on [ay,bo|. If f(ao) and f(bo) have different sign, then the bisection
method converges:

lim a; = lim by = x, with f(x,) =0.
k—so0 k—reo

Note that the midpoint ¢, satisfies |cx — x.| < (bx — ax) /2, therefore we have decreasing error bounds Ej

1
ek — x| < Ex, Exi1 = EEk

If we have error bounds E; with Ey. | < C- E; (where C < 1) we say we have convergence of order 1.

2.3 Secant Method

Assume that we have two function values f(a) and f(b). Based on this information we want to find a good guess c¢ for the
solution x,: We can approximate f(x) by the linear interpolation

p(x) = f(b) + fla,b](x - b)
where fla,b] = 18=119 Then we find ¢ such that p(c) = 0: Solving f(b) + fla,b](c — b) = 0 for ¢ gives

—a
c=b—f(b)/fla,b].
If we have two initial guesses xg,x; we can use this to find an improved guess x,. Using x1,x, we find x3, etc.
Algorithm: Secant Method

o Initial guesses xp, x|

e Fork=1,2,3,...
Xpert =X, — f )/ fa—1,]

During the algorithm we have a = x;_; and b = x;. We then compute ¢ = x;,| using the secant. We want to show that the
new error |¢ — x| is small:

From the interpolation error we know that

fl) —ple) =R(x.),  Rx)=_f"(t) (x. —a)(x. —b)



(where ¢ is somewhere between a,b,x.). If | f”(1)| < C> we have [R(x,)| < Z |x. —a - |x. —b].

Note that f(x,.) =0 = p(c). Hence

ple) =plx) = R(x)
—_—

fla;bl- (¢ —x.)

since p(x) is a linear function with slope f[a,b]. Therefore

o R(x)
© fla,)

We have f(a,b] = f'(s) with s € [a,b]. If | f'(s)| > C1 > 0 we therefore have with D := 2%21

le—x.] <Dla—x.||b—x.|

ey

Since a = x;_1, b = x, ¢ = X211 We obtain

o1 = x| <D [xgpo1 — x| - o —

Let ¢ := D |x; — x.|. Multiplying by D gives
€k+1 < €f—1€k.

Now assume that
e0<q, e <gq with g <1

Then we obtain
1 2 3 5 F
e0<qg, e1<q, ea<q, ea<qg, .. e=<q*

with the Fibonacci number Fj (defined by Fop =1, F1 =1, Fj.1 = Fi + Fy_1). Since g < 1 and Fj — oo for k — oo we obtain
convergence ¢; = D - |x; —x,| — 0 if our assumptions

")) <G, |f()]|=Ci>0 )

are satisfied. The order of convergence corresponds to the ratio Fj/F;_; which converges to the golden ratio @

Theorem 2.2. Assume that f(x,) =0 and

o f'(x) and f"(x) exist and are continuous near x.

o f(x) #0.

Then there exists & > 0, C > 0 such that for |xo — x.| < 0,

X1 — x| < O we have

e lim x; = x, (convergence)
k—ro0
o |xp—xi| < Epand Exy < CEY with o = @ (convergence with order ot > 1)

Proof. Pick € > 0 such that on the interval B = [x, — €,x. + €] we have that f'(x) > 0 and f” is continuous:
For x € B ()] =Ci>0, |f'x)|<C 3)

with some constants C;,C,. Let D = 2%"1 Pick ¢ < 1 such that 6 :=¢/D < ¢.

Now assume |x;_1 — x| < 8, |xx — x| < 8. Since § < € we have x;_1,x;, X, € Be. We now have

)
27 (s)]

X1 — x| |k — x| - 1 — x4



where the intermediate points s,# are located between xg,x1,x,. Hence we have s, € B, and (3) gives

k1 — x| < Dlxp —xs| - |xx—1 — x| < DS -6 < 6
g<l1

so that we also have |x1 — x| < 6.

Therefore we obtain by induction that |x; — x| < 6 fork=0,1,2,..., and that
o1 = x| <D fxg— x| - 1 —

As we saw above, this implies that e, := D |x; — x| satisfies ¢; < g™ where Fj, are the Fibonacci numbers. Since ¢ < 1 and
Fj. — oo we obtain convergence limg_,co Xg = Xs.

It remains to prove convergence of order o = @: We have shown ¢; < Ej := g*. Since the Fibonacci numbers satisfy
Fk+1 —oF, = (1 — Ol)kJrl we have

Fiy1 > oF—1

= qu+| < ank '(]71

= E<Eq!

2.4 Newton Method

For the secant method we used the interpolating polynomial with the nodes a,b. Now assume that a = b, and that we know
f(a) and f’(a). We can approximate f(x) by the linear interpolation

p(x) = f(a) + fla,a](x —a)
where fla,a] = f’(a). Then we find ¢ such that p(c) = 0: Solving f(a) + fa,a](c — a) = 0 for ¢ gives

¢ =b— f(a)/fla.a].
If we have an initial guesses xo we can use this to find an improved guess x, etc.:
Algorithm: Newton Method

o Initial guess xg
e Fork=1,2,3,...
X1 =X — f () [ f o1, %]
For the errors we obtain from (1) with a = b = xy, ¢ = x34 that
i1 — ) <D —x |
if the assumptions (2) hold. Multiplying this by D gives with e; := D |x; — x,| that
el < e,%

If ey < g < 1 we therefore obtain e; < g%, ex < g*, e3 < ¢%,...

ek < q(zk)

This means that the error converges to zero as k — oo, and we obtain the following theorem:

Theorem 2.3. Assume that f(x,) =0 and

o f'(x) and f"(x) exist and are continuous near x,



o F'(x)#0.
Then there exists & > 0, C > 0 such that for |xo — x.| < & we have

e lim x; = x, (convergence)
k—roo
o |xpr1 — x| < Clxg —xs \2 (convergence of order 2)

Proof. Exactly like the proof of Theorem 2.2. O

3 Nonlinear system

We have n nonlinear equations fj(xi,...,x,) =0,..., fu(x1,...,x,) = 0. We define the vector-valued function f(x) as
fl(xl, e ,xn)
fx) = :
Tu(x1,s ooy xn)
The Jacobian f(x) (often denoted by Df(x)) is the n x n matrix of first partial derivatives
9h ... 9h
ox; 0x,,
flay=| : :
Un ... o
x| 0x,,
Then Taylor’s theorem for functions g(xj,...,x,) gives that
F) =) 4 ) (= 2) +R(x)
px)
d%f;

We assume that the second order partial derivatives (x) exist and are continous. Then the remainder term R(x) =

9x;0xy
f(x) — p(x) satisfies

1R < € Jr )|
9 f;

If axjaxk(x)‘ < csfori,j,k=1,...,n we obtain C = n’c;.

We start with an inital guess x(?). Then we approximate the function f(x) by the Taylor approximation p(x) = b+A(x—x(©))
with b := f(x(0)) and A := f'(x(?)). Instead of f(x) = 0 we solve solve p(x) = 0 as follows: Let d = x—x(%) , solve the linear
system Ad = —b, then let x(!) := x(0) 4.
Algorithm: Newton Method
e Initial guess x(¥)
e Fork=0,1,2,...
b= f(x(k))
A= f'(x®)
solve Ad = —b for d (use Gaussian elimination with pivoting)
D = x(K) g

*

Let us investigate the errors. For p(x) = f(x®)) + f'(x)) (x — x¥)) Taylor’s theorem gives for x = x

Since f(x*) =0 = p(x*+1) we get



From p(x) = b+A(x —x©) we get p(x*¥D) — p(x*) = A (x*F1) —x*) s0 that

X(k+1) —x* :A_IR(X*)

[t -] < ) e

o |

<[latc]e

) P21
/ 1 1
If we have Hf (x) H < ¢ and laxjaxk

‘ <cpweget() = n*c, and D = cjn’c, yielding

e <ol

<D Hx(k) —x*

Therefore we obtain the following theorem:

Theorem 3.1. Assume that f(x*) =0 and
afi 2 f;
° Ji and 7fl exist and are continuous near x, fori,j,k=1,...,n
ox; dx;0x

e the matrix f'(x*) is nonsingular.

Then there exists 6 > 0, C > 0 such that for Hx(o) — Xy H < 8 we have

° klim x) = (convergence)
—3o0
° Hx<k+l) —x*H <C Hx(k) —x*H2 (convergence of order 2)

Proof. Since f’(x*) is nonsingular and f”(x) is continuous, we can find € > 0 such that on B := {x | |[x —x*|| < €} we have

IF 7| < er.
0 f;
We can then determine ¢, such that 5 fla(x) < ¢p on Be. Then we have for 2k e B¢ that Hx(k“) —x* H <D Hx(k) —x* H2
XjOXk
Now we proceed exactly as in the proof of Theorem 2.3. 0

4 Nonlinear least squares problem

We have N functions fi(x1,...,%),...,fnv(X1,...,X,) for n unknowns with N > n. We define the vector-valued function f(x)
as
Si(xr, .o xn)
fx) = :
v, xm)

We cannot expect to find x € R” such that f(x) = 0 since we have more equations than unknowns. But we can try to find
x € R" such that the vector f(x) becomes “as small as possible”:

Find x € R" such that || f(x)||, is minimal

The Jacobian f/(x) (often denoted by D f(x)) is the N X n matrix (more rows than columns) of first partial derivatives

af ... 9h

oxy 0x,
fa)y=1 : :

dfn Ifn

oxi 0 9x,



We start with an inital guess x©. Then we approximate the function f(x) by the Taylor approximation p(x) = b+A(x —x(o))
with b := f(x(?) and A := f'(x(9)). Instead of || f(x)| = min we solve || p(x)|| = min as follows: Let d = x —x(¥) | solve the
linear least squares problem ||Ad + b|| = min, then let x(1) := x(0) 4+ 4.

Algorithm: Gauss-Newton Method

e Initial guess x(©)

e Fork=0,1,2,...
b= f(xM)
A= f'(x®)

find d such that ||Ad + b|| is minimal (use normal equations or QR decomposition)
x kD = x0) g

Convergence of the Gauss-Newton method: We assume that F(x) := Hf(x)||§ = fi(x)>+--- + fv(x)? has a local

JoF
minimum at x* € R". Therefore — (x*) =0fori=1,...,n,i.e., with A, := f'(x*) we have the normal equations

(9)(]'
Al f(x)=0 “)

If our current approximation is x*) we consider the Taylor approximation p(x) = b+ A(x — x¥) with b = £(x*¥)) and
A = f'(x%). Then we determine x**!) such that H p(xEHD) H2 is minimal, hence we have the normal equations

ATp(x(k+l)) :6 (5)
For the Taylor approximation we know that
2
F@)=p() =), )| <65 —x®) ©
2> f;
where C; depends on the size of the second order partial derivatives 3 81 . We also have
XjOXg

A, — Al =|

) - 16| < e -
From (6) we obtain
ATf) —ATp(x") = ATr(x")
Now (4), (5) give for the first term
ATF() =Alf() +A-A) T F(x")
0
=ATp(* )+ (A—-A)TF(x)
yielding

and
(k) (ATA)fl(A* _A)Tf(x*) + (ATA)flATr(x*)

Hx(k+1) i

<] (e

£+ HATH G, Hx(k) oy

)
)

with D :=C, H(ATA)_1 H HATH If the residual || f(x*)|| is zero (usually not satisfied) we get quadratic convergence. If

Hx(k+1) i

+ Hx“‘) —x"

gD<wuaﬂnMﬂ“—f

g :=c||f(x*)| is small the error ||x) —x*|| will at first decrease as with quadratic convergence, until ||x*) —x*|| ~ &. From
then on we will only have convergence of order 1 (if the residual || f(x*)|| is sufficiently small). If the residual || f(x*)]| is
too large the Gauss-Newton method may not be locally convergent.



