
Nonlinear Equations

1 Introduction

In applications we usually need to find several unknown values x1, . . . ,xn. We have n equations for x1, . . . ,xn

f1(x1, . . . ,xn) = 0
...

fn(x1, . . . ,xn) = 0

and we want to find the solutions.

In many cases the problem can be (approximatively) described by linear equations. In this case we have n linear equations
for n unknowns. We will get a unique solution if the matrix is nonsingular.
Example with n = 2: Find x1,x2 such that

2x1 + x2−1 = 0

x1 +2x2−1 = 0
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Here we have one solution
[

x1
x2

]
=

[ 1
3
1
3

]
which is the intersection of the red and the green line.

In other cases the problem is nonlinear, and we obtain n nonlinear equations.

Example with n = 2: Find x1,x2 such that

2x1 + x2 + x1x2−1 = 0

x1 +2x2 + x2
1−1 = 0
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Here we have three solutions
[
.3028
.3028

]
,
[

1
−.5

]
,
[
−3.3028
−3.3028

]
.

f = @(x) [ 2*x(1)+x(2)+x(1)*x(2)-1 ; x(1)+2*x(2)+x(1)^2-1 ] % Define function f
xs = fsolve(f,[0;0]) % Find solution near [0;0]

1



2 One nonlinear equation

2.1 Introduction

2.2 Bisection Method

Assume that the function f is continuous. If we have two function values f (a), f (b) with opposite signs then the intermediate
value theorem guarantees that there must be a point x∗ ∈ (a,b) with f (x∗) = 0. This motivates the bisection method:

Algorithm: Bisection method

The algorithm gives a sequence of intervals [ak,bk]. There exists a solution x∗with

• Initial guesses a0,b0 where f (a0) and f (b0) have different signs

• For k = 0,1,2, . . .:
ck := (ak +bk)/2
If f (ck), f (ak) have different sign: [ak+1,bk+1] := [ak,ck]
If f (ck), f (ak) have same sign: [ak+1,bk+1] := [ck,bk]
If f (ck) = 0: stop

Theorem 2.1. Assume that the function f is continuous on [a0,b0]. If f (a0) and f (b0) have different sign, then the bisection
method converges:

lim
k→∞

ak = lim
k→∞

bk = x∗ with f (x∗) = 0.

Note that the midpoint ck satisfies |ck− x∗| ≤ (bk−ak)/2, therefore we have decreasing error bounds Ek

|ck− x∗| ≤ Ek, Ek+1 =
1
2

Ek

If we have error bounds Ek with Ek+1 ≤C ·Ek (where C < 1) we say we have convergence of order 1.

2.3 Secant Method

Assume that we have two function values f (a) and f (b). Based on this information we want to find a good guess c for the
solution x∗: We can approximate f (x) by the linear interpolation

p(x) = f (b)+ f [a,b](x−b)

where f [a,b] = f (b)− f (a)
b−a . Then we find c such that p(c) = 0: Solving f (b)+ f [a,b](c−b) = 0 for c gives

c = b− f (b)/ f [a,b].

If we have two initial guesses x0,x1 we can use this to find an improved guess x2. Using x1,x2 we find x3, etc.

Algorithm: Secant Method

• Initial guesses x0,x1

• For k = 1,2,3, . . .:
xk+1 := xk− f (xk)/ f [xk−1,xk]

During the algorithm we have a = xk−1 and b = xk. We then compute c = xk+1 using the secant. We want to show that the
new error |c− x∗| is small:

From the interpolation error we know that

f (x∗)− p(x∗) = R(x∗), R(x∗) =
1
2

f ′′(t) · (x∗−a)(x∗−b)
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(where t is somewhere between a,b,x∗). If | f ′′(t)| ≤C2 we have |R(x∗)| ≤ C2
2 |x∗−a| · |x∗−b|.

Note that f (x∗) = 0 = p(c). Hence

p(c)− p(x∗)︸ ︷︷ ︸
f [a,b] · (c− x∗)

= R(x∗)

since p(x) is a linear function with slope f [a,b]. Therefore

c− x∗ =
R(x∗)
f [a,b]

We have f [a,b] = f ′(s) with s ∈ [a,b]. If | f ′(s)| ≥C1 > 0 we therefore have with D := C2
2C1

|c− x∗| ≤ D |a− x∗| · |b− x∗| (1)

Since a = xk−1, b = xk, c = xk+1 we obtain

|xk+1− x∗| ≤ D |xk−1− x∗| · |xk− x∗|

Let ek := D |xk− x∗|. Multiplying by D gives
ek+1 ≤ ek−1ek.

Now assume that
e0 ≤ q, e1 ≤ q with q < 1

Then we obtain
e0 ≤ q1, e1 ≤ q2, e2 ≤ q3, e3 ≤ q5, . . . ek ≤ qFk

with the Fibonacci number Fk (defined by F0 = 1, F1 = 1, Fk+1 = Fk +Fk−1). Since q < 1 and Fk→ ∞ for k→ ∞ we obtain
convergence ek = D · |xk− x∗| → 0 if our assumptions∣∣ f ′′(t)∣∣≤C2,

∣∣ f ′(t)∣∣≥C1 > 0 (2)

are satisfied. The order of convergence corresponds to the ratio Fk/Fk−1 which converges to the golden ratio
√

5+1
2 .

Theorem 2.2. Assume that f (x∗) = 0 and

• f ′(x) and f ′′(x) exist and are continuous near x∗

• f ′(x∗) 6= 0.

Then there exists δ > 0, C > 0 such that for |x0− x∗| ≤ δ , |x1− x∗| ≤ δ we have

• lim
k→∞

xk = x∗ (convergence)

• |xk− x∗| ≤ Ek and Ek+1 ≤CEα
k with α =

√
5+1
2 (convergence with order α > 1)

Proof. Pick ε > 0 such that on the interval Bε = [x∗− ε,x∗+ ε] we have that f ′(x)> 0 and f ′′ is continuous:

For x ∈ Bε :
∣∣ f ′(x)∣∣≥C1 > 0,

∣∣ f ′′(x)∣∣≤C2 (3)

with some constants C1,C2. Let D = C2
2C1

. Pick q < 1 such that δ := q/D≤ ε .

Now assume |xk−1− x∗| ≤ δ , |xk− x∗| ≤ δ . Since δ ≤ ε we have xk−1,xk,x∗ ∈ Bε . We now have

|xk+1− x∗|=
| f ′′(t)|
2 | f ′(s)|

|xk− x∗| · |xk−1− x∗|
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where the intermediate points s, t are located between x0,x1,x∗. Hence we have s, t ∈ Bε and (3) gives

|xk+1− x∗| ≤ D |xk− x∗| · |xk−1− x∗| ≤ Dδ︸︷︷︸
q<1

·δ < δ

so that we also have |xk+1− x∗| ≤ δ .

Therefore we obtain by induction that |xk− x∗| ≤ δ for k = 0,1,2, . . ., and that

|xk+1− x∗| ≤ D |xk− x∗| · |xk−1− x∗|

As we saw above, this implies that ek := D |xk− x∗| satisfies ek ≤ qFk where Fk are the Fibonacci numbers. Since q < 1 and
Fk→ ∞ we obtain convergence limk→∞ xk = x∗.

It remains to prove convergence of order α =
√

5+1
2 : We have shown ek ≤ Ẽk := qFk . Since the Fibonacci numbers satisfy

Fk+1−αFk = (1−α)k+1 we have

Fk+1 ≥ αFk−1

⇒ qFk+1 ≤ qαFk ·q−1

⇒ Ẽk+1 ≤ Ẽα
k ·q−1

2.4 Newton Method

For the secant method we used the interpolating polynomial with the nodes a,b. Now assume that a = b, and that we know
f (a) and f ′(a). We can approximate f (x) by the linear interpolation

p(x) = f (a)+ f [a,a](x−a)

where f [a,a] = f ′(a). Then we find c such that p(c) = 0: Solving f (a)+ f [a,a](c−a) = 0 for c gives

c = b− f (a)/ f [a,a].

If we have an initial guesses x0 we can use this to find an improved guess x1, etc.:

Algorithm: Newton Method

• Initial guess x0

• For k = 1,2,3, . . .:
xk+1 := xk− f (xk)/ f [xk−1,xk]

For the errors we obtain from (1) with a = b = xk, c = xk+1 that

|xk+1− x∗| ≤ D |xk− x∗|2

if the assumptions (2) hold. Multiplying this by D gives with ek := D |xk− x∗| that

ek+1 ≤ e2
k

If e0 ≤ q < 1 we therefore obtain e1 ≤ q2, e2 ≤ q4, e3 ≤ q8, . . .

ek ≤ q(2k)

This means that the error converges to zero as k→ ∞, and we obtain the following theorem:

Theorem 2.3. Assume that f (x∗) = 0 and

• f ′(x) and f ′′(x) exist and are continuous near x∗
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• f ′(x∗) 6= 0.

Then there exists δ > 0, C > 0 such that for |x0− x∗| ≤ δ we have

• lim
k→∞

xk = x∗ (convergence)

• |xk+1− x∗| ≤C |xk− x∗|2 (convergence of order 2)

Proof. Exactly like the proof of Theorem 2.2.

3 Nonlinear system

We have n nonlinear equations f1(x1, . . . ,xn) = 0, . . . , fn(x1, . . . ,xn) = 0. We define the vector-valued function f (x) as

f (x) =

 f1(x1, . . . ,xn)
...

fn(x1, . . . ,xn)


The Jacobian f ′(x) (often denoted by D f (x)) is the n×n matrix of first partial derivatives

f ′(x) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fn
∂x1

· · · ∂ fn
∂xn


Then Taylor’s theorem for functions g(x1, . . . ,xn) gives that

f (x) = f (x(0))+ f ′(x(0))(x− x(0))︸ ︷︷ ︸
p(x)

+R(x)

We assume that the second order partial derivatives
∂ 2 fi

∂x j∂xk
(x) exist and are continous. Then the remainder term R(x) =

f (x)− p(x) satisfies

‖R(x)‖
∞
≤C

∥∥∥x− x(0)
∥∥∥2

∞

If
∣∣∣ ∂ 2 fi

∂x j∂xk
(x)
∣∣∣≤ c2 for i, j,k = 1, . . . ,n we obtain C = n2c2.

We start with an inital guess x(0). Then we approximate the function f (x) by the Taylor approximation p(x) = b+A(x−x(0))
with b := f (x(0)) and A := f ′(x(0)). Instead of f (x) =~0 we solve solve p(x) =~0 as follows: Let d = x−x(0) , solve the linear
system Ad =−b, then let x(1) := x(0)+d.

Algorithm: Newton Method

• Initial guess x(0)

• For k = 0,1,2, . . .:
b := f (x(k))
A := f ′(x(k))
solve Ad =−b for d (use Gaussian elimination with pivoting)
x(k+1) := x(k)+d

Let us investigate the errors. For p(x) = f (x(k))+ f ′(x(k))(x− x(k)) Taylor’s theorem gives for x = x∗

f (x∗)− p(x∗) = R(x∗)

Since f (x∗) =~0 = p(x(k+1)) we get
p(x(k+1))− p(x∗) = R(x∗)
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From p(x) = b+A(x− x(0)) we get p(x(k+1))− p(x∗) = A
(
x(k+1)− x∗

)
so that

x(k+1)− x∗ = A−1R(x∗)∥∥∥x(k+1)− x∗
∥∥∥≤ ∥∥A−1∥∥‖R(x∗)‖∥∥∥x(k+1)− x∗
∥∥∥≤ ∥∥A−1∥∥C

∥∥∥x(k)− x∗
∥∥∥2

If we have
∥∥ f ′(x)−1

∥∥≤ c1 and
∣∣∣∣∂ 2 fi(x)
∂x j∂xk

∣∣∣∣≤ c2 we get C2 = n2c2 and D = c1n2c2 yielding

∥∥∥x(k+1)− x∗
∥∥∥≤ D

∥∥∥x(k)− x∗
∥∥∥2

Therefore we obtain the following theorem:

Theorem 3.1. Assume that f (x∗) = 0 and

• ∂ fi

∂x j
and

∂ 2 fi

∂x j∂xk
exist and are continuous near x∗ for i, j,k = 1, . . . ,n

• the matrix f ′(x∗) is nonsingular.

Then there exists δ > 0, C > 0 such that for
∥∥x(0)− x∗

∥∥≤ δ we have

• lim
k→∞

x(k) = x∗ (convergence)

•
∥∥x(k+1)− x∗

∥∥≤C
∥∥x(k)− x∗

∥∥2
(convergence of order 2)

Proof. Since f ′(x∗) is nonsingular and f ′(x) is continuous, we can find ε > 0 such that on Bε := {x | ‖x− x∗‖ ≤ ε} we have∥∥ f ′(x)−1∥∥≤ c1.

We can then determine c2 such that
∣∣∣∣∂ 2 fi(x)
∂x j∂xk

∣∣∣∣ ≤ c2 on Bε . Then we have for x(k) ∈ Bε that
∥∥x(k+1)− x∗

∥∥ ≤ D
∥∥x(k)− x∗

∥∥2
.

Now we proceed exactly as in the proof of Theorem 2.3.

4 Nonlinear least squares problem

We have N functions f1(x1, . . . ,xn), . . . , fN(x1, . . . ,xn) for n unknowns with N > n. We define the vector-valued function f (x)
as

f (x) =

 f1(x1, . . . ,xn)
...

fN(x1, . . . ,xn)


We cannot expect to find x ∈ Rn such that f (x) =~0 since we have more equations than unknowns. But we can try to find
x ∈ Rn such that the vector f (x) becomes “as small as possible”:

Find x ∈ Rn such that ‖ f (x)‖2 is minimal

The Jacobian f ′(x) (often denoted by D f (x)) is the N×n matrix (more rows than columns) of first partial derivatives

f ′(x) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fN
∂x1

· · · ∂ fN
∂xn


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We start with an inital guess x(0). Then we approximate the function f (x) by the Taylor approximation p(x) = b+A(x−x(0))
with b := f (x(0)) and A := f ′(x(0)). Instead of ‖ f (x)‖= min we solve ‖p(x)‖= min as follows: Let d = x− x(0) , solve the
linear least squares problem ‖Ad +b‖= min, then let x(1) := x(0)+d.

Algorithm: Gauss-Newton Method
• Initial guess x(0)

• For k = 0,1,2, . . .:
b := f (x(k))
A := f ′(x(k))
find d such that ‖Ad +b‖ is minimal (use normal equations or QR decomposition)
x(k+1) := x(k)+d

Convergence of the Gauss-Newton method: We assume that F(x) := ‖ f (x)‖2
2 = f1(x)2 + · · ·+ fN(x)2 has a local

minimum at x∗ ∈ Rn. Therefore
∂F
∂x j

(x∗) = 0 for i = 1, . . . ,n, i.e., with A∗ := f ′(x∗) we have the normal equations

A>∗ f (x∗) =~0 (4)

If our current approximation is x(k) we consider the Taylor approximation p(x) = b + A(x− x(k)) with b = f (x(k)) and
A = f ′(x(k)). Then we determine x(k+1) such that

∥∥p(x(k+1))
∥∥

2 is minimal, hence we have the normal equations

A>p(x(k+1)) =~0 (5)

For the Taylor approximation we know that

f (x∗)− p(x∗) = r(x∗), ‖r(x∗)‖ ≤C2

∥∥∥x∗− x(k)
∥∥∥2

(6)

where C2 depends on the size of the second order partial derivatives
∂ 2 fi

∂x j∂xk
. We also have

‖A∗−A‖=
∥∥∥ f ′(x∗)− f ′(x(k))

∥∥∥≤C2

∥∥∥x∗− x(k)
∥∥∥

From (6) we obtain
A> f (x∗)−A>p(x∗) = A>r(x∗)

Now (4), (5) give for the first term

A> f (x∗) = A>∗ f (x∗)︸ ︷︷ ︸
0

+(A−A∗)> f (x∗)

= A>p(x(k+1))+(A−A∗)> f (x∗)

yielding
A>
(

p(x(k+1))− p(x∗)
)

︸ ︷︷ ︸
A
(

x(k+1)− x∗
) = (A∗−A)> f (x∗)+A>r(x∗)

and
x(k+1)− x∗ = (A>A)−1(A∗−A)> f (x∗)+(A>A)−1A>r(x∗)∥∥∥x(k+1)− x∗
∥∥∥≤ ∥∥∥(A>A)−1

∥∥∥(C2

∥∥∥x(k)− x∗
∥∥∥‖ f (x∗)‖+

∥∥∥A>
∥∥∥C2

∥∥∥x(k)− x∗
∥∥∥2
)

∥∥∥x(k+1)− x∗
∥∥∥≤ D

(
c‖ f (x∗)‖ ·

∥∥∥x(k)− x∗
∥∥∥+∥∥∥x(k)− x∗

∥∥∥2
)

with D :=C2

∥∥∥(A>A)−1
∥∥∥∥∥∥A>

∥∥∥. If the residual ‖ f (x∗)‖ is zero (usually not satisfied) we get quadratic convergence. If

ε := c‖ f (x∗)‖ is small the error
∥∥x(k)− x∗

∥∥ will at first decrease as with quadratic convergence, until
∥∥x(k)− x∗

∥∥≈ ε . From
then on we will only have convergence of order 1 (if the residual ‖ f (x∗)‖ is sufficiently small). If the residual ‖ f (x∗)‖ is
too large the Gauss-Newton method may not be locally convergent.
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