
Nonlinear equations

Norms for Rn

Assume that X is a vector space. A norm ‖·‖ is a mapping X → R with ‖x‖ ≥ 0 such that for all x, y ∈ X,
α ∈ R

• ‖x‖ = 0 =⇒ x = 0

• ‖αx‖ = |α| ‖x‖

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

We define the following norms on the vector space Rn:

• ‖x‖1 = |x1|+ · · ·+ |xn|

• ‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2
• ‖x‖∞ = max {|x1| , . . . , |xn|}

A matrix A ∈ Rn×n corresponds to a linear mapping from Rn to Rn. If ‖x‖ denotes a vector norm for x ∈ Rn
we can define the matrix norm ‖A‖ as follows:

‖A‖ = sup
x∈Rn

‖Ax‖
‖x‖

= sup
x∈Rn
‖x‖=1

‖Ax‖

Note that S = {x ∈ Rn | ‖x‖ = 1} is a compact set, hence there exists a point x ∈ S with ‖Ax‖ = sup x∈Rn
‖x‖=1

‖Ax‖,

and we can write “max” instead of “sup”.

Lemma 1. For E ∈ Rn×n with ‖E‖ < 1 the matrix I + E is invertible and
∥∥(I + E)−1

∥∥ ≤ 1

1− ‖E‖
.

Proof: ‖x‖ = ‖(1 + E)x− Ex‖ ≤ ‖(1 + E)x‖+ ‖E‖ ‖x‖, hence ‖(I + E)x‖ ≥ (1− ‖E‖) ‖x‖.

Convergence orders for iterative methods

We want to approximate x∗ ∈ Rn. An iterative method gives a sequence x0, x1, x2, x3, . . ..

We say the method converges if lim
k→∞

xk = x∗. We can specify more precisely how quickly it converges by
looking at quotients

‖xk+1 − x∗‖
‖xk − x∗‖α

for α ≥ 1. This leads to so-called “q-orders” of convergence (where “q” stands for quotient):

• the method converges with q-order 1 or q-linearly if there exists C < 1 such that for all k

‖xk+1 − x∗‖ ≤ C ‖xk − x∗‖

• the method converges with q-order 2 or q-quadratically if limk→∞ xk = x∗ and there exists C such that
for all k

‖xk+1 − x∗‖ ≤ C ‖xk − x∗‖2

the method converges q-superlinearly if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0

Example: We consider a nonlinear equation f(x) = 0 where x ∈ D ⊂ R. Assume
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• f(x∗) = 0

• the derivatives f ′ and f ′′ exist around x∗ and are continuous

• f ′(x∗) 6= 0

Then there exists ε > 0 such that

• for |x0 − x∗| < ε the Newton method converges q-quadratically

• for |x0 − x∗| < ε and |x1 − x∗| < ε the secant method converges with q-order α =
√
5+1
2 ≈ 1.618. Hence

it converges q-superlinearly.

In many cases we cannot prove that the error improves for every single step from k to k + 1, but we still have
upper bounds

‖x− x∗‖ ≤ Ek
where Ek converges with a certain q-order to zero. This leads to so-called “r-orders” of convergence:

• a method converges with r-order 1 or r-linearly if ‖x− x∗‖ ≤ Ek where Ek converges with q-order 1 to
0

• a method converges with r-order 2 or r-quadratically if ‖x− x∗‖ ≤ Ek where Ek converges with q-order
2 to 0

• a method converges r-superlinearly if ‖x− x∗‖ ≤ Ek where Ek converges with superlinearly to 0

Example: We consider a nonlinear equation f(x) = 0 where

• f is continuous on the interval [a0, b0]

• f(a0) · f(b0) < 0

Then the bisection method gives a sequence of intervals [ak, bk]. Let ck = (ak + bk)/2. Then the sequence ck
converges r-linearly to a point x∗ with f(x∗) = 0:

|ck − x∗| ≤ Ek =
b0 − a0
2k+1

Note that in general we do not have q-linear convergence of ck for the bisection method.

Derivatives

Let X and Y denote normed vector spaces. Consider a mapping f from D ⊂ X to Y . We say that f is Frechet
differentiable at a point x0 ∈ D if there exists a linear mapping A : X → Y such that

‖f(x)− f(x0)−A(x− x0)‖
‖x− x0‖

→ 0 x→ x0

Lipschitz conditions

We say a function f satisfies a Lipschitz condition with constant L on D if

‖f(x)− f(y)‖ ≤ ‖y − x‖ for all x, y ∈ D

Lemma 2. Assume

• D is convex

• ∇f(x) exists and is continuous on D

• ‖∇f(x)‖ ≤ L for x ∈ D
Then f satisfies a Lipschitz condition on D with constant L on D.
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Taylor remainder terms

For a function f : D → R with D ⊂ R we have estimates

|f(x+ h)− f(x)| ≤
(

max
u∈conv(x,y)

|f ′(u)|
)
|h| if f ∈ C1(D)

|f(x+ h)− f(x)− f ′(x)h| ≤
(

max
u∈conv(x,y)

|f ′′(u)|
)

1

2
|h|2 if f ∈ C2(D).

We would like to have analogous estimates for a function f : D → Rn with D ⊂ Rn. Assume thatf ∈ C1(D).
Then the derivative exists in the Frechet sense:

f(x+ h) = f(x) +Df(x) 〈h〉+R, ‖R‖ = o(‖h‖) for h→ 0

where Df(x) : Rn → Rn is a linear mapping h 7→ Df(x) 〈h〉. Since linear mappings correspond to matrices in
Rn×n we use the notation

f(x) =

 f1(x)
...

fn(x)

 , Df(x) = f ′(x) =

 ∂1f1(x) · · · ∂nf1(x)
...

...
∂1fn(x) · · · ∂nfn(x)


y = Df(x) 〈h〉 ⇐⇒ yi =

n∑
j=1

∂jfi(x)hj

|yi| ≤

 n∑
j=1

|∂jfi(x)|

 ‖h‖∞ , ‖y‖∞ ≤ max
i=1,...,n

 n∑
j=1

|∂jfi(x)|

 ‖h‖∞
‖Df(x)‖ = max

i=1,...,n

 n∑
j=1

|∂jfi(x)|


with ∂i =

∂
∂xi

. Assume that D is convex and x, y ∈ D. Let h := y − x and conv(x, y) ⊂ D denote the line
segment betwen x and y. We have by the fundamental theorem of calculus and the chain rule for

F (t) := f(x+ th), F ′(t) = Df(x+ th) 〈h〉

f(y)− f(x) = F (1)− F (0) =
∫ 1

0

F ′(t)dt =

∫ 1

0

f ′(x+ th)h dt

‖f(y)− f(x)‖ ≤
∫ 1

0

‖f ′(x+ th‖ ‖h‖ dt ≤
(

max
u∈conv(x,y)

‖f ′(u)‖
)
‖y − x‖ .

This shows that the Lipschitz constant for f in D is bounded by maxu∈D ‖f ′(u)‖.

Note that we first choose a vector norm, e.g., ‖v‖∞ = maxj=1,...,n |vj |. For A ∈ Rn×n this induces a matrix
norm:

‖A‖∞ = max
‖v‖∞=1

‖Av‖∞ = max
i

∑
j

|Aij | .

‖f ′(x)‖∞ = max
‖v‖∞=1

‖f ′(x)v‖ = max
i

∑
j

|∂jfi| .

We can read this as an estimate for the Taylor remainder term of order 1: f(y) = f(x) +R1, ‖R1‖ ≤ · · · .

Now we want to consider the next Taylor term and remainder: f(y) = f(x) + f ′(x)(y − x) +R2:

R2 = f(y)− f(x)− f ′(x)(y − x) =
∫ 1

0

[f ′(x+ t(y − x))− f ′(x)] (y − x) dt.

Assume that f ′ satisfies a Lipschitz condition for x, y ∈ D:

‖f ′(y)− f ′(x)‖ ≤ γ ‖y − x‖ for x, y ∈ D,
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then we obtain

‖R2‖ ≤
∫ 1

0

γt ‖y − x‖2 dt = γ

2
‖y − x‖2 .

Now we assume that f ∈ C2(D): For a fixed u ∈ Rn let G(x) := Df(x) 〈u〉. Then DG(x) 〈v〉 = D2f(x) 〈u, v〉
where

y = D2f(x) 〈u, v〉 ⇐⇒ yi =

n∑
j,k=1

(∂jkfi)ujvk

|yi| ≤

 n∑
j,k=1

|∂jkfi|

 ‖u‖∞ ‖v‖∞ , ‖y‖∞ ≤ max
i=1,...,n

 n∑
j,k=1

|∂jkfi|

 ‖u‖∞ ‖v‖∞
∥∥D2f(x)

∥∥
∞ = max

i=1,...,n

 n∑
j,k=1

|∂jkfi|

 .

Now we have for any u ∈ Rn and h = y − x

G(t) := Df(x+ th) 〈u〉 , G′(t) = D2f(x+ th) 〈u, h〉

[Df(y)−Df(x)] 〈u〉 = G(1)−G(0) =
∫ 1

0

G′(t)dt =

∫ 1

0

D2f(x+ th) 〈u, h〉 dt

‖Df(y)−Df(x) 〈u〉‖ ≤
∫ 1

0

∥∥D2f(x+ th)
∥∥ ‖u‖ ‖h‖ dt, ‖Df(y)−Df(x)‖ ≤

(
max
z∈D

∥∥D2f(z)
∥∥) ‖y − x‖ .

Local convergence results for fixed point iteration

Assume that D is open so that x∗ ∈ D implies that a ball Bδ ⊂ D.

Theorem 3. Assume g : D → Rn with D ⊂ Rn, and g(x∗) = x∗ for x∗ ∈ D. If g ∈ C1(D) and ‖g′(x∗)‖ < 1
then the fixed point iteration xk+1 := g(xk) is locally convergent: There exists δ > 0 so that for

∥∥x0 − x∗∥∥ < δ
there holds limk→∞ xk = x∗.

Proof: Since g′ is continuous there exists δ > 0, q < 1 so that ‖g′(x)‖ ≤ q for x ∈ Bδ := {x | ‖x− x∗‖ < δ}.
Assume that xk ∈ Bδ. Then∥∥xk+1 − x∗

∥∥ =
∥∥g(xk)− g(x∗)∥∥ ≤ (max

u∈Bδ
‖g′(u)‖

)∥∥xk − x∗∥∥ ≤ q ∥∥xk − x∗∥∥ .
Hence xk+1 ∈ Bδ. Then x0 ∈ Bδ implies

∥∥xk − x∗∥∥ ≤ qk ∥∥x0 − x∗∥∥ and therefore limk→∞ xk = x∗.

Remark: For a chosen vector norm (e.g., ‖·‖∞) and the induced matrix norm one may have ‖g′(x∗)‖ > 1,
but for a different vector norm and the induced matrix norm one could still have ‖g′(x∗)‖ > 1. The spectral
radius ρ(A) := max{|λj(A)|} denotes the maximum absolute values of eigenvalues of A and satisfies [see e.g.
Stoer-Bulirsch Theorem (6.9.2)]

• ρ(A) ≤ ‖A‖ for any choice of vector norm and induced matrix norm

• for any ε > 0 there exists a vector norm so that its induced matrix norm satisfies ‖A‖ ≤ ρ(A) + ε.

Therefore we can replace the condition ‖g′(x∗)‖ < 1 by |ρ(g′(x∗))| < 1 and the conclusion of the theorem still
holds.

Theorem: Assume g : D → Rn with D ⊂ Rn, and g(x∗) = x∗ for x∗ ∈ D. If g′(x∗) = 0 and g′ is Lipschitz in
D then the fixed point iteration xk+1 := g(xk) is locally convergent of order 2: There exists δ > 0 so that for∥∥x0 − x∗∥∥ < δ there holds limk→∞ xk = x∗ and∥∥xk+1 − x∗

∥∥ ≤ C ∥∥xk − x∗∥∥2 .
Proof: Assume that we have ‖f ′(y)− f ′(x)‖ ≤ γ ‖y − x‖ for x, y ∈ D.∥∥xk+1 − x∗

∥∥ =
∥∥g(xk)− g(x∗)− g′(x∗)(xk − x∗)∥∥ ≤ γ

2

∥∥xk − x∗∥∥2 .
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Newton method

We have local convergence of order 2 as long as ∇f(x∗) is a nonsingular matrix:

Theorem 4. Assume that f(x∗) = 0 and

• ∇f exists and satisfies a Lipschitz condition in a neighborhood of x∗

• ∇f(x∗) is nonsingular

Then there exists δ > 0 such that for an initial guess x0 with ‖x0 − x∗‖ ≤ δ

• the Newton iterates xk exist for k = 1, 2, 3, . . . since ∇f(xk−1) is nonsingular

• lim
k→∞

xk = x∗

• the convergence is of q-order 2

Note that we have with dk = xk+1 − xk = −∇f(xk)−1f(xk)

f(xk+1)− f(xk) =
∫ 1

0

∇f(xk + t · dk)dkdt

and using ∇f(xk)dk = −f(xk) that

f(xk+1) =

∫ 1

0

[∇f(xk + t · dk)−∇f(xk)] dkdt

implying

‖f(xk+1)‖ ≤
∫ 1

0

‖∇f(xk + t · dk)−∇f(xk)‖︸ ︷︷ ︸
≤ Lt ‖dk‖

‖dk‖ dt ≤
L

2
‖dk‖2

f(xk+1) = −
∫ 1

0

[∇f(xk + t · dk)−∇f(xk)]∇f(xk)−1f(xk)dt = f(xk+1) = −
∫ 1

0

[
∇f(xk + t · dk)∇f(xk)−1 − I

]
f(xk)dt

Newton-Kantorovich theorem

The Newton-Kantorovich theorem does not assume that a solution x∗ with f(x∗) exists.

Theorem 5. Assume

• ‖f(x0)‖ ≤ C0,
∥∥∇f(x0)−1∥∥ ≤ C1

• ∇f(x) is Lipschitz with constant L for ‖x− x0‖ ≤ ρ

where

h0 := C0C
2
1L ≤

1

2
, ρ :=

1−
√
1− 2h0
C1L

Then

• there exists a unique solution x∗ ∈ Bρ(x0) with f(x∗) = 0

• the Newton iterates xk are well-defined and converge to x∗

• the convergence is r-quadratic for h0 < 1
2 , and r-linear for h0 = 1

2 .
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In preparation for the proof we consider the Newton method for the quadratic equation f(t) = t2−2t+2h0 = 0:

0

t
0

t
1

t
2

t
3

t
−

t
+

Lemma 6. Assume ω0 ≥ 0 and h0 ≤ 1
2 and define ωk, hk for k = 1, 2, . . . by

ωk+1 :=
ωk

1− hk
, hk+1 :=

h2k
2(1− hk)2

(1)

Then
∞∑
j=0

hk
ωk

=
1−
√
1− 2h0
ω0

and the sum converges q-quadratically for h0 < 1
2 , and q-linearly for h0 = 1

2 .

Proof: It is sufficient to consider the case ω0 = 1. Consider the quadratic equation f(t) = t2 − 2t + 2h0 = 0
which has the two roots t± = 1 ±

√
1− 2h0 with 0 < t− < 1 < t+ for h0 < 1

2 and 0 < t− = t+ = 1 for
h0 = 1

2 . We define the sequence tk using the Newton method with t0 = 0. We have tk < tk+1 < t− for all k,
this implies that limk→∞ = t−. In the case of h0 < 1

2 we have quadratic convergence, in the case of h0 = 1
2

we have linear convergence. Note that for a quadratic function f(t) = t2 + a1t + a0 and its tangent line p(t)
at t = c we have f(t) − p(t) = (t − c)2 (since it must be a quadratic function with leading coefficient 1 and
minimum 0 at t = c). Hence for c = tk we have by the definition of the Newton method p(tk+1) = 0 and
(tk+1 − tk)2 = f(tk+1)− p(tk+1) = f(tk+1) for all k so that

tk+1 − tk = − f(tk)
f ′(tk)

= − (tk − tk−1)2

2tk − 2
=

1

2

(tk − tk−1)2

1− tk
. (2)

We now want to show that for k = 0, 1, 2, . . . we have

tk+1 − tk = ω−1k hk, 1− tk = ω−1k (3)

We use induction: For k = 0 we have t0 = 0,

t1 − t0 = −f(0)/f ′(0) = −2h0/(−2) = h0 = ω0h0

and 1− t0 = 1 = ω−10 as ω0 = 1.
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Induction step: Assume that (3) holds.

We have
ω−1k+1

(D)
= ω−1k (1− hk)

(I)
= ω−1k − (tk+1 − tk)

(I)
= (1− tk)− (tk+1 − tk) = 1− tk+1

which is the second equation in (3) with k + 1 instead of k.

We get from (2) that

tk+2 − tk+1 =
1

2

(tk+1 − tk)2

1− tk+1
=

1

2

(hk/ωk)
2

ω−1k+1

= ω−1k+1

1

2

h2k
(ωk/ωk+1)2

= ω−1k+1

1

2

h2k
(1− hk)2

= ω−1k+1hk+1

Note that
N∑
k=0

hk
ωk

=

N∑
k=0

(tk+1 − tk) = tN+1 → t− = 1−
√
1− 2h0 as N →∞

We use the following notation for open and closed balls:

Br(x0) := {x | ‖x− x0‖ < r} , Br(x0) := {x | ‖x− x0‖ ≤ r}

The Newton method uses the iteration

xk+1 = xk + dk with dk := −f ′(xk)−1f(xk)

Assumption: There are constants α, ω0 > 0 such that h0 := αω0 ≤ 1
2 and∥∥f ′(x0)−1f(x0)∥∥ ≤ α (4)∥∥f ′(x0)−1 (f ′(y)− f ′(x))∥∥ ≤ ω0 ‖y − x‖ for x, y ∈ D (5)

Bρ(x0) ⊂ D with ρ :=
1−
√
1− 2h0
ω0

Then:

• there exists a unique solution x∗ ∈ Bρ(x0) with f(x∗) = 0

• the Newton iterates xk are well-defined and converge to x∗

• the convergence is r-quadratic for h0 < 1
2 , and r-linear for h0 = 1

2 .

Induction: We claim that for k = 0, 1, 2, . . .:

(Ak) : ωk ‖dk‖ ≤ hk (6)

(Bk) :
∥∥f ′(xk)−1 (f ′(y)− f ′(x)))∥∥ ≤ ωk ‖y − x‖ for x, y ∈ D (7)

xk ∈ Bρ(x0) (8)

where

ωk+1 :=
ωk

1− hk
, hk+1 :=

h2k
2(1− hk)2

(9)

Proof: For k = 0 the statements (6), (7) are just the assumptions (4), (5).

Induction step: Assume that (6), (7), (8) and we have to prove the corresponding statements for k + 1.

We first prove (8): From (Ak) and the Lemma we obtain that

‖xk+1 − x0‖ ≤
k∑
j=0

‖dj‖ ≤
∞∑
j=0

hj
ωj

= ρ. (10)
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We then prove (6) for k + 1: Let Mk := f ′(xk)
−1f ′(xk+1), then f ′(xk+1)

−1 =M−1k f ′(xk)
−1 and

∥∥f ′(xk+1)
−1 (f ′(y)− f ′(x))

∥∥ ≤ ∥∥M−1k ∥∥∥∥f ′(xk)−1 (f ′(y)− f ′(x))∥∥ (Bk)

≤
∥∥M−1k ∥∥ωk ‖y − x‖

≤ 1

1− hk
ωk ‖y − x‖ = ωk+1 ‖y − x‖

since

Mk = I + E, E := f ′(xk)
−1 (f ′(xk+1)− f ′(xk)) , ‖E‖

(Bk)

≤ ωk ‖dk‖
(Ak)

≤ hk∥∥M−1k ∥∥ =
∥∥(I + E)−1

∥∥ ≤ 1

1− ‖E‖
≤ 1

1− hk
We now prove (6) for k + 1: With xk+1 = xk + dk and f(xk) = −f ′(xk)dk we have

dk+1 = −f ′(xk+1)
−1f(xk+1) = −f ′(xk+1)

−1 [f(xk+1)− f(xk) + f(xk)] = −
∫ 1

0

f ′(xk+1)
−1 [f ′(xk + tdk)− f ′(xk)] dkdt

‖dk+1‖
(Bk+1)

≤
∫ 1

0

ωk+1t ‖dk‖ ‖dk‖ dt =
1

2
ωk+1

h2k
ω2
k

ωk+1 ‖dk+1‖ ≤
1

2

h2k
(ωk/ωk+1)2

=
1

2

h2k
(1− hk)2

= hk+1.

This concludes the induction proof. We now obtain from (10) that xk is a Cauchy sequence and therefore has a
limit x∗ ∈ Bρ(x0) ⊂ D. By taking the limit in f ′(xk)(xk+1 − xk) = −f(xk) we obtain by the continuity of f ′
and f that f(x∗) = 0.

We skip the proof of the uniqueness.
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