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1 Polynomial approximation and interpolation

1.1 Jackson theorems

1.1.1 Polynomials Pn and trigonometric polynomials Tn

In order to state the approximation problem we define the functions which we want to approx-
imate and the functions which we want to use for approximation:

Definition 1.1 We denote by Ck[a, b] for k = 0, 1, 2, . . . the space of functions which have
derivatives f (1),. . . ,f (k) that are continuous on the closed interval [a, b].

We denote by
Pn = { c0 + c1x+ · · ·+ cnx

n | ck ∈ C/ }

the space of polynomials of degree less or equal to n (n = 0, 1, 2, . . .).

Then the approximation problem is: Given f ∈ Ck[a, b], what is the rate with which error
of the best approximation

inf
pn∈Pn

‖f − pn‖∞

converges to zero as n goes to infinity?
The so-called Jackson theorems shows that the decay rate of the error depends on the

smoothness of the function f . E.g. for f ∈ C1[a, b] we will prove an approximation rate of
O(1/n), and for f ∈ C2[a, b] we will obtain an approximation rate of O(1/n2).

The problem of approximating functions on intervals by polynomials is closely related to
the problem of approximating periodic functions by trigonometric polynomials:

Definition 1.2 The space C2π of 2π-periodic functions consists of all functions f ∈ C(IR)
which satisfy

∀x ∈ IR f(x) = f(x+ 2π).

The space of k times continuously differentiable 2π-periodic functions is defined as Ck
2π =

Ck(IR) ∩ C2π.
We denote by Tn the space of trigonometric polynomials of degree less or equal to n (n =

0, 1, 2, . . .):

Tn = { a0 +
n∑

k=1

(ak cos kx+ bk sin kx) | ak, bk ∈ C/ }

1.1.2 Interpolation with trigonometric polynomials

Note that the space Tn has dimension 2n+ 1 (whereas Pn has dimension n+ 1). Therefore we
can ask whether we can always find a trigonometric interpolation polynomial pn ∈ Tn which
passes through 2n+1 given points (xj, yj), j = 0, . . . , 2n. We first note that Tn has a property
similar to Pn:

Lemma 1.3 A nonzero function f ∈ Tn has at most 2n zeros in [0, 2π).
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Proof: Assume that f ∈ Tn has 2n+ 1 zeros θ0, . . . , θ2n in [0, 2π). Writing sin kθ and cos kθ in
terms of eikθ and e−ikθ and with z := eiθ we have that

f(θ) =
n∑

k=−n

cke
ikθ =

n∑

k=−n

ckz
k

equals zero for zj := eiθj . Multiplying by zn we obtain that
∑n

k=−n ckz
k+n is a polynomial of

degree ≤ 2n in z which has at least 2n+ 1 zeros zj ∈ C/ . Hence it must be the zero polynomial
and all ck = 0.

Corollary 1.4 Let x0, . . . , x2n be distinct values in [0, 2π). Then for any given values
y0, . . . , y2n there exists a unique interpolating trigonometric polynomial pn ∈ Tn which satis-
fies pn(xj) = yj, j = 0, . . . , 2n.

Proof: The interpolation problem leads to a linear system of 2n + 1 equations for the 2n + 1
unknowns a0, . . . , an, b1, . . . , bn with the right hand side vector (y0, . . . , y2n)

⊤. This system has
a unique solution for every right hand side if the matrix is nonsingular. To show that the matrix
is nonsingular consider the problem with the zero right hand side vector. Any solution of this
linear system corresponds to a function pn ∈ Tn which is zero in x0, . . . , x2n. By Lemma 1.3 pn
must be zero. Hence the homogeneous linear sytem has only the zero solution and the matrix
is nonsingular.

1.1.3 An auxiliary approximation problem

As a first step toward proving the Jackson theorems let us consider the 2π periodic function
f with f(x) = x for x ∈ (−π, π]. In order to approximate it by a function in Tn we can use
the interpolation pn through the 2n+ 1 nodes k π

n+1
, k = −n, . . . , n which exists and is unique

due to Corollary 1.4. Since the function f is odd, i.e., f(−x) = −f(x) (for x 6= kπ), the
function −pn(−x) ∈ Tn is also an interpolation. By the uniqueness of the interpolation, pn(x)
and −pn(−x) must have the same coefficients and so we have that

pn(x) =
n∑

k=1

bk sin kx. (1.1)

Now we consider the interpolation error e(x) := f(x) − pn(x). Since pn interpolates f in
2n + 1 points in (−π, π) , e(x) has at least 2n + 1 simple zeros in (−π, π). There cannot be
more zeros in (−π, π): If e(x) has 2n + 2 zeros in (−π, π), then e′(x) = 1 − p′n(x) ∈ Tn has
at least 2n + 1 zeros by Rolle’s theorem. By Corollary 1.3 we then have e′(x) = 0 which is a
contradiction. The same argument also shows that the 2n+ 1 zeros of e in (−π, π) are simple,
i.e., e′(x) 6= 0 in those points. Hence the function e(x) changes its sign in (−π, π) only at the
interpolation points k π

n+1
, k = −n, . . . , n. Let s(x) denote the function which is alternatingly

1 and −1 between the nodes, i.e.,

s(x)|[k π
n+1

,(k+1) π
n+1

) = (−1)k,

then we have
π∫

−π

|f(x)− pn(x)| dx =
∣
∣
∣

π∫

−π

(f(x)− pn(x))s(x) dx
∣
∣
∣ =

∣
∣
∣

π∫

−π

f(x)s(x) dx−

π∫

−π

pn(x)s(x) dx
∣
∣
∣.
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Let us show that the second term on the right hand side must be 0: Consider

A :=

π∫

−π

s(x) sin kx dx = −

π∫

−π

s(x+
π

n+ 1
) sin kx dx = −

π∫

−π

s(x) sin k(x−
π

n+ 1
) dx

= −

π∫

−π

s(x) sin kx cos(−k
π

n+ 1
) dx−

π∫

−π

s(x)
︸ ︷︷ ︸

odd

cos kx
︸ ︷︷ ︸

even

sin(−k
π

n+ 1
) dx

= − cos(k
π

n+ 1
)A+ 0

Since cos(k π
n+1

) 6= −1 we obtain A = 0 and also
∫ π
π pn(x)s(x) dx = 0 because of (1.1). It

remains to evaluate
∫ π
π f(x)s(x) dx: It can be easily seen geometrically that we have

∣
∣
∣

π∫

π

xs(x) dx
∣
∣
∣ = 2

∣
∣
∣

π∫

0

xs(x) dx
∣
∣
∣ = 2

(
π

n+ 1

)2 ∣∣
∣
∣−

1

2
+

3

2
− · · · ± (n+

1

2
)
∣
∣
∣
∣ = 2

(
π

n+ 1

)2 n+ 1

2
=

π2

n+ 1
.

Hence we obtain the following result for the interpolation error:

π∫

π

|f(x)− pn(x)| dx =
π2

n+ 1
.

1.1.4 Jackson theorems for periodic functions

Now we can prove the Jackson theorem for f ∈ C1
2π: Using integration by parts we see that

π∫

−π

θf ′(θ + x+ π) dθ = [θf(θ + x+ π)]π
−π −

π∫

−π

1f(θ + x+ π) dθ = 2πf(x)−

π∫

−π

f(θ) dθ

yielding

f(x) =
1

2π

π∫

−π

f(θ) dθ

︸ ︷︷ ︸

=:a0=const.

+
1

2π

π∫

−π

θf ′(θ + x+ π) dθ (1.2)

In order to approximate f(x) we replace θ in the second integral by the interpolation pn ∈ Tn

from above and obtain

q(x) = a0 +
1

2π

π∫

−π

pn(θ)f
′(θ + x+ π) dθ = a0 +

1

2π

π∫

−π

pn(θ − π − x)f ′(θ) dθ (1.3)

where

pn(θ− π− x) =
n∑

k=1

bk sin k(θ− π− x) =
n∑

k=1

bk
(

sin k(θ− π) cos kx
︸ ︷︷ ︸

− cos k(θ− π) sin kx
︸ ︷︷ ︸

)

. (1.4)

If we insert this expression for pn(θ−π−x) into the integral in (1.3) we see that the underbraced
terms can be pulled out of the integral and that q ∈ Tn.
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It remains to estimate the approximation error:

‖f − q‖
∞

= sup
x

∣
∣
∣
1

2π

π∫

−π

(θ − pn(θ))f
′(θ + x+ π) dθ

∣
∣
∣ ≤

1

2π

π∫

−π

|θ − pn(θ)| |f
′(θ + x+ π)| dθ

≤
1

2π
‖f ′‖

∞

π∫

−π

|θ − pn(θ)| dθ =
1

2π
‖f ′‖

∞

π2

n+ 1

We have therefore proved the following theorem:

Theorem 1.5 (Jackson theorem for C1
2π) For f ∈ C1

2π there holds

inf
p∈Tn

‖f − p‖
∞

≤
π

2(n+ 1)
‖f ′‖

∞
(1.5)

If the function f(x) has mean 0, i.e.,
∫ π
−π f(x) dx = 0, then the approximating function q(x)

has the same property: The constant a0 in (1.2) is 0, and (1.3), (1.4) show that q(x) is of the
form

∑n
k=1(ak cos kx+ bk sin kx). Let us define T

0
N as the space of trigonometric polynomials of

degree less or equal n with mean 0:

T 0
N := { p ∈ TN |

π∫

−π

p(x) dx = 0 } = {
n∑

k=1

(ak cos kx+ bk sin kx) | ak, bk ∈ C/ }

We then have

Lemma 1.6 Let f ∈ C1
2π with

∫ π
−π f(x) dx = 0. Then

inf
p∈T 0

N

‖f − p‖
∞

≤
π

2(n+ 1)
‖f ′‖

∞
. (1.6)

Next, we would like to investigate the approximation rates for functions with more smoothness,
e.g., f ∈ C3

2π. We can use the following “bootstrap” argument: Assume that f ∈ C1
2π. Let p̃

be an arbitrary trigonometric polynomial in Tn. Then we have obviously

inf
p∈Tn

‖f − p‖
∞

= inf
p∈Tn

‖(f − p̃)− p‖
∞

≤
π

2(n+ 1)
‖f ′ − p̃′‖

∞
(1.7)

using (1.5) for (f − p̃). Note that (1.7) holds for any function p̃ ∈ Tn, so we can choose it in
such a way that the right hand side becomes as small as possible. Since

{ p̃′ | p̃ ∈ Tn } = T 0
n ,

equation (1.7) implies

inf
p∈Tn

‖f − p‖
∞

≤
π

2(n+ 1)
inf
p∈T 0

n

‖f ′ − p‖
∞

(1.8)

For approximation errors in T 0
n we can use a similar argument: Assume f ∈ C1

2π with
∫ π
−π f(x) dx = 0. Using (1.6) and

{ p̃′ | p̃ ∈ T 0
n } = T 0

n ,

we obtain analogously

inf
p∈T 0

n

‖f − p‖
∞

≤
π

2(n+ 1)
inf
p∈T 0

n

‖f ′ − p‖
∞
. (1.9)

This allows us to prove
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Theorem 1.7 (Jackson theorem for Ck
2π) Let k ∈ {1, 2, . . .} and f ∈ Ck

2π. Then

inf
p∈Tn

‖f − p‖
∞

≤

(

π

2(n+ 1)

)k ∥
∥
∥f (k)

∥
∥
∥
∞

(1.10)

Proof: Note that f ′,. . . ,f (k−1) have mean 0 since f is periodic. Applying (1.8), (1.9) (k − 2
times) and finally (1.6) we get

inf
p∈Tn

‖f − p‖
∞

(1.8)

≤
π

2(n+ 1)
inf
p∈T 0

n

‖f ′ − p‖
∞

(1.9)

≤

(

π

2(n+ 1)

)2

inf
p∈T 0

n

‖f ′′ − p‖
∞

(1.9)

≤ · · ·
(1.9)

≤

(

π

2(n+ 1)

)k−1

inf
p∈T 0

n

∥
∥
∥f (k−1) − p

∥
∥
∥
∞

(1.6)

≤

(

π

2(n+ 1)

)k ∥
∥
∥f (k)

∥
∥
∥
∞
.

1.1.5 Jackson theorems on an interval

For simplicity we first consider the interval [−1, 1] and consider a function f ∈ C1[−1, 1]. We
can transform this function to a 2π-periodic function g by the change of variables

g(θ) = f(cos θ) (1.11)

Note that the function g is even. This transformation is useful since polynomials f(x) of
degree less or equal n are transformed into even trigonometric polynomials g(θ) and vice versa.
If g ∈ Tm and h ∈ Tn then the product g · h is in Tm+n as can be seen, e.g., by writing
cos x and sin x in terms of e±ix. If f ∈ Pn then we see that g given by (1.11) is in Tn and
even. It is also clear that g can only be the zero function if f is the zero function. Since
dim T even

n = dimPn = n + 1 it follows that the transformation (1.11) gives a one-to-one linear
mapping between Pn and T even

n .
The functions cos kx, k = 0, . . . , n form a basis of T even

n . These functions are transformed
by (1.11) to certain polynomials Tk(x) with

cos kθ = Tk(cos θ). (1.12)

These are the so-called Chebyshev polynomials. Obviously, T0(x) = 1 and T1(x) = x. If we add
the formulae cos(k ± 1)x = cos kx cos x ∓ sin kx sin x we obtain cos(k + 1)x = 2 cos kx cos x −
cos(k − 1)x which gives the recursion formula

Tk+1(x) = 2Tk(x)x− Tk−1(x). (1.13)

We can now prove an approximation result for polynomials on an interval:

Theorem 1.8 (Jackson theorem for C1[− 1, 1]) For f ∈ C1[−1, 1] there holds

inf
p∈Pn

‖f − p‖
∞

≤
π

2(n+ 1)
‖f ′‖

∞
(1.14)
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Proof: Define g by (1.11). Then g′(θ) = −f ′(cos θ) sin θ. Therefore the limits limθ→±π g
′(θ)

exist and are equal (both are 0), hence g ∈ C1
2π. We also see that

‖g′‖
∞

≤ ‖f ′‖
∞
. (1.15)

Consider an approximation p ∈ Tn for g. Since p need not be even we consider the symmetrized
function p̃(θ) = (p(θ) + p(−θ))/2. Then we see

‖g(θ)− p̃(θ)‖
∞

= 1
2
‖g(θ) + g(−θ)− p(θ)− p(−θ)‖

∞

≤ 1
2
(‖g(θ)− p(θ)‖

∞
+ ‖g(−θ)− p(−θ)‖

∞
) = ‖g(θ)− p(θ)‖

∞

and this implies

inf
p∈T even

n

‖g − p‖
∞

= inf
p∈Tn

‖g − p‖
∞

(1.5)

≤
π

2(n+ 1)
‖g′‖

∞
(1.16)

The change of variables q(cos θ) = p(θ) defines for p ∈ T even
n a function q ∈ Pn such that

max
x∈[−1,1]

|f(x)− q(x)| = max
θ∈[−π,π)

|g(θ)− p(θ)| . (1.17)

Equations (1.17), (1.16), and (1.15) together yield (1.14).

In the same way as we proved Theorem 1.7 using Theorem 1.5 we can use Theorem 1.8 to
prove an approximation result for f ∈ Ck[−1, 1]:

Theorem 1.9 (Jackson theorem for Ck[− 1, 1]) Let n, k be integers with n ≥ k − 1 ≥ 0
and f ∈ Ck[−1, 1]. Then

inf
p∈Pn

‖f − p‖
∞

≤
(
π

2

)k 1

(n+ 1)n · · · (n− k + 2)

∥
∥
∥f (k)

∥
∥
∥
∞

(1.18)


