
Least Squares Approximation

1 Introduction

In many applications we want to find an approximation for a function, for example for differential equations.

Example problem: We want to understand how a calculator or computer can evaluate sinx for a given value x. The
processor can essentially only perform addition, multiplication, division. Therefore we can try to approximate the function
with a polynomial.

We use the notation Pn for polynomials of degree≤ n:

Pn =
{

c0 + c1x+ · · ·+ cnxn | c j ∈ R
}

It is sufficient to consider x ∈ [0,π/2]. Instead of approximating sinx for x ∈ [0,π/2] we can consider the function u(x) =
sin(π

2 x) for x ∈ [0,1].

We want to find a polynomial w(x) ∈Pn such that the error is minimal in the least squares sense:

‖u−w‖2
2 =

∫ 1

0
|u(x)−w(x)|2 dx is minimal

1.1 Abstract version of the least squares problem

Let V denote a vector space which is equipped with an inner product (·, ·). This defines a norm ‖v‖ := (v,v)1/2.
We are given: a vector u ∈ V and an n-dimensional subspace

W := span
{

a(1), . . . ,a(n)
}

where the vectors a(1), . . . ,a(n) are assumed to be linearly independent (otherwise some of them are redundant and can be
dropped).

Least Squares Problem: Find a vector w = c1a(1)+ · · ·+ cna(n) such that ‖u−w‖ is minimal.

2 Algorithm 1: Normal Equations

We are given a point u outside of the subspace W . We want to find the closest point w in this subspace.

Geometric intuition tells us that w−u should be orthogonal on the subspace W .

This orthogonality condition is called

Normal Equations: Find w = c1a(1)+ · · ·+ cna(n) such that
(
w−u,a( j)

)
= 0 for j = 1, . . . ,n.

The normal equations are n linear equations for n unknowns c1, . . . ,cn. We can write them in matrix-vector notation as

Mc = b
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Here c =

 c1
...

cn

 ∈ Cn, M ∈ Cn×n is the so-called Gram matrix with entries M jk =
(
a(k),a( j)

)
, and the right-hand side

vector b ∈ Cn has the entries b j =
(
u,a( j)

)
for j = 1, . . . ,n.

After we have computed the entries of M and b we have to solve the n× n linear system Mc = b. We can use Gaussian
elimination with pivoting for this. In Matlab we can use c=M\b .

The linear system has a unique solution if and only if the matrix M is nonsingular.

Proposition 1. M is nonsingular.

Proof. We have to show that Mv = 0 implies v = 0.

We claim that the unique solution c of the normal equations is the solution of the least squares problem.

Proposition 2. The solution vector c of the normal equations yields the unique solution of the least squares problem.

Proof. Let w = c1a(1)+ · · ·+ cna(n). We want to show that any w̃ ∈W different from w will have ‖w̃−u‖> ‖w−u‖.
We can write w̃ = w+ v with some v ∈W , then multiplying out and using the normal equations we obtain

‖u− w̃‖2 = (u−w− v,u−w− v) = (u−w,u−w)− (v,u−w)︸ ︷︷ ︸
0

−(u−w,v)︸ ︷︷ ︸
0

+(v,v)

‖u− w̃‖2 = ‖u−w‖2 +‖v‖2

which is actually Pythagoras’ theorem for the triangle with vertices u,w, w̃. Hence ‖u− w̃‖2≥‖u−w‖2 and we have equality
only if v = d1a(1)+ · · ·+ dna(n) = 0. Since a(1), . . . ,a(n) are by assumption linearly independent we must have d1 = · · · =
dn = 0. Hence the coefficients c1, . . . ,cnof the least squares solution are unique.

2.1 Case of V = Cm

We now consider the special case V = Cm with the inner product

(u,v) = u1v1 + · · ·+unvn = [v1, . . . ,vn]

 u1
...

un


where we use the notation vH := v>. Note that in Matlab vH is obtained by v’ .

We need to have m ≥ n, otherwise the vectors a(1), . . . ,a(n) ∈ Cm are linearly dependent. We define the matrix A ∈ Cm×n

using the columns a(1), . . . ,a(n)

A =
[
a(1), . . . ,a(n)

]
Then we can write w = c1a(1)+ · · ·+ cna(n) = Ac.

Least Squares Problem: Given A ∈ Cm×n and u ∈ Cn find a vector c ∈ Cn such that

‖Ac−u‖2 is minimal

Note that we can write the Gram matrix M and the right-hand side vector b as

M = AHA, b = AHu

Hence we can write the normal equations as
AHAc = AHu.
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2.2 Notation A =
[
a(1), . . . ,a(n)

]
We can use the “matrix-vector” notation also in the general case of a vector space V , e.g. for functions in V = L2([0,1]).
For n vectors a(1), . . . ,a(n) ∈ V we denote this n-tupel by A =

[
a(1), . . . ,a(n)

]
. We can then write a linear combination with

coefficient vector c ∈ Cn with the “matrix-vector” notation

c1a(1)+ · · ·+ cna(n) =
[
a(1), . . . ,a(n)

] c1
...

cn

= Ac

Note that we have for vectors v = Ac and ṽ = Ac̃ with c, c̃ ∈ Cn that

(v, ṽ) = (Ac,Ac̃) = c̃HMc = (Mc, c̃)

with the Gram matrix M.

3 Algorithm 2: Orthogonalization

We can use a new basis p(1), . . . , p(n) for W = span
{

a(1), . . . ,a(n)
}

. Then we can write w ∈W as w = d1 p(1)+ · · ·+dn p(n)

and we obtain the normal equations
(

p(1), p(1)
)
· · ·

(
p(n), p(1)

)
...

...(
p(1), p(n)

)
· · ·

(
p(n), p(n)

)

 d1

...
dn

=


(
u, p(1)

)
...(

u, p(n)
)


If the vectors p(1), . . . , p(n) are orthogonal on each other, the matrix is diagonal and the linear system is very easy to solve.

3.1 Gram-Schmidt orthogonalization and decomposition A = PS

Assume the vectors a(1), . . . ,a(n) ∈ V are linearly independent. We want to find vectors p(1), . . . , p(n) which are orthogonal
on each other and satisfy

span
{

p(1), . . . , p(k)
}
= span

{
a(1), . . . ,a(k)

}
for k = 1, . . . ,n

We define

p(1) := a(1)

p(2) := a(2)− s12 p(1)

p(3) := a(3)− s13 p(1)− s23 p(2)

...

where we choose the coefficientsk j such that we have
(

p( j), p(k)
)
= 0 for j = 1, . . . ,n, k = 1, . . . , j−1.

E.g., the condition
(

p(2), p(1)
)

gives

s12 =

(
a(2), p(1)

)(
p(1), p(1)

)
The conditions

(
p(3), p(1)

)
= 0 and

(
p(3), p(2)

)
= 0 give

s13 =

(
a(3), p(1)

)(
p(1), p(1)

) , s23 =

(
a(3), p(2)

)(
p(2), p(2)

)
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Therefore we obtain

Gram-Schmidt orthogonalization algorithm:
For j = 1, . . . ,n:

p( j) := a( j)−
j−1

∑
k=1

sk j p(k) where sk j :=

(
a( j), p(k)

)(
p(k), p(k)

)
We see that p( j) ∈ span

{
a(1), . . . ,a( j)

}
for j = 1, . . . ,n. All the vectors p( j) are nonzero: E.g., if obtained p(3) = 0 this

would mean that a(3) ∈ span
{

p(1), p(2)
}
⊂ span

{
a(1),a(2)

}
, hence the vectors a(1),a(2),a(3) are linearly independent, in

contradiction to our assumption that a(1), . . . ,a(n) are linearly independent.

Note that we have

a(1) := p(1)

a(2) := p(2)+ s12 p(1)

a(3) := p(3)+ s13 p(1)+ s23 p(2)

...

i.e., we have the decomposition

[
a(1), . . . ,a(n)

]
=
[

p(1), . . . , p(n)
]


1 s12 · · · s1n
. . . . . .

...
. . . sn−1,n

1


A = PS

with the upper triangular matrix S ∈ Cn×n. This is the “QR decomposition without normalization”.

We can write w ∈W as
w = Ac = Pd

Because of A = PS the vectors c,d ∈ Cn are related by Sc = d.

This gives the following algorithm for solving the least squares problem:

1. Given a(1), . . . ,a(n) use the Gram-Schmidt algorithm to find p(1), . . . , p(n) and the matrix S

2. Given u ∈ V compute the coefficients d1, . . . ,dn from Section 3:

For j = 1, . . . ,n : d j :=

(
u, p( j)

)(
p( j), p( j)

)
3. We obtain w ∈W with ‖w−u‖= min

w = d1 p(1)+ · · ·+dn p(n)

We obtain the coefficient vector c with ‖Ac−u‖= min by solving the linear system

Sc = d

using back substitution.

3.2 Orthonormalization and decomposition A = QR

Sometimes it is useful to have an orthonormal basis (ON basis) q(1), . . . ,q(n) for span
{

a(1), . . . ,a(n)
}

. We can obtain this
by normalizing the vectors p(1), . . . , p(n). If we multiply row j of the matrix S by

∥∥p( j)
∥∥

q( j) =
1∥∥p( j)
∥∥ p( j), [r j j, . . . ,r jn] :=

∥∥∥p( j)
∥∥∥ · [1,s j, j+1, . . . ,s jn]
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we get from A = PS the so-called QR decomposition

[
a(1), . . . ,a(n)

]
=
[
q(1), . . . ,q(n)

] r11 · · · r1n
. . .

...
rnn


A = QR

where the matrix R is upper triangular with positive entries on the diagonal.

3.3 Case of V = Cm

We are given n linearly independent vectors a(1), . . . ,a(n) ∈ Cm. Therefore we must have m ≥ n. This corresponds to the
matrix A =

[
a(1), . . . ,a(n)

]
∈ Cm×n with linearly independent columns.

We then obtain the QR decomposition

[
a(1), . . . ,a(n)

]
=
[
q(1), . . . ,q(n)

]
︸ ︷︷ ︸

orthonormal

 r11 · · · r1n
. . .

...
rnn


A

m×n
= Q

m×n
R

n×n

We can compute this in Matlab by [Q,R]=qr(A,0) . Note that Matlab uses a slightly different algorithm and therefore some
of the columns of Q are multiplied by −1, and the corresponding r j j are negative.

The vectors q(1), . . . ,q(n) form an orthonormal basis for rangeA. This is a subspace of dimension n of the vector space V
which has dimension m ≥ n. We can extend the orthonormal basis q(1), . . . ,q(n) to a basis q(1), . . . ,q(m) of the whole space
Cm. Here the additional vectors q(n+1), . . . ,q(m) form an orthonormal basis for the orthogonal complement of rangeA.

This yields the “full version” of the QR decomposition:

[
a(1), . . . ,a(n)

]
=
[
q(1), . . . ,q(n),q(n+1), . . . ,q(m)

]
︸ ︷︷ ︸

orthonormal



r11 · · · r1n
. . .

...
rnn

0 · · · 0
...

...
0 · · · 0


A

m×n
= Q̃

m×m
R̃

m×n

We can compute this in Matlab by [Qt,Rt]=qr(A,0) .

Note that the additional part
[
q(n+1), . . . ,q(m)

]
does not contribute anything to the decomposition since it is multiplied by

zero.

In many applications (e.g. solving a least squares problem) the “economy size version” [Q,R]=qr(A,0) is sufficient. Only
use the “full version” [Qt,Rt]=qr(A,0) if you need a basis for the orthogonal complement of rangeA.

The most accurate way to compute the QR decomposition in machine arithmetic is to transform the columns of A step by
step to an upper triangular matrix R̃ using so-called “Householder reflections”. This is the algorithm used by Matlab for the
qr command.

4 Review of Hermitian matrices and matrix norms

4.1 Review: Hermitian matrices, positive definite matrices

We call a matrix A ∈ Cn×n Hermitian if AH = A. For a real matrix this is the same as symmetric.
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Theorem 1. Assume A ∈Cn×n is Hermitian. Then the eigenvalues λ1, . . . ,λn are real, and there exists an orthonormal basis
of eigenvectors v(1), . . . ,v(n): With V =

[
v(1), . . . ,v(n)

]
we have

A =V

 λ1
. . .

λn

V H , V HV = I

We call a Hermitian matrix A positive definite if for all nonzero vectors v

vHAv > 0

Note that a Hermitian matrix is positive definite if and only if all eigenvalues are positive.

Consider a matrix A =
[
a(1), . . . ,a(n)

]
∈ Cm×n with linearly independent columns. Then the Gram matrix M with M jk =(

a(k),a( j)
)

is positive definite.

4.2 Matrix norms: 2-norm, Frobenius norm

A matrix A ∈ Cm×n corresponds to a linear mapping Cn→ Cm, c 7→ Ac.

We would like to have a bound such that
∀v ∈ Cn : ‖Av‖ ≤C‖v‖

with the smallest possible constant C.

We can define a norm as the “maximal magnification factor”:

‖A‖= sup
v∈Cn

‖v‖=1

‖Av‖= sup
v∈Cn

‖v‖≤1

‖Av‖

Since the unit ball in Cn is compact there exists v with ‖v‖= 1 such that ‖Av‖ is maximal, and we can write max instead of
sup.

For the vector norms ‖v‖
∞

, ‖v‖1, ‖v‖2 we obtain in this way matrix norms ‖A‖
∞

, ‖A‖1, ‖A‖2. One can show that

‖A‖
∞
= max

j=1,...,n

n

∑
k=1

∣∣a jk
∣∣ maximal row sum of absolute values

‖A‖1 = max
k=1,...,n

n

∑
j=1

∣∣a jk
∣∣ maximal column sum of absolute values

‖A‖2
2 = λmax

(
AHA

)
maximal eigenvalue of the Gram matrix M = AHA

The last line follows from

‖Ac‖2
2 =

∥∥∥c1a(1)+ · · ·+ cna(n)
∥∥∥2

2
=

n

∑
j=1

n

∑
k=1

c jck

(
a( j),a(k)

)
= cHMc≤ λmax(M)‖c‖2

2

We can also define the Frobenius norm (a.k.a. Hilbert-Schmidt norm)

‖A‖F :=
(∥∥∥a(1)

∥∥∥2

2
+ · · ·+

∥∥∥a(n)
∥∥∥2

2

)1/2

= (M11 +M22 + · · ·+Mnn)
1/2

Note that

‖Ac‖2
2 =

n

∑
j=1

n

∑
k=1

c jck

(
a( j),a(k)

)
≤

n

∑
j=1

n

∑
k=1

∣∣c j
∣∣ |ck|

∥∥∥a( j)
∥∥∥

2

∥∥∥a(k)
∥∥∥

2

=

(
n

∑
j=1

∣∣c j
∣∣∥∥∥a( j)

∥∥∥
2

)2

≤
(
|c1|2 + · · ·+

∣∣c2
n

∣∣)(∥∥∥a(1)
∥∥∥2

2
+ · · ·+

∥∥∥a(n)
∥∥∥2

2

)
︸ ︷︷ ︸

‖A‖2
F

‖Ac‖2 ≤ ‖A‖F ‖c‖2

Hence we have ‖A‖2 ≤ ‖A‖F .
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4.3 Case A =
[
a(1), . . . ,a(n)

]
with a( j) ∈ V

For a general inner product space V we can consider A =
[
a(1), . . . ,a(n)

]
with a( j) ∈ V . For c ∈ Cn we can consider the

mapping c 7→ Ac = c1a(1)+ · · ·+ cna(n), Cn→ V and define the norm

‖A‖= sup
c∈Cn

‖c‖2=1

‖Ac‖= sup
c∈Cn

‖c‖2≤1

‖Ac‖

Since the unit ball in Cn is compact there exists v with ‖v‖= 1 such that ‖Av‖ is maximal, and we can write max instead of
sup. By the same argument as above we have

‖A‖2 = λmax(M)

with the Gram matrix M ∈ Cn×n. With the Frobenius norm

‖A‖F :=
(∥∥∥a(1)

∥∥∥2
+ · · ·+

∥∥∥a(n)
∥∥∥2
)1/2

we have with the same arguments as above
‖Ac‖ ≤ ‖A‖F ‖c‖2

and ‖A‖ ≤ ‖A‖F .

5 The Singular Value Decomposition

5.1 Motivation

We are given vectors a(1), . . . ,a(n) in an inner product space V . Assume that a(1), . . . ,a(n) are linearly independent, i.e.
A =

[
a(1), . . . ,a(n)

]
has rank n.

We want to know: Are the vectors a(1), . . . ,a(n) “almost linearly dependent”, i.e., is there a matrix Ã of lower rank which is
very close to A?

First we want to find the closest rank 1 approximation: Pick a unit vector u(1) and let W1 = spanu(1). Let ã( j) be the
point on W1 which is closest to a( j) for j = 1, . . . ,n, let Ã =

[
ã(1), . . . , ã(n)

]
. We can measure the total distance of the points

a(1), . . . ,a(n) to the subspace W1 by ∥∥∥a(1)− ã(1)
∥∥∥2

+ · · ·+
∥∥∥a(n)− ã(n)

∥∥∥2
=
∥∥A− Ã

∥∥2
F

We pick the unit vector u(1) such that this expression becomes minimal.

Next we want to find the closest rank 2 approximation: Pick an ON basis u(1),u(2) and let W2 = span
{

u(1),u(2)
}

. Let ã( j)

be the point on W2 which is closest to a( j) for j = 1, . . . ,n, let Ã =
[
ã(1), . . . , ã(n)

]
. Now we want to pick the ON vectors

u(1),u(2) such that ∥∥∥a(1)− ã(1)
∥∥∥2

+ · · ·+
∥∥∥a(n)− ã(n)

∥∥∥2
=
∥∥A− Ã

∥∥2
F

becomes minimal.

In this way we will obtain an ON basis u(1), . . . ,u(n) for span
{

a(1), . . . ,a(n)
}

. For each k = 1,2, . . . ,n−1 we also obtain the
best rank k approximation A(k) which minimizes

∥∥A−A(k)
∥∥

F .

Alternatively we can measure the error of a rank k matrix Ã by the norm
∥∥A− Ã

∥∥ instead of the Frobenius norm
∥∥A− Ã

∥∥
F .

It turns out that minimizing
∥∥A− Ã

∥∥ over all rank k matrices Ã leads to the same matrix A(k) we obtained before for the
Frobenius norm.
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5.2 Construction of the Singular Value Decomposition

We consider an inner product space V and vectors a(1), . . . ,a(n) ∈ V . Let A = [a(1), . . . ,a(n)]. We first assume that these
vectors are linearly independent. The Gram matrix M ∈ Cn×n has the entries M jk =

(
a(k),a( j)

)
. This matrix is Hermitian,

i.e., MH = M. Since the vectors are linearly independent it is positive definite.

Therefore the matrix M has real positive eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn > 0, and an orthonormal basis of eigenvectors
v(1), . . . ,v(n). Hence the matrix V =

[
v(1), . . . ,v(n)

]
∈ Cn×n is unitary, i.e., V HV = I.

Note that we have for vectors u = c1a(1)+ · · ·+ cna(n) = Ac and ũ = c̃1a(1)+ · · ·+ c̃na(n) = Ac̃ the inner product

(u, ũ) = c̃HMc

We now define the vectors ũ( j) := Av( j) ∈ V for j = 1, . . . ,n. Then we have the inner products

(
ũ( j), ũ(k)

)
= v(k)HMv( j) = v(k)λ jv( j) =

{
0 if j 6= k
λ j if j = k

,

i.e., these vectors are orthogonal. We can normalize them to length 1 by defining

σ j := λ
1/2
j , u( j) := σ

−1
j Av( j)

We can write the last equation as

Av( j) = σ ju( j), j = 1, . . . ,n (1)

The numbers σ1 ≥ σ2 ≥ ·· · ≥ σn > 0 are called singular values. The vectors v(1), . . . ,v(n) are called right singular vectors,
the vectors u(1), . . . ,u(n) are called left singular vectors.

Theorem 2. Let V be an inner product space. Let A =
[
a(1), . . . ,a(n)

]
with a( j) ∈ V linearly independent. Then we have the

singular value decomposition [
a(1), . . . ,a(n)

]
=
[
u(1), . . . ,u(n)

] σ1
. . .

σn

V H

where u(1), . . . ,u(n) ∈ V are orthonormal, σ1 ≥ σ2 ≥ ·· · ≥ σn > 0, V ∈ Cn×n unitary.

In other words, we have an orthonormal basis v(1), . . . ,v(n) of Cn and orthonormal vectors u(1), . . . ,u(n) ∈ V such that

Av( j) = σ ju( j) j = 1, . . . ,n

Let v ∈ Cn. We can then write v as a linear combination of v(1), . . . ,v(n):

v = c1v(1)+ · · ·+ cnv(n) =V c with c j =
(

v,v( j)
)
, c =V Hv

Hence

Av =
[
u(1), . . . ,u(n)

] σ1
. . .

σn


 v(1)H

...
v(n)H

v

and

A =
[
u(1), . . . ,u(n)

] σ1
. . .

σn


 v(1)H

...
v(n)H

= σ1u(1)v(1)H + · · ·+σnu(n)v(n)H

This means that we express the columns [a(1), . . . ,a(n)] as a linear combination of the vectors u(1), . . . ,u(n).
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If we use only the first k terms we obtain the rank k approximation A(k)

A(k) := σ1u(1)v(1)H + · · ·+σku(k)v(k)H

and
A−A(k) = σk+1u(k+1)v(k+1)H + · · ·+σnu(n)v(n)H

Let c̃ ∈ Cn and c :=V H c̃. Then c̃ =V c = c1v(1)+ · · ·+ cnv(n) and have

Ac̃ = σ1c1u(1)+ · · ·+σncnu(n)

A(k)c̃ = σ1c1u(1)+ · · ·+σkcku(k)

hence (
A−A(k)

)
c̃ = σk+1ck+1u(k+1)+ · · ·+σncnu(k)

∥∥(A−A(k)
)

c̃
∥∥=

∥∥∥∥∥∥∥
 σk+1ck+1

...
σncn


∥∥∥∥∥∥∥

2

≤ σk+1 ‖c‖2︸︷︷︸
‖c̃‖2

and we have equality for ck+1 = 1, all other c j = 0. Therefore
∥∥A−A(k)

∥∥= σk+1.

5.3 Singular Value Decomposition for V = Cm

Assume m≥ n. We have the “thin SVD” (a.k.a. economy-size SVD)

A =U

 σ1
. . .

σn

V H

We can extend U =
[
u(1), . . . ,u(n)

]
to an orthonormal basis Ũ =

[
u(1), . . . ,u(n),u(n+1), . . . ,u(m)

]
of Cm and have

A = Ũ



σ1
. . .

σn

0 · · · 0
...

...
0 · · · 0


V H

This is the “full size” SVD.

5.4 SVD gives rank k approximation which minimizes
∥∥A− Ã

∥∥
2 and

∥∥A− Ã
∥∥

F

Let B ∈Cm×n. Assume that m≥ n (the proof for m≤ n works in the same way). We choose an ON basis v(1), . . . ,v(n) for Cn,
and an ON basis u(1), . . . ,u(m) for Cm. Then the mapping with respect to the new bases is described by the matrix B̂ =UHBV .
Note that ‖B‖2 =

∥∥B̂
∥∥

2 and ‖B‖F =
∥∥B̂
∥∥

F .

Therefore we only have to find the best rank k approximations for a matrix of the form

A =



σ1
. . .

σn

0 · · · 0
...

...
0 · · · 0


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Let B be a matrix of rank k < n. We need to show that ‖A−B‖2 ≥ σk+1 and ‖A−B‖F ≥
(
σ2

k+1 + · · ·+σ2
n
)1/2.

The first k+1 columns of B must be linearly dependent, hence there exists a nonzero vector c =



c1
...

ck+1
0
...
0


such that Bc = 0.

Let B = A+E, then (A+E)c = 0, hence

σk+1 ‖c‖ ≤

∥∥∥∥∥∥∥
 σ1c1

...
σk+1ck+1


∥∥∥∥∥∥∥

2

= ‖Ac‖2 = ‖Ec‖2 ≤ ‖E‖2 ‖c‖2

Since ‖c‖ 6= 0 we obtain ‖B−A‖= ‖E‖ ≥ σk+1 for any matrix B ∈ Cm×n of rank k.

Note that this proof also shows that for B of rank k = n−1 we have ‖A−B‖F = ‖E‖F ≥ σn.

Consider now the case k = n−2. For two ON vectors c,c′ we have

‖Ec‖2
2 +
∥∥Ec′

∥∥2
2 ≤ ‖E‖

2
F

Since the null space of B has dimension 2 we can pick an ON basis c,c′ of the null space. Then

σ
2
n +σ

2
n−1 ≤

∥∥∥∥∥∥∥
 σ1c1

...
σncn


∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥
 σ1c′1

...
σnc′n


∥∥∥∥∥∥∥

2

2

= ‖Ac‖2
2 +
∥∥Ac′

∥∥2
2 = ‖Ec‖2

2 +
∥∥Ec′

∥∥2
2 ≤ ‖E‖

2
F

5.5 Application: Principal Component Analysis (PCA)

We measure m different quantities of n items (e.g., height, length, weight, age of 10 animals) and obtain n data points
x(1), . . . ,x(n) ∈ Rm. Typically m is large (say, m≥ 5), so we cannot make a plot of the points in Rm to understand the data.

The best approximation by a single point is the mean µ := 1
N ∑

n
j=1 x( j). The variation of the data points from each other is

characterized by

ρ :=
n

∑
j=1

∥∥∥x( j)−µ

∥∥∥2

Question: Are the data points approximately located on an affine space of lower dimension? E.g., I can consider a plane P
through the point µ: P =

{
µ + c1u(1)+ c2u(2) | c1,c2 ∈ R

}
where u(1),u(2) are orthonomal vectors.

Let x̃( j) be the projection of x( j) onto the plane P. Then by Pythagoras

ρ :=
n

∑
j=1

∥∥∥x( j)−µ

∥∥∥2
=

n

∑
j=1

∥∥∥x̃( j)−µ

∥∥∥2

︸ ︷︷ ︸
ρ̃

+
n

∑
j=1

∥∥∥x̃( j)− x( j)
∥∥∥2

︸ ︷︷ ︸
δ

We now pick a plane P which makes δ minimal. In many cases we have that ρ̃ is now very close to ρ , e.g., ρ̃ ≈ 0.95ρ .
This means that 95% of the variation in the data can be explained by the 2-dimensional plane P, i.e., only two directions
u(1),u(2) ∈ Cm. Each of the projected points has the form

x̃( j) = µ + c( j)
1 u(1)+ c( j)

2 u(2) = µ +
[
u(1),u(2)

]
c( j)

and the 2-dimensional plot of the points c(1), . . . ,c(n) ∈ R2 still contains 95% of the variation of the original data.
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Let a( j) := x( j)−µ and A =
[
a(1), . . . ,a(n)

]
. Then ρ = ‖A‖2

F .

We compute the singular value decomposition A = UΣV (the thin version). Then ρ = ∑σ2
j . If ρ̃ = σ2

1 +σ2
2 is large (e.g.

≈ 0.95ρ) then the rank 2 approximation

A(2) =
[
u(1),u(2)

][
σ1

σ2

][
v(1)H

v(2)H

]
=
[
x̃(1)−µ, . . . , x̃(n)−µ

]
=
[
u(1),u(2)

][
c(1), . . . ,c(n)

]
captures most of the variation in the data points, and we can look at the coefficients c(1), . . . ,c(n) ∈ R2

[
c(1), . . . ,c(n)

]
=

[
u(1)H

u(2)H

]
A =

[
σ1v(1)H

σ2v(2)H

]
to understand the original data points x(1), . . . ,x(n) ∈ Rm.

Note: In many applications the m components of each data point x( j) ∈ Rm correspond to different physical quantities like
length, weight, age. In this case changing the units (e.g. centimeters instead of meters) changes the result of the SVD,

since we use the errors
∥∥x( j)− x̃( j)

∥∥2
= ∑

m
k=1

∣∣∣x( j)
k − x̃( j)

k

∣∣∣2. Recommendation: First rescale each component so that “relevant
changes” have the same size for each component. Then apply the PCA to the rescaled data vectors.
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