Least Squares Approximation

1 Introduction

In many applications we want to find an approximation for a function, for example for differential equations.

Example problem: We want to understand how a calculator or computer can evaluate sinx for a given value x. The
processor can essentially only perform addition, multiplication, division. Therefore we can try to approximate the function
with a polynomial.

We use the notation &2, for polynomials of degree< x:

P, = {c0+c1x—|—---+cnx”]cj€R}

It is sufficient to consider x € [0, 7/2]. Instead of approximating sinx for x € [0, /2] we can consider the function u(x) =
sin(Zx) for x € [0,1].

We want to find a polynomial w(x) € &7, such that the error is minimal in the least squares sense:

1
|u—w|3 :/ |u(x) —w(x)|*dx is minimal
0

1.1 Abstract version of the least squares problem
Let ¥ denote a vector space which is equipped with an inner product (-,-). This defines a norm ||v|| := (v,v)"/%.
We are given: a vector u € ¥ and an n-dimensional subspace

W = span {a(l)’,_,’a(n)}

where the vectors a(!), ..., a(" are assumed to be linearly independent (otherwise some of them are redundant and can be
dropped).

Least Squares Problem: Find a vector w = cjal!) 4--- 4 ¢,a"™ such that ||u — w]| is minimal.

2 Algorithm 1: Normal Equations

We are given a point u outside of the subspace #'. We want to find the closest point w in this subspace.
Geometric intuition tells us that w — u should be orthogonal on the subspace 7.

This orthogonality condition is called

Normal Equations: Find w = cja!) + -+ + ¢,a™ such that (w —u,a")) =0 for j=1,...,n.

The normal equations are n linear equations for n unknowns cy,...,c,. We can write them in matrix-vector notation as

Mc=1b>b



Here ¢ = : € C", M € C™" is the so-called Gram matrix with entries M, = (a(k),a(j)), and the right-hand side
Cn
vector b € C" has the entries b; = (u,a/)) for j=1,...,n.

After we have computed the entries of M and b we have to solve the n X n linear system Mc = b. We can use Gaussian
elimination with pivoting for this. In Matlab we can use c=M\b .

The linear system has a unique solution if and only if the matrix M is nonsingular.

Proposition 1. M is nonsingular.
Proof. We have to show that Mv = 0 implies v = 0. O

We claim that the unique solution ¢ of the normal equations is the solution of the least squares problem.

Proposition 2. The solution vector c of the normal equations yields the unique solution of the least squares problem.

Proof. Letw = cjal") +--- + c,a™. We want to show that any w € % different from w will have |[ip — ul| > ||w — u]|.
We can write w = w+ v with some v € W, then multiplying out and using the normal equations we obtain

lu—w|* = (w—w—vu—w—v) = (u—wu—w)— (v, u—w)—(u—w,v)+(v,v)
—— N——
0 0

) 2 2
[l = W[|7 = [l —wl|”+[lv]
which is actually Pythagoras’ theorem for the triangle with vertices u, w, w. Hence ||u — w||* > ||u — w||* and we have equality

only if v =dja") +--- +d,a™ = 0. Since a'V,...,a"™ are by assumption linearly independent we must have d; = --- =
d, = 0. Hence the coefficients cy,. .., c,0f the least squares solution are unique. O

2.1 Caseof ¥ =C"

We now consider the special case ¥ = C™ with the inner product

uj
(,v) =uvy 4+ tty vy = [V1,. .., V]
Up
where we use the notation v/ := 7. Note that in Matlab v is obtained by v’ .
We need to have m > n, otherwise the vectors a(!), ... al™) € C™ are linearly dependent. We define the matrix A € C"*"

using the columns a(V, ..., a"
A= [a(l),...,a("q

Then we can write w = cla(l) 4+ 4 cna(”) =Ac.
Least Squares Problem: Given A € C"™*" and u € C" find a vector ¢ € C" such that
|Ac —ul|, is minimal
Note that we can write the Gram matrix M and the right-hand side vector b as
M=A"A, b=A"u

Hence we can write the normal equations as
AHAc=A"y.



2.2 Notation A = [a(l),...,a(”)]

We can use the “matrix-vector” notation also in the general case of a vector space ¥ , e.g. for functions in ¥ = L?([0, 1]).
For n vectors all),...,a" € ¥ we denote this n-tupel by A = [a(!),...,a™]. We can then write a linear combination with
coefficient vector ¢ € C" with the “matrix-vector” notation

craV 4+ 4™ = [a(l),...,a(")} D | =Ac

Cn
Note that we have for vectors v = Ac and v = A¢ with ¢, ¢ € C" that
(v,7) = (Ac,A&) = &' Mc = (Mc,é)

with the Gram matrix M.

3 Algorithm 2: Orthogonalization

We can use a new basis pt), ..., p( for # = span{a(l),...,a(”)}. Then we can write w € # as w =d; p\Y) +--- 4+ d,p"")
and we obtain the normal equations

(p(l),p(l)) (p(n)7p(1)) d; (u’p(l))
(p(l)’p(n)) (p(n)7p(ﬂ)) d, (u’p(n))
If the vectors p(I), ..., p® are orthogonal on each other, the matrix is diagonal and the linear system is very easy to solve.

3.1 Gram-Schmidt orthogonalization and decomposition A = PS

Assume the vectors a(!l), ... al® € ¥ are linearly independent. We want to find vectors p!), ..., p(") which are orthogonal
on each other and satisfy

span{p(l),...,p(k>} = span{a(l),...,a(k)} fork=1,...,n

We define
p(l) — aD
p(2) — q? —S12p(1)
p(3) —a® _ S13p(1) _ s23p(2)

where we choose the coefficients,; such that we have (p(j),p(k)) =0forj=1,...,nk=1,...,j—1.

E.g., the condition (p®, p(V) gives



Therefore we obtain

Gram-Schmidt orthogonalization algorithm:

Forj=1,...,n:
‘ N (a(j) (k))
() e qi) (0 L \anp)
pYi=a ];skjp where sy (p(k),p(k))

We see that pi/) € span{al,...,a))} for j =1,...,n. All the vectors p) are nonzero: E.g., if obtained p(® = 0 this
would mean that a©® ¢ span { p(l), p(z)} - span{a(l),a(2)}, hence the vectors al),a®,a®) are linearly independent, in
contradiction to our assumption that a(!), ... 4 are linearly independent.

Note that we have
al .= p(l)
a? = p(2) +S12p(1)
a® = p(3) +S13p(1) + sz3p(2)

i.e., we have the decomposition

A=PS§

with the upper triangular matrix S € C"*". This is the “QR decomposition without normalization”.

We can write w € # as
w=Ac=Pd

Because of A = PS the vectors ¢,d € C" are related by Sc = d.

This gives the following algorithm for solving the least squares problem:
1. Given a(V, ... a use the Gram-Schmidt algorithm to find pW. ..., p™ and the matrix S
2. Given u € ¥ compute the coefficients dy, .. .,d, from Section 3:

(u7 p(j))

Forj=1,...,n: dj::W

3. We obtain w € # with ||w — u|| = min

We obtain the coefficient vector ¢ with ||Ac — u|| = min by solving the linear system
Sc=d

using back substitution.

3.2 Orthonormalization and decomposition A = OR

Sometimes it is useful to have an orthonormal basis (ON basis) ¢!),..., ¢! for span {a(!),....al™}. We can obtain this
by normalizing the vectors p(!),.... p(")_ If we multiply row j of the matrix § by H p) H
. 1 . .
() — () y . H <1>H_ . ‘
q HP(J)HP 5 [r]]7"'7r]n]' p [1vsj,J+17---aS]n]



we get from A = PS the so-called QR decomposition

rnr o0 Tin

A=QR

where the matrix R is upper triangular with positive entries on the diagonal.

3.3 Caseof v =C"

We are given 7 linearly independent vectors al.....a" e C™. Therefore we must have m > n. This corresponds to the
matrix A = [a(l), .. ,a(”)] € C™ with linearly independent columns.

We then obtain the QR decomposition

A =0 R

mxn mxn nxn

We can compute this in Matlab by [Q,R]=qr(4,0) . Note that Matlab uses a slightly different algorithm and therefore some
of the columns of Q are multiplied by —1, and the corresponding r;; are negative.

The vectors ¢!, ..., ¢ form an orthonormal basis for rangeA. This is a subspace of dimension 7 of the vector space V
which has dimension m > n. We can extend the orthonormal basis ¢\, ..., g™ to a basis g!),..., ¢ of the whole space
C™. Here the additional vectors g"*1), ... 4™ form an orthonormal basis for the orthogonal complement of range A.

This yields the “full version” of the QR decomposition:

ri1 I'in
n n n m T'nn
[a(l),...,a( >}:[q(1>w,q<>7q< ) g o L
orthonormal
L O 0 -

A=0 R
mxn mXxXm mXn

We can compute this in Matlab by [Qt,Rt]=qr(4,0) .

Note that the additional part [q(”+1), . ,q<m)] does not contribute anything to the decomposition since it is multiplied by
Zero.

In many applications (e.g. solving a least squares problem) the “economy size version” [Q,R]=qr (A, 0) is sufficient. Only
use the “full version” [Qt,Rt]=qr(A,0) if you need a basis for the orthogonal complement of rangeA.

The most accurate way to compute the QR decomposition in machine arithmetic is to transform the columns of A step by
step to an upper triangular matrix R using so-called “Householder reflections”. This is the algorithm used by Matlab for the
gr command.

4 Review of Hermitian matrices and matrix norms

4.1 Review: Hermitian matrices, positive definite matrices

We call a matrix A € C"*" Hermitian if A” = A. For a real matrix this is the same as symmetric.



Theorem 1. Assume A € C"™" js Hermitian. Then the eigenvalues A1, ..., A, are real, and there exists an orthonormal basis
of eigenvectors v v With v = [v(l), e ,v(”)} we have

A
A=V v ViV =1
An
We call a Hermitian matrix A positive definite if for all nonzero vectors v
VAr>0
Note that a Hermitian matrix is positive definite if and only if all eigenvalues are positive.

Consider a matrix A = [a(l), . ,a(")] € C™ with linearly independent columns. Then the Gram matrix M with M =
(a®,al)) is positive definite.

4.2 Matrix norms: 2-norm, Frobenius norm

A matrix A € C"™*" corresponds to a linear mapping C" — C™, ¢ — Ac.

‘We would like to have a bound such that
YveC": |Av|| < C||v|]

with the smallest possible constant C.
We can define a norm as the “maximal magnification factor”:
|A]l = sup [|Av]| = sup [Av]
veC" veC"
[vil=1 vil<t

Since the unit ball in C" is compact there exists v with ||v|]| = 1 such that ||Av|| is maximal, and we can write max instead of
sup.

For the vector norms ||v||.,, ||v]|;, ||v]|, we obtain in this way matrix norms ||A[|., [|A]|,, ||A]|,- One can show that

n
[A]l. = max Y |aj maximal row sum of absolute values
jzl,...,nk:1
n
Al = max Z |aj| maximal column sum of absolute values
=L...n 5

A3 = Amax (A"A) maximal eigenvalue of the Gram matrix M = A7A

The last line follows from

IAC|? = Hclam 4ot epa®™

2 non .
=Y Y cjei (a,a0)) = M Me < Amen (M) ]
j=lk=1

We can also define the Frobenius norm (a.k.a. Hilbert-Schmidt norm)
Jalle = (
n n X n n X
lacl2=Y Y cja (a(])7a(k)) <Y Y el el Ha(nH Ha(k)H
j=1k=1 j=1k=1 2 2
n . 2 2
(Bl o], ) = et (o
j=1

Al

a(l)Hi—i----—i-Ha(") 2) / = (M) + M + -+ My,) '/

Note that

)

1Aclly < [lAll£ llell

Hence we have ||A||, < ||A]|5.



4.3 Case A= [a(l),...,a(”)] with o) € ¥

For a general inner product space ¥ we can consider A = [a(l), . ,a(”)] with al) € ¥, For ¢ € C" we can consider the
mapping ¢ — Ac = cjaV) +--- 4 ¢,a™, C" — ¥ and define the norm

JAll= sup [lAc| = sup fac]

ce ce
llell,=1 llell<1

Since the unit ball in C" is compact there exists v with ||v|| = 1 such that ||Av|| is maximal, and we can write max instead of
sup. By the same argument as above we have

JANI® = Amax (M)

with the Gram matrix M € C"*". With the Frobenius norm

2
Al = <Ha<1)H +...+Ha<n)

2> 1/2

we have with the same arguments as above
[Acll < [l lielly

and [[A[| < [|Al|.

5 The Singular Value Decomposition

5.1 Motivation

We are given vectors a!),...,a® in an inner product space ¥. Assume that a!),... 4" are linearly independent, i.e.
A= [a(l), el ,a(")] has rank 7.

We want to know: Are the vectors a''), ... a™ “almost linearly dependent”, i.e., is there a matrix A of lower rank which is
very close to A?

First we want to find the closest rank 1 approximation: Pick a unit vector uV) and let ¥ = span uM. Let a\¥) be the
point on #; which is closest to aly) for j=1,...,nletA= [c’i(l), . ,d(”)}. We can measure the total distance of the points
aV, ... a™ to the subspace #] by

—

Ham_d(1>H2+...+Ha<n>_d<n> A4l

We pick the unit vector D such that this expression becomes minimal.

Next we want to find the closest rank 2 approximation: Pick an ON basis (1), 4(?) and let #5 = span {u(l) u? } Let )
be the point on #5 which is closest to al) for j=1,....nlet A= [d(l), e ,d(”)]. Now we want to pick the ON vectors
uM), u® such that

Ham _a~<1>H2+ ot e~ = |4 A

becomes minimal.

In this way we will obtain an ON basis u!),...,u™ for span {a(!),...,a!"}. For each k = 1,2,...,n — 1 we also obtain the
best rank k approximation A ;) which minimizes HA —A) H P

Alternatively we can measure the error of a rank k matrix A by the norm HA —A~H instead of the Frobenius norm HA —A~H P
It turns out that minimizing HA —AH over all rank k matrices A leads to the same matrix A, we obtained before for the
Frobenius norm.



5.2 Construction of the Singular Value Decomposition

We consider an inner product space ¥ and vectors a(l), .. ,a(”) eV. LetA= [a(l),...,a(")]. We first assume that these
vectors are linearly independent. The Gram matrix M € C"*" has the entries M, = (a(k),a(j)). This matrix is Hermitian,
i.e., M = M. Since the vectors are linearly independent it is positive definite.

Therefore the matrix M has real positive eigenvalues A; > A, > --- > A, > 0, and an orthonormal basis of eigenvectors
v v, Hence the matrix V = [v(1),... v(W] € C™" is unitary, i.e., VHV = L.

Note that we have for vectors u = cja't) +--- +¢,a™ = Ac and i = &a"V) + - - 4 &,a\™) = A¢ the inner product

(u,ii) = Mc
We now define the vectors /) := Avl) € ¥ for j=1,...,n. Then we have the inner products
(L;(.n , ﬁ<k>) ENCTIYSUISSCPINUIS LR e

i.e., these vectors are orthogonal. We can normalize them to length 1 by defining

oj = kjl/z, ull) = GJ-_IAv(j)
We can write the last equation as

A =cu) j=1,....n (1)
The numbers 6; > 0, > -+ > 0, > 0 are called singular values. The vectors (D) yee ,v(”) are called right singular vectors,
the vectors u(!), ..., ul® are called left singular vectors.

Theorem 2. Let ¥ be an inner product space. Let A = [a(l), . ,a(”)] with a\) € ¥ linearly independent. Then we have the
singular value decomposition
Ol

[a(l),...,a(”)} = [u(l),...,um)} %
On

where u(l), .. .,u(”) €V are orthonormal, 6| > 03 > -+ > 0, > 0, V. € C"" unitary.

In other words, we have an orthonormal basis v(!), ..., v of C" and orthonormal vectors u'!), ..., u"™ € ¥ such that
Avl) = Gju(’) j=1,....n
Let v € C”. We can then write v as a linear combination of v(!) ... y("):
v=cpW e =ve withc; = (v,v(j)>, c=VHy
Hence
o p(DH
Ay = [u(l), ,u(”)] : v
o, v(n)H
and
o y(DH
A= [u“), N .,u(")} S I (V3L S N
o, v(n)H

This means that we express the columns [a(!), ... a)] as a linear combination of the vectors u!), ... u(").



If we use only the first k terms we obtain the rank k approximation A

A(k) = Glu(l)v(l)H 44 Gku(k)v(k)H

and
A—Ap = O uF DY EEDH oy () (W H

Letée C"and ¢ :=VH¢ Thené=Ve=civV) + - +¢,v™ and have

A¢ = ojciuV 4+ o,cu™

hence
(A —A(k)> c= Gkﬂck“u(kﬂ) +--+ Gncnu(k)
Ok+1Ck+1
H(A_A(k))éH = : < Okt1|[cll,
Gl’lcl’l

2 11l

and we have equality for ¢, = 1, all other ¢; = 0. Therefore HA —Awp H = O}41.

5.3 Singular Value Decomposition for 7 = C™

Assume m > n. We have the “thin SVD” (a.k.a. economy-size SVD)

(9]
A=U vH
- Gn -
We can extend U = [u(l), e, u(")] to an orthonormal basis U = [u(1>, um ) .,Lt(m>] of C™ and have
o ;
iy On | yH
A=U 0 0 Vv
- 0 ’ 0 -

This is the “full size” SVD.

5.4 SVD gives rank k approximation which minimizes ||A—A||, and ||[A—A||,

Let B € C™*", Assume that m > n (the proof for m < n works in the same way). We choose an ON basis v(l), ... ,v(") for C",
and an ON basis (), ... u(™ for C™. Then the mapping with respect to the new bases is described by the matrix 8 = U"”BV.
Note that ||B||, = ||B||, and ||B||» = ||B

P
Therefore we only have to find the best rank £ approximations for a matrix of the form

O]




Let B be a matrix of rank k < n. We need to show that [|A — B||, > 0+ and |A —B| ;> (67, +- --+G,12)1/2.

F e T
The first k+ 1 columns of B must be linearly dependent, hence there exists a nonzero vector ¢ = Ck(;r | such that Be = 0.
- 0 -
Let B=A+E, then (A+E)c =0, hence
01€1
Ot [lefl < : = llAclly = [[Eclly < [[Ell2[lell
Ok+1Ck+1 5
Since ||c|| # 0 we obtain ||B—A|| = ||E|| > O+ for any matrix B € C"*" of rank k.
Note that this proof also shows that for B of rank k =n— 1 we have ||[A — B||; = ||E|| > O.
Consider now the case k = n — 2. For two ON vectors c,c’ we have
2 2 2
1|l +[[E<[; < IENF
Since the null space of B has dimension 2 we can pick an ON basis ¢, ¢ of the null space. Then
2 / 2
O1Cy O1¢;
2 2 . . 2 2 2 2 2
0, + 0,1 < : + : = [lAclly +[|Ac'||; = I Eclly + [[E< [, < IE
Sun |||, O, Cl 5

5.5 Application: Principal Component Analysis (PCA)

We measure m different quantities of n items (e.g., height, length, weight, age of 10 animals) and obtain n data points
xM . xW e R™, Typically m is large (say, m > 5), so we cannot make a plot of the points in R” to understand the data.

The best approximation by a single point is the mean y := %Z;le x\/). The variation of the data points from each other is

characterized by
n , 2
o o]
j=1

Question: Are the data points approximately located on an affine space of lower dimension? E.g., I can consider a plane P
through the point u: P = {t +cju'V +c2u® | ¢1,c2 € R} where u!),u(?) are orthonomal vectors.

Let (/) be the projection of x\/) onto the plane P. Then by Pythagoras

ool - £+ §
j=1 j=1 j=1

p 5

‘ ) ) H2

We now pick a plane P which makes 6 minimal. In many cases we have that p is now very close to p, e.g., p ~ 0.95p.
This means that 95% of the variation in the data can be explained by the 2-dimensional plane P, i.e., only two directions
uV) u®) € C™. Each of the projected points has the form

D = g+ D 4 @ = 4 [u<1>7u<2>} o)

and the 2-dimensional plot of the points c(!), ..., (" e R? still contains 95% of the variation of the original data.



Letal) :=x\) —pyand A = [a(l),...,a(”)]. Then p = ||A| 7.

We compute the singular value decomposition A = ULV (the thin version). Then p = 26]-2. Ifp = 612 + 622 is large (e.g.
~ 0.95p) then the rank 2 approximation

v
captures most of the variation in the data points, and we can look at the coefficients M, e e R?
()H (HH
) m| —|“ _ | ow
[c N } = [ L2H ]A— [ oy H }
to understand the original data points x!), ... x(") € R™.

Note: In many applications the m components of each data point x/) € R™ correspond to different physical quantities like

length, weight, age. In this case changing the units (e.g. centimeters instead of meters) changes the result of the SVD,
. _ . N

since we use the errors Hx(f ) — 50) H2 =Y x,(c] ) 7D ‘

—X”| . Recommendation: First rescale each component so that “relevant

changes” have the same size for each component. Then apply the PCA to the rescaled data vectors.



