
Approximation and Quadrature

1 Approximation using orthogonal projection

Let V be a vector space with inner product (u, v) and norm ‖u‖ = (u, u)1/2.

We are given u ∈ V and a subspace Ṽ = span
{
v(1), . . . , v(n)

}
where v(1), . . . , v(n) are linearly

independent. We want to find p ∈ Ṽ such that ‖u− p‖ is minimal.

Theorem 1. There is a unique p ∈ Ṽ minimizing ‖u− p‖. It satisfies the “normal equations”:
u− p ⊥ Ṽ , i.e. (

u− p, v(j)
)
= 0, j = 1, . . . , n

Method 1 to find p: With p = c1v
(1) + · · ·+ cnv

(n) we obtain an n× n linear system:

Mc = b, Mjk =
(
v(k), v(j)

)
, bj =

(
u, v(j)

)
Method 2 to find p: Step 1: use Gram-Schmidt orthogonalization to find an orthogonal basis
p(1), . . . , p(n) for Ṽ :

p(1) := v(1), p(2) := v(2) −
(
v(2), p(1)

)
(p(1), p(1))︸ ︷︷ ︸

s12

p(1), p(3) := v(3) −
(
v(3), p(1)

)
(p(1), p(1))︸ ︷︷ ︸

s13

p(1) −
(
v(3), p(2)

)
(p(2), p(2))︸ ︷︷ ︸

s23

p(2), . . .

Define the upper triangular matrix S =


1 s12 · · · s1n

. . . . . . ...
. . . sn−1,n

1

. Considering v(j), p(j) as “column

vectors” we can write
[
v(1), . . . , v(n)

]
=
[
p(1), . . . , p(n)

]
S and

p = c1v
(1) + · · ·+ cnv

(n) =
[
v(1), . . . , v(n)

]
c

= d1p
(1) + · · ·+ dnp

(n) =
[
p(1), . . . , p(n)

]
d

so the coefficient vectors c and d are related by Sc = d.

Step 2: With p = d1p
(1) + · · ·+ dnp

(n) the normal equations give dj =
(
u, p(j)

)
(p(j), p(j))

.

If we need the coefficient vector c we can solve Sc = d by back substitution.

Application 1: Let V = RN then we are given a matrix A :=
[
v(1), . . . , v(n)

]
∈ RN×n. Gram-

Schmidt gives a decomposition Q = PS. Dividing the columns of P by
∥∥p(j)∥∥ and multiplying the

rows or S by
∥∥p(j)∥∥ gives A = QR where Q has orthonormal columns, i.e., Q>Q = I. We can then

solve the least squares problem ‖Ac− u‖2 = min by d := Q>u and solving Sc = d.



Application 2: Let V = L2
w([a, b]) which is the space of functions on the interval [a, b] such

that
∫ b
a
u(x)2w(x)dx < ∞, with a weight function w(x) ≥ 0. Here (u, v) :=

∫ b
a
u(x)v(x)w(x)dx.

We consider the subspace Pn := span {1, x, . . . , xn}. Applying Gram-Schmidt to 1, x, x2, . . . gives
orthogonal polynomials p0, p1, p2, . . . where pj(x) = xj + lower order terms.
Example 1: For the interval [−1, 1] and w(x) = 1 we obtain the Legendre polynomials.

Example 2: For the interval [−1, 1] and w(x) = (1 − x2)−1/2 we obtain the Chebyshev poly-
nomials.

We use a different normalization: With T0(x) := 1 and T1(x) := x we define

Tn+1(x) := 2x · Tn(x)− Tn−1(x)

and have with the change of variables x = cos t

Tn(x) = cos(nt)

Hence the zeros x̃j and extrema xj on [−1, 1] are given by

x̃j = cos

(
(j − 1

2
)
π

n

)
, j = 1, . . . , n, xj = cos

(
(j − 1)

π

n

)
, j = 1, . . . , n+ 1 (1)

with Tn(xj) = (−1)j−1. Note that

(Tk, T`) =

∫ π

t=0

cos(kt) cos(`t)dt =


0 for k 6= `

π for k = ` = 0
π
2

for k = ` > 0

(2)

2 Approximation of functions by polynomials

We consider a continuous function u(x) on the interval [−1, 1] and want to find a polynomial
pn ∈ Pn such that

‖u− pn‖∞ = max
x∈[−1,1]

|u(x)− pn(x)|

is small. The Weierstrass approximation theorem states that we can make the approximation
error arbitrarily small:

Theorem 2. If u(x) is continuous on [−1, 1] there exists a sequence pn ∈ Pn, n = 0, 1, 2, . . . such
that

‖u− pn‖∞ → 0 asn→∞

Method 1: Interpolation. We pick n+1 distinct points x1, . . . , xn+1 ∈ [−1, 1] . Then there is
a unique interpolating polynomial pn ∈ Pn satisfying pn(xj) = f(xj) for j = 1, . . . , n+ 1. We
can write it in terms of the Lagrange formula:

pn(x) = u(x1)`1(x) + · · ·+ u(xn+1)`n+1(x) where `j(x) :=
∏

k=1...n+1
k 6=j

x− xk
xj − xk

Note that for equidistant nodes the error can be very large. From now on we will use for xj the
extrema of Tn(x), see (1).



Method 2: Orthogonal projection with weight function w(x) = (1 − x2)−1/2. We define
un ∈ Pn as the polynomial which minizes ‖u− un‖L2

w
. Using (2) we obtain

un = a0T0(x) + · · ·+ anTn(x), ak =
(u, Tk)

(Tk, Tk)
=

{
1
π
(u, Tk) for k = 0

2
π
(u, Tk) for k > 0

Note that (u, Tk) =
∫ 1

−1 u(x)Tk(x)(1− x
2)−1/2dx =

∫ π
t=0

u(cos t) cos(nt)dt.

For any u ∈ L2
w we have that ‖u− un‖L2

w
→ 0 as n → ∞. If u is continuous we may not have

pointwise convergence un(x) → u(x) as n → ∞ in a point x. With a stronger assumption on u
one can prove nicer convergence properties:

Theorem 3. Assume that u(x) satisfies a Lipschitz condition |u(x)− u(x̃)| ≤ L |x− x̃| for x, x̃ ∈
[−1, 1]. Then the Chebyshev series u =

∑∞
k=0 akTk converges absolutely for each x ∈ [−1, 1] and

we have uniform convergence
‖u− un‖∞ → 0 asn→∞

We can now get a bound for the approximation error for the projection un and the interpolation
pn in terms of the Chebyshev coefficients ak:

‖u− un‖∞ ≤
∞∑

j=n+1

|aj|

‖u− pn‖∞ ≤ 2
∞∑

j=n+1

|aj|

The decay of the coefficients ak depends on the “smoothness” of the function u(x).

The total variation TV (f) of a function is defined as a supremum over all partitions a = z0 <
z1 < · · · < zm = b of the interval [a, b]:

TV (f) = sup
partitions
z0,...,zm

m∑
j=1

|f(zj)− f(zj−1)|

If the function f is piecewise continuously differentiable on a partition a = X0 < X1 < · · · <
XM = b with jumps we have

TV (f) =
M∑
j=1

∫ Xm

Xm−1

|f ′(x)| dx+
M−1∑
j=1

|f(Xj + 0)− f(Xj − 0)|

E.g., the total variation of sign(x) on [−1, 1] is 2. Note that we can formally write TV (f) as∫ b
a
|f ′(x)| dx if we understand f ′(x) as a generalized function with delta functions at the jumps.

Theorem 4. If the derivative u(ν)(x) has bounded total variation TV (u(ν)) we have for ν ≥ 0 and
k > ν

|ak| ≤
2

π

TV (u(ν))

k(k − 1) · · · (k − ν)
= O

(
k−ν−1

)



E.g., for f(x) = |x| we have ν = 1 since f ′(x) = sign(x) has bounded variation: TV (f ′) = 2.

Therefore we obtain for the error of un and pn for ν ≥ 1 and n ≥ ν

‖u− un‖∞ ≤
2

π
· 1
ν
· TV (u(ν))

n(n− 1) · · · (n− ν + 1)
= O

(
n−ν
)

(3)

‖u− pn‖∞ ≤
4

π
· 1
ν
· TV (u(ν))

n(n− 1) · · · (n− ν + 1)
= O

(
n−ν
)

Note that for u(x) = |x| we obtain ‖u− un‖∞ = O(n−1) and ‖u− pn‖∞ = O(n−1).

We now consider a function u(x) which is analytic on [−1, 1], i.e., for each x0 ∈ [−1, 1] the Taylor
series about x0 converges for |x− x0| ≤ εx0 with εx0 > 0. This implies that the Taylor series
actually converges in the complex plane for |z − x0| ≤ εx0 . Therefore the function u(x) has an
analytic continuation to a function u(z) in the complex plane, defined in a region containing the
interval [−1, 1]. Such a function can be extended in the complex plane until we hit singularities
(like e.g. poles). The size of the region in the complex plane where u(z) is analytic determines the
decay of ak.

Let ρ > 1. The mapping w = 1
2
(z + z−1) maps the circle |z| = ρ to an ellipse Cρ. This ellipse has

foci −1, 1 and the sum of the semiaxes a, b is a+ b = ρ. Note that the circle |z| = ρ−1 is mapped
to the same ellipse.

We define Eρ as the open region bounded by the curve Cρ.

Theorem 5. Assume that u(x) is analytic on [−1, 1] and has an analytic extension to the open
region Eρ with ρ > 1. Let |u(z)| ≤M for z ∈ Eρ. Then

|ak| ≤ 2Mρ−k

Therefore we obtain for the error of un and pn for ν ≥ 1

‖u− un‖∞ ≤
2M

ρ− 1
ρ−n (4)

‖u− pn‖∞ ≤
4M

ρ− 1
ρ−n

Example: The function u(x) = (1 + x2)−1 is analytic on [−1, 1]. The function u(z) = (1 + z2)−1

is analytic everywhere in the complex plane except the two points z = ±i. We want to find the
ellipse Cρ which passes through the point i: We must have that the point z = iρ on the circle gets
mapped to the point w = 1

2
(z + z−1) = 1

2
(iρ− (iρ)−1)) = i1

2
(ρ − ρ−1) !

= i · 1. Hence we need to
find ρ > 1 such that 1

2
(ρ− ρ−1) = 1. This gives a quadratic equation for ρ which we can solve:

ρ2 − 2ρ− 1 = 0, ρ =
2 +
√
8

2
= 1 +

√
2

(we use “+” since we want to find ρ > 1). Let ρ∗ = 1 +
√
2. For any ρ < ρ∗ we have that u(z) is

bounded on Cρ. Hence we obtain that for any ρ < ρ∗ = 1 +
√
2 we have

‖u− un‖∞ ≤ Cρρ
−n, ‖u− pn‖∞ ≤ 2Cρρ

−n (5)



3 Quadrature

For an interval [a, b] and a “weight function” w(x) ≥ 0 we want to approximate integrals of the
form

I(f) :=

∫ b

a

f(x)w(x)dx

We pick distinct nodes x1, . . . , xn ∈ [a, b]. Let p(x) = f(x1)`1(x) + · · · + f(xn)`n(x) denote the
interpolating polynomial, then we define the approximation as

Q(f) =

∫ b

a

p(x)w(x)dx =
n∑
j=1

wjf(xj)

where wj = I(`j). Note that this quadrature rule is exact if f ∈ Pn−1, i.e., I(f) = Q(f).

Usually it is easier to determine w1, . . . , wn by using the n equations Q(xj) = I(xj) for j =
0, . . . , n− 1. This is a linear system of n equations for n unknowns.

Example: For w(x) = 1 on [−1, 1] and the nodes x1 = −1, x2 = 0, x3 = 1 we obtain for
f(x) = 1, x, x2 the three equations

w1 · 1 + w2 · 1 + w3 · 1 =

∫ 1

−1
1dx = 2

w1 · (−1) + w2 · 0 + w3 · 1 =

∫ 1

−1
x dx = 0

w1 · 1 + w2 · 0 + w3 · 1 =

∫ 1

−1
x2dx =

2

3

This linear system has the solution w1 =
1
3
, w2 =

4
3
, w3 =

1
3
which is the well known Simpson rule.

Note that the quadrature rule Q(f) may be exact for polynomials p ∈ Pm with m > n− 1. But it
can never be exact for P2n since for f(x) = (x− x1)2 · · · (x− xn)2 we have Q(f) = 0 and I(f) > 0.

It turns out that we can pick nodes x1, . . . , xn such that the quadrature rule is exact for p ∈ P2n−1,
this is the so-called Gaussian quadrature:

Theorem 6. Let p(x) denote the orthogonal polynomial of degree n for the weight function w(x) on
[a, b]. Let x1, . . . , xn be the zeros of the function p(x), and let w1, . . . , wn denote the corresponding
coefficients of the quadrature formula. Then

• the nodes x1, . . . , xn are distinct points in (a, b)

• wj > 0 for j = 1, . . . , n

• Q(p) = I(p) for all p ∈ P2n−1

Example: Approximate I =
∫ 1

0
x1/3 cosx dx by a Gaussian rule with 1 node.

If we use f(x) = x1/3 cosx and w(x) = 1 the function f is not very smooth and we will only have
very slow convergence of Qn(f).



Therefore we let f(x) = cosx and w(x) = x1/3. For the Gauss rule we first need to find the
orthogonal polynomial of degree 1: p1(x) = x− c should be orthogonal on 1, i.e.,

0 =

∫ 1

0

(x− c) · 1 · x1/3dx =

[
3

7
x7/3 − c3

4
x4/3

]1
x=0

=
3

7
− c3

4

hence c = 4
7
. Now x1 is the zero of p1(x) = x− 4

7
, so x1 = 4

7
. We need to determine w1 such that

Q(1) = I(1), i.e.,

w1 · 1 =

∫ 1

0

1 · x1/3dx =

[
3

4
x4/3

]1
x=0

=
3

4

hence w1 =
3
4
. Therefore we have obtain the Gaussian rule∫ 1

0

f(x)x1/3dx ≈ 3

4
· f(4

7
)

and we obtain for f(x) = cosx the approximation Q(f) = 3
4
cos(4

7
) = 0.6308. The exact value is

I(f) = 0.6076.

Quadrature error. The quadrature error satisfies

I(f)−Q(f) =
∫ b

a

(f(x)− p(x))w(x)dx

where p(x) is the interpolating polynomial through the nodes x1, . . . , xn.
For many quadrature rules we have that wj ≥ 0 for j = 1, . . . , n, e.g.,

• any Gaussian quadrature rule

• using Chebyshev nodes for [−1, 1] with w(x) = 1

We can then express the quadrature error in terms of any approximating polynomial q(x):

Theorem 7. Assume that the quadrature rule Q(f) = w1f(x1) + · · · + wnf(xn) satisfies wj ≥ 0
for j = 1, . . . , n and is exact for all polynomials p ∈ Pm. Then we have for any q ∈ Pm

|I(f)−Q(f)| ≤ 2I(1) ‖f − q‖∞ (6)

Consider the interval [−1, 1]. Then we can use for q(x) the Chebyshev projection um ∈ Pm and
our approximation results (3), (4) to obtain bounds for the quadrature error.
Example: We consider Gaussian quadrature for [−1, 1] and w(x) = 1 with n nodes. Then we
have m = 2n− 1 and I(1) =

∫ 1

−1 1dx = 2.
(i) Let f(x) = |x|. Then we have ν = 1 and (6), (3) give

|Qn(f)− I(f)| ≤ 2 · 2 · 2
π
· 1
ν

TV (f ′)

m
=

8

π
· 2

2n− 1

(This is not a sharp estimate, there actually holds |Q(f)− I(f)| ≤ Cn−2.)
(ii) Let f(x) = 1

1+x2
. Then f(z) is analytic in Eρ for ρ < 1+

√
2. Hence we have for any ρ < 1+

√
2

using (6), (5)

|Qn(f)− I(f)| ≤ 2 · 2 · Cρρ−(2n−1) = C ′ρe
−an with a = 2 log(1 +

√
2) = 1.763

Here the estimate for a is very sharp: Plotting log |Qn − I| vs. n gives a straight line with slope≈
−1.763.


