
Chapter 1. Error Estimation

This handout replaces, and extends, portions of sections 3.6, 5.6, 6.3, and 6.4
of Noble/Daniel. The objective is to connect the somewhat abstract error bound
inequalities of Secton 6.4 to the accuracy of individual measurements.

The main result of this chapter is this: The order of magnitude of the condition
number of a matrix is the number of digits of accuracy that might be lost in the
process of solving a linear system.

Notation. Throughout, lower case latin and greek characters will denote num-
bers, upper case characters will denote matrices and bold lower case characters
will denote vectors. The ith component of the vector a is ai and the entry in the
ith row and jth column of the matrix A is aij .

1.1. Relative Error.

The concept of relative error makes precise the somewhat inexact idea of a
number being correct to n digits. It is clear what we mean when we say that
the numbers 123451 and 123452 agree to five digits—the difference occurs in the
sixth digit. Occasionally, however, simply counting the number of digits that
agree can be inadequate. One reason for this is carries. If we change 9999 by
adding 1 then the change is in the fourth digit but the new number is 10000
and the two numbers have no digits in common. Since the two numbers have
different numbers of digits it is not even clear in which digit the change can be
said to have occured. Another problem is rounding. The numbers 1232 and
1238 differ in the fourth digit. If we round them off to three digits we get 1230
and 1240—so the rounded numbers agree to only two, not three, digits. To help
clarify the situation we introduce some terminology.

Definition 1.1 (Order of Magnitude). If a 6= 0, write a = ±f ×10n where
.1 ≤ f < 1. The exponent n is the order of magnitude of a, the number f is the
mantissa of a and ± is the sign of a. (We do not assign an order of magnitude,
mantissa or sign to the number zero.)

The number a has order of magnitude n if and only if 10n−1 ≤ |a| < 10n.
Thus a = 1 has order of magnitude 1 and a = 10 has order of magnitude 2.
This definition, which is not quite standard, is convenient for error estimation
computations.

The statement that numbers a and b agree to n digits is roughly the same as
the statement that (a− b)/a has order of magnitude about −n. For the previous
examples, if a = 123451 and b = 123452 then (a − b)/a ≈ −.81 × 10−5 and
(b − a)/b ≈ .81 × 10−5. If a = 10000 and b = 9999 then (a − b)/a = .1 × 10−4
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2 1. Error Estimation

and (b − a)/b ≈ −.1 × 10−4. For a = 1232 and b = 1238 the two ratios are
approximately ±.5× 10−2.

The statement that a and b agree to a certain number of digits is intuitive and
common in informal scientific discourse. In formal situations the algebraicaly
more tractable ratio (a− b)/a is used. The terminology we will use throughout
is given in the next two definitions

Definition 1.2 (Absolute Error). The absolute error of b as an approxi-
mation to a is |a− b|.

Definition 1.3 (Relative Error). The relative error of b as an approxima-
tion to a 6= 0 is |a− b|/|a|.

The absolute error of b as an approximation to a is the same as the absolute
error of a as an approximation to b, but relative error is not so symmetric. The
relative error of b as an approximation to a is different from the relative error of
a as an approximation to b. But they usually are not very different.

Proposition 1.4. Let a, b be nonzero and 0 < ε. If
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Proof: Recall that for any two real numbers a, b we have |a− b| ≥ ||a| − |b|| =
||b| − |a||. Thus

ε ≥ ||a| − |b||
|b| or − ε ≤ |a|

|b| − 1 ≤ ε.

whence the first conclusion. If 0 < ε < 1, taking reciprocals the first conclusion
becomes
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.
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To see why ε/(1 − ε) is not much different than ε for 0 < ε < 1 expand the
denominator in a geometric series. Then

ε

1− ε
= ε(1 + ε+ ε2 + · · · ) = ε+ ε2 + ε3 + · · · .

If, for example, ε = .001 = 10−3 then

ε+ ε2 + ε3 + · · · = .001001001 . . . .

Since the function ε/(1 − ε) has a vertical asymtote at ε = 1 the numbers
ε and ε/(1 − ε) are not always close. But for 0 < ε < .5 the two numbers
are comparable—although carries ocassionaly produce orders of magnitude that
formally differ by one (see exercises).

The difference between |a − b|/|a| and |a − b|/|b| is often ignored in practice
but we will not do so.

Example 1.5. A standard meter stick is used to measure a length of wire. The
resulting estimate is 21.3 centimeters. Find a bound on the relative error in the
measurement as an approximation to the true value.

Solution: Note the problem: if the true length of the wire is a and the measure-
ment is b, then we are asked for |a−b|/|a|. But we don’t know a. Proposition 1.4
is used to get around this problem.

A standard meter stick is graduated in millimeters. Assuming that we can
identify the closest graduation to the exact measurement, the absolute error,
|a− b|, would be at most .5 mm. Thus if a is the exact length and b = 21.3 then
|a − b|/|b| ≤ .0005/.213 ≈ .002347 = ε and, by Proposition 1.4, a bound on the
relative error of b as an approximation to a is ε/(1− ε) ≈ .002352.

Let’s take a closer look at the relationship between relative error and the
‘number of correct digits’. Suppose that |a − b|/|a| = ε and, for simplicity,
suppose that a > 0. Then b = a ± aε. Suppose a has order of magnitude n
and ε has order of magnitude −s. Write a = α × 10n and ε = e × 10−s where
.1 ≤ α, e < 1. Further assume s ≥ 1. Then aε = αe × 10n−s and .01 ≤ αe < 1.
So b is obtained by modifying a after the sth or even (s+1)th digit. If no carries
occur, this means that a and b agree to s digits.

The statement ‘b agrees with a to s digits’ will be taken to mean, in this text,

that the relative error of b as an approximation to a has order of magnitude −s.
Many calculations are done with limited precision using decimal approxima-

tions to actual values. For such calculations the mere act of entering a number
via a keyboard introduces some error. The size of this error, often referred to
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as round-off error depends upon the machine and processor used. A small four
function calculator may not distinguish between 1

3
and .333333 whereas advanced

symbolic processors may allow the user to decide the number of digits to be car-
ried in the computation. Whether the precision of a series of calculations is built
into the hardware or specified by the user there is a number, called the machine
epsilon, εmach, which is the accuracy limit for the basic arithmetic operations. In
particular, if the number a 6= 0 is replaced in the machine by the approximation
b then

|a− b|
|a| ≤ εmach.

(If a = 0 then b = 0 as well and there is no error.)

Many statistical and scientific software pacakages conform to the IEEE 32-bit
arithmetic standard. For these routines the default machine epsilon is εmach =
2−24 +2−47 ≈ .6× 10−7. Thus these routines cannot be expected to give results
more accurate than 7 digits.

The relative error is not defined when a, the number being approximated, is
zero. In this case absolute error must be used. Of course we will not usally know
if a is zero or not. The most information we usually have is a bound on the
relative error. From the first formula of the conclusion of Proposition 1.4 we see
that a cannot be zero unless ε ≥ 1. This leads to the following rule of thumb.

If the bound on the relative error is near 1, estimates of absolute error should

be used instead.

Exercises

1. What are the orders of magnitude of: a) 100, b) 1, c) .1 d)123/456?
2. A bound on the relative error of b 6= 0 as an approximation to a 6= 0

is .1. Find a bound on the relative error of a as an approximation to
b.

3. The height of a tree is measured to be 500 feet to within half a
foot. Find a bound on the relative error of the measurement as
an approximation to the true height. To how many digits does the
measurement agree with the true height?

4. The manual for an AC voltmeter states that the readings are accurate
to ±2%.

a) The meter registers 119.4 volts when inserted in a wall socket.
Find a bound on absolute error and the relative error of the
reading as an approximation to the true value.

b) Show that your answer for the relative error in part a) does
not depend upon the particular voltage measured.
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c) Suppose that the accuracy is given in the manual as k% where
k is a number less than 100. What will the bound on the
relative error of any measurement be?

5. Show that if a and b have the same order of magnitude, then

1

10
<
∣

∣

∣

a

b

∣

∣

∣ < 10.

Hint: If the common order of magnitude is n, then 10n−1 ≤ |a|, |b| <
10n.

6. Assume that 0 < ε < .5.

a) Show that ε and ε/(1− ε) differ by at most one order of mag-
nitude.
Hint: If ε has order of magnitude zero then .1 ≤ ε < .5. In this
case show that .1 < ε/(1− ε) < 1. If ε has order of magnitude
−n with n ≥ 1 then 10−n−1 ≤ ε < 10−n. In this case show
that 10−n−1 < ε/(1− ε) < 10−n+1.

b) If ε has order of magnitude −n and the orders of magnitude
of ε and ε/(1− ε) differ by 1, show that f × 10−n ≤ ε < 10−n

where f = 1/(1+10−n). What is f for n = 1, 2, 3? (These are
the intervals in which carries change the order of magnitude.)
Hint: Start with the inequality 10−n ≤ ε/(1− ε).

1.2. Vectors.

Recall the definition of a vector norm.

Definition 1.6 (Vector Norm). Let V be a vector space over the real field
R. A vector norm on V is a real valued function ‖ · ‖ : V → R such that

(1) For every x ∈ V , ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.
(2) For every x ∈ V and every α ∈ R, ‖αx‖ = |α| ‖x‖.
(3) (Triangle Inequality) For every x,y ∈ R, ‖x + y‖ ≤ ‖x‖+ ‖y‖.

For purposes of error estimation we are interested in three vector norms on
Rn, the space of real n-tuples. Let x = (x1, x2, . . . , xn) ∈ Rn and define

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|

‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n

‖x‖∞ = max(|x1|, |x2|, . . . , |xn|)
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We refer to these as the 1-norm, the 2-norm and the Max-norm respectively.
If ‖ · ‖ is a norm on Rn and c ≥ 0 then the sphere of radius c, centered at the

origin, with respect to this norm is the set of vectors x such that ‖x‖ = c. For
n = 2, the plane, the sphere of radius c for the 2-norm is the circle of radius c
centered at the origin. Sets of concentric spheres centered at the origin for the
other two norms are shown in Figures and . The geometry of these spheres will
be important subsequently.

Recall that for vectors a and b in a normed vector space the distance between
a and b is defined to be ‖a− b‖.
Definition 1.7 (Relative Error for Vectors). For vectors a 6= 0 and
b in a normed vector space the relative error of b as an approximation to a is
‖a− b‖/‖a‖. The absolute error of b as an approximation to a is ‖a− b‖.

It is natural to ask what the relative error of b as an approximation to a tells
us about the relative error of bi as an approximation to ai and conversely. For
an arbitrary norm not much can be said, but the next defintion isolates two
properties that a norm may have which help in this regard.

Definition 1.8. Let ‖ · ‖ be a vector norm.

(1) We say that ‖·‖ has Property I if when |ai| ≤ |bi| for all i, then ‖a‖ ≤ ‖b‖.
(2) We say that ‖ · ‖ has Property II if |ai| ≤ ‖a‖ for all i.

With one exception, all the norms used in this chapter have Properties I and
II. The matrix 2-norm, defined in the next section, has Property II but not
Property I.

Property I allows us to go from bounds on the relative errors of the bi as
approximations to a bound on the relative error of b as an approximation to a.

Proposition 1.9. Let ‖ · ‖ be a vector norm with Property I. If

|ai − bi|
|ai|

≤ εi, for all i

then
‖a− b‖
‖a‖ ≤ max

i
εi.

Proof:

|ai − bi|
|ai|

≤ εi, for all i =⇒ |ai − bi| ≤ εi|ai|, for all i

=⇒ |ai − bi| ≤ (max
i

εi)|ai|, for all i
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=⇒ |ai − bi| ≤ |(max
i

εi)ai|, for all i

=⇒ ‖a− b‖ ≤ ‖(max
i

εi)a‖

=⇒ ‖a− b‖ ≤ (max
i

εi)‖a‖

=⇒ ‖a− b‖
‖a‖ ≤ max

i
εi.

If the numbers bi are approximations to unknown numbers ai as in Example 1.5
and one of the bi is zero then we do not have an εi and the above proposition does
not apply. If, however, ai is known to be zero as well, then the proposition may
apply to the shortened vectors obtained by omitting the ith components. For
our three standard norms, the original vectors and the shortened vectors have
the same norm so the proposition will apply to the original vectors. This is the
case where the numbers bi result from storing approximations to the numbers
ai in a computer or calculator. Thus if b is the vector obtained by storing the
components of a in a machine, then

‖a− b‖
‖a‖ ≤ εmach.

Property II allows us to go from a bound on the relative error of b as an
approximation to a to a bound on the relative error of bi as an approximation
to ai. Before we can proceed, however, we need a vector norm version of Propo-
sition 1.4. The inequality of the next propostion is geometrically clear in the
plane for the 2-norm since any segment from the inner circle to the outer circle
must be at least as long as the difference in the radii (Figure ).

Proposition 1.10. Let a and b be vectors in a normed vector space. Then

‖a− b‖ ≥ |‖a‖ − ‖b‖|.

Proof: From the triangle inequality,

‖a‖ = ‖a− b + b‖ ≤ ‖a− b‖+ ‖b‖

hence
‖a‖ − ‖b‖ ≤ ‖a− b‖.

Interchanging a and b above we have

‖b‖ − ‖a‖ ≤ ‖a− b‖.

(Since ‖a − b‖ = ‖b − a‖ by the second property of norms with α = −1.) But
|‖a‖ − ‖b‖| is either ‖a‖ − ‖b‖ or ‖b‖ − ‖a‖.
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Proposition 1.11. Let a and b be nonzero vectors in a normed vector space
and let 0 < ε. If

‖a− b‖
‖b‖ ≤ ε

then

1− ε ≤ ‖a‖
‖b‖ ≤ 1 + ε

and, if 0 < e < 1,
‖a− b‖
‖a‖ ≤ ε

1− ε
.

Proof: By the previous proposition,

ε ≥ ‖a‖ − ‖b‖
‖b‖ ≥ |‖a‖ − ‖b‖|

‖b‖

so apply Proposition 1.4

The next proposition gives a recipe for finding a bound on the relative error
of bi as an approximation to ai given the relative error of b as an approximation
to a.

Proposition 1.12. Let ‖ · ‖ be a vector norm with Property II. Suppose that

‖a− b‖
‖a‖ ≤ ε.

where 0 < ε < 1. Let ε1 = ε/(1− ε).Then

|ai − bi| ≤ ‖b‖ε1.

If bi 6= 0 set ε2 = ‖b‖
|bi|

ε1.

If ε2 < 1, then
|ai − bi|
|ai|

≤ ε3

where ε3 = ε2/(1− ε2).

Proof: Since ε < 1, b 6= 0. Applying Proposition 1.11 (with a and b inter-
changed) to the hypothesis we have

‖a− b‖
‖b‖ ≤ ε

1− ε
= ε1.
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So |ai − bi| ≤ ‖a− b‖ ≤ ‖b‖ε1. If |bi| is nonzero, we have

ε1 ≥
‖a− b‖
‖b‖ ≥ |ai − bi|

‖b‖ =
|ai − bi|
|bi|

|bi|
‖b‖

hence
|ai − bi|
|bi|

≤ ‖b‖
|bi|

ε1 = ε2.

If ε2 < 1, an application of Proposition 1.4 shows

|ai − bi|
|ai|

≤ ε2
1− ε2

= ε3.

Example 1.13. The approximate vector b = (1.2,−3.7, 4, 1.1 × 10−8) is re-
turned by a software routine along with an estimate of the relative error in the
approximation of 10−5 = .1 × 10−4 using the 1-norm. Estimate the number of
correct digits in the first component. Might the last component of the exact
answer be zero?

Solution: Following the above recipe, ‖b‖1 = 8.900000011 and ε1 = 10−5/(1−
10−5) = .100001× 10−4. Thus

ε2 =
‖b‖1
|b1|

ε1 =
8.900000011

1.2
(.100001× 10−4) = .741674× 10−4

and ε3 = ε2/(1 − ε2) = .741729 × 10−4. Thus the first component is correct to
at least 4 digits.

For the last component we have |ai − 1.1× 10−8| ≤ ‖b‖1ε1 = .890009× 10−4

so ai might well be zero.

In the above example the final esimate ε3 is the same order of magnitude as
the original estimate ε. This is often the case with the standard norms but in the
above recipe it depends upon |bi| not being several orders of magnitude smaller
than ‖b‖. (If 0 < ε < .5 then ε and ε/(1 − ε) are close and usually have the
same order of magnitude. See Exercise 6, Section 1.) The next example shows
that this is a real effect and not simply due to the naiveté of the approximations
used.

Example 1.14. Let a = (1, 10000),b = (3, 9996) be vectors in R2. What is the
relative error of b as an approximation to a using the Max-norm? What is the
relative error for the individual components?
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Solution: The relative error for the vector approximation is

‖a− b‖∞
‖a‖∞

=
‖(1, 10000)− (3, 9996)‖∞

‖(1, 10000)‖∞

=
‖(−2, 4)‖∞
‖(1, 10000)‖∞

=
4

10000

= .4× 10−3.

For the individual components the relative errors are

|1− 3|
|1| = 2 and

|10000− 9996|
|10000| = .4× 10−3.

Not even one digit of the first component is correct.

If a computation results in a vector with components of disparate orders of
magnitude and the components represent physical quantities or measurements
then the original data may often be rescaled so that the computation produces
a vector all the components of which are about the same size.

As an illustration, suppose that the computation deals with population data.
Assume that the data consists of pairs of numbers (x, y) where x is a year and
y is the population of the United States. In 1970 the U.S. population was 203.2
million individuals. The data vector is (1973, 203200000) = (.1973×104, .2032×
109). The two components differ by 5 orders of magnitude, which is undesirable.
The population data can be rescaled by 5 orders of magnitude making the data
point (1970, 2032). Such rescalings are simply changes of units. The units for
the two components are years and “individuals” for the original data vector and
years and “hundreds-of-thousands of individuals” for the rescaled data vector.

The next proposition allows one to shift estimates from one norm to another.

Proposition 1.15 (Norm Equivalence). Let x be a vector in Rn.Then

‖x‖2√
n
≤ ‖x‖∞ ≤ ‖x‖2

‖x‖2 ≤ ‖x‖1 ≤ ‖x‖2
√
n

‖x‖1
n

≤ ‖x‖∞ ≤ ‖x‖1

Proof: Suppose that ‖x‖∞ = |xk|. The first line of the conclusion follows from
the two inequalites

|xk|2 ≤ |x1|2 + · · ·+ |xk|2 + · · ·+ |xn|2
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and

|x1|2 + |x2|2 + · · ·+ |xn|2 ≤ |xk|2 + |xk|2 + · · ·+ |xk|2 = n|xk|2.

The last line of the conclusion follows by noting that the above inequalites are
valid with the exponents removed.

For the second line of inequalities note first that

‖x‖21 = (|x1|+ |x2|+ · · ·+ |xn|)2 = |x1|2 + |x2|2 + · · ·+ |xn|2 + |x1| |x2|+ · · ·
≥ |x1|2 + |x2|2 + · · ·+ |xn|2

= ‖x‖22

which is the first inequality. For the second inequality we have that for any real
number α, (1 + α|xi|)2 ≥ 0. Thus

0 ≤
n
∑

i=1

(1 + α|xi|)2 =
n
∑

i=1

(1 + 2α|xi|+ α2|xi|2)

= n+ 2α

n
∑

i=1

|xi|+ α2

n
∑

i=1

|xi|2

= n+ 2α‖x‖1 + α2‖x‖22.

Now if a quadratic c+bα+aα2 is never negative, then we must have b2−4ac ≤ 0,
which gives the desired result.

As an illustration suppose that the relative error of b as an approximation to
a in the 2-norm is ε. Then, using the Norm Equivalence inequalities, we have

‖a− b‖∞
‖a‖∞

≤ ‖a− b‖2
‖a‖∞

≤ ‖a− b‖2
‖a‖2

√
n ≤

√
nε.

So, for a vector of length n = 100, if the estimate of the relative error in the
2-norm has order of magnitude −s then, the order of magnitude of the relative
error in the Max-norm is at most −s+ 1.

Exercises

1. Graph the sphere ‖x‖1 = 1 in the plane.
Hint: |a| = ±a depending on the sign of a. Thus ‖x‖1 = 1 is made
up of portions of the four lines ±x± y = 1.

2. Graph the set of points x with ‖x− a‖1 = 2 where a = (1, 1).
3. Graph the sphere ‖x‖∞ = 1 in the plane.



12 1. Error Estimation

Hint: max(|x1|, 1) = 1 for all x1 with −1 ≤ x1 ≤ 1.
4. Graph the set of points x with ‖x− a‖∞ = 2 where a = (1, 1).
5. The approximate vector b = (1.2, 10−3) is returned by a software

routine along an estimate of the relative error in the Max-norm of
ε = 10−4.

a) Estimate the number of correct digits for each component.
Might the last component of the exact answer be zero?

b) Same problem with b = (1.2, 10−4), ε = 10−4.
c) Same problem with b = (1.2, 10−5), ε = 10−4.

6. Redo Example 1.13 assuming that the error approximation is given
in the 2-norm. The Max-norm.

7. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be vectors in Rn.

a) Show that for the 1-, 2-, and Max-norms |ai| ≤ ‖a‖ for all i.
b) Show that for the 1-, 2-, and Max-norms, if |ai| ≤ |bi| for all i

then ‖a‖ ≤ ‖b‖.
8. Let ‖ · ‖ be a norm on Rn and let A be an n×n nonsingular matrix.

Show that the function ‖ · ‖ : Rn → Rn defined by ‖x‖A = ‖Ax‖ is
a norm.
Hint: Recall that a matrix is nonsingular if and only if Ax = 0

implies x = 0.
9. By Problem 8 the function ‖x‖ = ‖Ax‖2 with

A =

(

1 0
0 1/2

)

is a norm on R2. Let a = (a1, a2) and let b = (b1, b2).

a) Sketch some concentric spheres about the origin.
b) Find a vector a with ‖a‖ < |ai| for i = 1 or i = 2.
c) Find vectors a and b with |ai| ≤ |bi| for i = 1, 2 and ‖a‖ >
‖b‖.

1.3. Norms and Condition Numbers for Matrices.

An n× n matrix represents a linear transformation from the vector space Rn

to itself. Figure shows the image of the unit sphere ‖x‖2 = 1 under the linear

transformation represented by the matrix A =

(

1 2
3 4

)

.

The most obvious aspect of this image (it is an ellipse) is its elongation. The
concentric circles in Figure are .5 units apart so, by inspection, the points of
the ellipse furthest from the origin are about 5.5 units and the points nearest
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the origin are about .4 units. We say that the 2-norm of the matrix is about 5.5
and the 2-condition nuumber is about 5.5/.4 = 13.75. The norm is the maxi-
mum extension of the image and the condition number is the ratio of maximum
extension to minimum extension. The formal definitions are slightly different.

Definition 1.16 (Norm of a Matrix). Let V be a finite dimensional vector
space with norm ‖ · ‖ and let T be a linear transformation on V . The induced
norm of T , denoted ‖T‖, is defined by

‖T‖ = max
x6=0

‖T (x)‖
‖x‖ .

The induced norm of a square matrix is the induced norm of the associated linear
transformation.

Since the maximum is taken over an infinite set it is not obvious that the
maximum exists—certainly maxx6=0 ‖x‖ does not exist since there are vectors of
arbitrary length. The proof that the norm exists is beyond the scope of this text.

The next proposition brings the definition back to Figure .

Proposition 1.17. Let A be an n × n matrix and let x be any vector in Rn.
If ‖ · ‖ is a norm on Rn then the induced norm of A is

‖A‖ = max
‖x‖=1

‖Ax‖.

Proof: Since the maximum of the definition exists we may assume that there
is a vector x0 such that ‖A‖ = ‖Ax0‖/‖x0‖. Then

‖Ax0‖
‖x0‖

=
‖‖x0‖A(x0/‖x0‖)‖
‖‖x0‖(x0/‖x0‖)‖

=
‖A(x0/‖x0‖)‖
‖x0/‖x0‖‖

and ‖x0/‖x0‖‖ = 1.

Norm equivalence for vector norms (Proposition 1.15) implies a similar set of
identities for the induced matrix norms.

Proposition 1.18 (Matrix Norm Equivalence). Let A be an n×n matrix.
Then

‖A‖2√
n
≤ ‖A‖∞ ≤ ‖A‖2

√
n

‖A‖2√
n
≤ ‖A‖1 ≤ ‖A‖2

√
n

‖A‖1
n

≤ ‖A‖∞ ≤ ‖A‖1n
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Proof: Exercise

If the condition number of A is to be the ratio of the maximum extension to
the minimum extension then the minimum extension should not be zero. That is
there should not be a vector x 6= 0 such that Ax = 0. Recall that this condition
is equivalent to the nonsingularity of A.

Definition 1.19 (Condition Number of a Matrix). Let A be a nonsingular
n×n matrix, x any vector in Rn, and ‖·‖ a norm on Rn. The induced condition
number, κ(A) is defined by

κ(A) =
‖A‖
m

where m = min
x6=0

‖Ax‖
‖x‖ .

As with the maximum, we merely state without proof that a nonzero minimum
exists. The computation of the minimum may also be restricted to the unit
sphere, giving the following proposition.

Proposition 1.20. Let A be a nonsingular n × n matrix, x any vector in Rn

and ‖ · ‖ a norm on Rn. The induced condition number is given by

κ(A) =
max‖x‖=1 ‖Ax‖
min‖x‖=1 ‖Ax‖ .

Proof: Exercise.

The importance of the condition number of A lies in its connection to estimates
of the error arising when approximating A−1b, the solution of Ax = b. The next
proposition connects κ(A) with A−1.

Proposition 1.21. Let A be a nonsingular n×n matrix and let ‖ · ‖ be a norm
on Rn. The induced condition number is given by

κ(A) = ‖A−1‖ ‖A‖.

Proof: The matrix A is assumed nonsingular and hence as x ranges over all of
Rn so does y = Ax since, given any y, y = A(A−1y). Thus

m = min
x6=0

‖Ax‖
‖x‖ = min

y 6=0

‖y‖
‖A−1y‖ =

(

max
y 6=0

‖A−1y‖
‖y‖

)−1

and the conclusion follows. (Note that for any set S of positive numbers with a

smallest member, minS(s) =
[

maxS(
1

s
)
]−1

.)
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The use of the terms ‘induced norm’ and ‘induced condition number’ in the
above propositions emphasizes the fact that the matrix norm and condition num-
ber change with the vector norm used. As usual, we use subscripts for particular
norms. Thus the estimates from Figure above are ‖A‖2 ≈ 5.5 and κ2(A) ≈ 13.75.
These estimates are evident from the figure but a general procedure for comput-
ing the 2-norm and 2-condition number is not evident. In fact, the computation
is not easy. (A formula for 2 × 2 matrices appears in the exercises. The singu-
lar value decomposition of the matrix may be used in the general case.). The
situation is different for the 1-norm and Max-norm (but not for the correspond-
ing condition numbers). To see why, consider the Figures and , which are the
1-norm and Max-norm versions of Figure .

The geometry of the situation is this: because the unit spheres and their
images are composed of straight lines, the maximum will occur at the image of
a vertex of the unit sphere. (This same geometry underlies the simplex method
of linear programming.)

To compute these norms it is only necessary to apply the matrix to the vertices
of the unit sphere and compute the norm of the result. We now describe how
this procedure may be streamlined.

The vertices of the 1-norm unit sphere in R2 are (±1, 0) and (0,±1). Multi-
plying these vectors by a 2× 2 matrix produces the columns of the matrix and
their negatives. So the 1-norm of a 2× 2 matrix is largest 1-norm of its columns
considered as vectors.

The vertices of the Max-norm unit sphere are the four vectors (±1,±1). Mul-
tiplying these vectors by a 2× 2 matrix amounts to multiplying each element of
a row by 1 or −1 and summing. Since all sign combinations occur, the sum of
the absolute values of the elements of each row must occur as a component of
some vertex. The Max-norm of a 2× 2 matrix is the largest 1-norm of its rows
considered as vectors.

These statements are true in general. The third statement of the next propo-
sition is included for completeness. The proof may be found in the section on
the Singular Value Decomposition. Note that an upper bound on ‖A‖2 may be
found by computing ‖A‖1 or ‖A‖∞ and using Proposition 1.18.

Proposition 1.22. Let A be an n× n matrix. Let ci denote the i
th column of

A and let ri denote the i
th row of A. Then

(1) ‖A‖1 = maxi ‖ci‖1
(2) ‖A‖∞ = maxi ‖ri‖1.
(3) ‖A‖2 is the first singular value of A.

Proof: Let A have entries aij and x = (x1, x2, . . . , xn). For the first statement
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suppose that ‖ci0‖1 = maxi ‖ci‖1. Set xi0 = 1 and xj = 0 for j 6= i0. Then
‖x‖1 = 1 and so

‖ci0‖1 = ‖Ax‖1 ≤ max
‖y‖1=1

‖Ay‖1 = ‖A‖1.

For the opposite inequality we have

‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
‖x‖1=1

‖(
∑

j

a1jxj ,
∑

j

a2,j , . . . ,
∑

j

anj)‖1

= max
‖x‖1=1

∑

i

∣

∣

∣

∣

∣

∣

∑

j

aijxj

∣

∣

∣

∣

∣

∣

≤ max
‖x‖1=1

∑

i,j

|aij | |xj |

= max
‖x‖1=1

∑

j

(

∑

i

|aij |
)

|xj | = max
‖x‖1=1

∑

j

‖cj‖1 |xj |

≤ max
‖x‖1=1

∑

j

‖ci0‖1|xj | = ‖ci0‖1 max
‖x‖1=1

∑

j

|xj |

= ‖ci0‖1 max
‖x‖1=1

‖x‖1 = ‖ci0‖1

and so the first statement is proved.
For the second statement suppose that ‖ri0‖1 = maxi ‖ri‖1. Choose xj = ±1

so that ai0jxj = |ai0j |. Then ‖x‖∞ = 1 and

max
i
‖ri‖1 = ‖ri0‖1 =

∑

j

|ai0j | =

∣

∣

∣

∣

∣

∣

∑

j

ai0jxj

∣

∣

∣

∣

∣

∣

= ‖Ax‖∞ ≤ max
‖x‖∞=1

‖Ay‖∞ = ‖A‖∞.

The reverse inequality is left as an exercise.

Example 1.23. Compute the 1-norm, Max-norm and the corresponding condi-

tion numbers for the matrix A =

(

1 2
3 4

)

.

Solution: The 1-norms of the columns are 4 and 6 so ‖A‖1 = 6. The 1-norms
of the rows are 3 and 7 so ‖A‖∞ = 7.

Recall that for a nonsingular 2× 2 matrix

(

a b
c d

)−1

=
1

detA

(

d −b
−c d

)

.
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Thus, using Proposition 1.21,

κ1(A) = ‖A−1‖1‖A‖1 =
7

2
· 6 = 21

κ∞(A) = ‖A−1‖∞‖A‖∞ = 3 · 7 = 21

This is the matrix of Figure which has an approximate 2-norm of 5.5 and an
approximate 2-condition number of 13.75.

The next result shows that the induced norm on matrices is indeed a norm and
gives two results on matrix multiplication that are important in making error
estimates.

Proposition 1.24. Let ‖ · ‖ be a norm on Rn, x any vector in Rn and A, B
any two n× n matrices.

(1) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A is the zero matrix.
(2) ‖αA‖ = |α| ‖A‖ for any real number α.
(3) ‖A+B‖ ≤ ‖A‖+ ‖B‖
(4) ‖Ax‖ ≤ ‖A‖‖x‖
(5) ‖AB‖ ≤ ‖A‖‖B‖

Proof: The first three statements follow from the corresponding statements for
vectors (see exercises). The fourth statement is clearly true if x = 0. Otherwise

‖Ax‖
‖x‖ ≤ ‖A‖

since the right hand side of this inequality is the maximum possible value of the
left hand side. For the fifth statement note that

‖ABx‖ = ‖A(Bx)‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖

so that the statement follows by maximizing over all x of norm one.

As far as addition and scalar multiplication are concerned, an n× n matrix is
just a vector with n2 components. The first three statements of Proposition 1.24
show that the induced norms are vector norms on this vector space. It follows
that the defintion of relative and absolute error apply to matrices without change
and Proposition 1.11 may be applied to matrices as well as vectors. This will be
done below without comment.

Properties I and II may also be defined for matrix norms by considering ma-
trices to be vectors (replace ai by aij , a by A, and so on).



18 1. Error Estimation

Proposition 1.25. The matrix norms ‖ · ‖1 and ‖ · ‖∞ have Properties I and
II. The matrix norm ‖ · ‖2 has Property II but not Property I.

Proof: Exercises

If a matrix has entries which differ significantly in size it is not necessarily
possible to rescale the size difference away. In a linear system Ax = b, rescaling
the variables rescales the columns of A. Rescaling the rows is equivalent to mul-
tiplying the corresponding linear equations by a nonzero constant. The rescaling
options for a matrix are muliplying each row by a constant and multiplying each
column by a constant. These operations may interfere with each other. As an
example consider the matrix

(

1 105

105 105

)

.

Example 1.26. A software routine returns the matrix

B =





1.5 −2.9 4.1
.4 .3× 10−8 7.8
−1.3 2.0 4.5





and an error bound of 10−5 using one of the standard norms. Estimate the
number of correct digits in the 1,1 entry. Might the 2,2 entry be zero?

Solution: We make estimates for each of the standard norms. Using Proposi-
tion 1.12 we have ε1 = .100001× 10−4 and

ε2 =
‖B‖
|bij |

ε1, ε3 = ε2/(1− ε2).

For bij = b11 = 1.5 we have ‖B‖1 = 16.4 and ‖B‖∞ = 8.5 giving ε3 val-
ues of .109 × 10−3 and .567 × 10−4 respectively. By Proposition 1.18, ‖B‖2 ≤√
3‖B‖1,

√
3‖B‖∞ Taking the smaller of these estimates gives ε3 = .982× 10−4.

Thus the number of digits correct is estimated at 3 using the 1-norm and at 4
using the Max- and 2-norms.

For bij = b22 = 10−8 we get ε2 > 1 in all three norms and so no digits need
be correct. However we have

|a22 − b22| ≤ ‖B‖ε1
which gives absolute error bounds of .85× 10−4, .164× 10−3 and .147× 10−3 for
the Max-, 1-, and 2-norms respectively. Thus a22 may well be zero.

A matrix with a large condition number is often said to be nearly singular.
In fact, the condition number of a matrix gives the minimum relative error with
which the matrix may be approximated by a singular matrix.
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Proposition 1.27. Let ‖ · ‖ be a norm on Rn. Let A be a nonsingular matrix
and B a singular matrix. Then

‖A−B‖
‖A‖ ≥ 1

κ(A)

and there is a singular matrix B for which equality holds.

Proof: Let m = min‖x‖=1 ‖Ax‖. Then κ(A) = ‖A‖/m so to show the inequal-
ity it is sufficient to show that ‖A−B‖ ≥ m. Let A−B = ∆. Since B is singular,
there is a vector x 6= 0 such that Bx = 0. We may assume that ‖x‖ = 1. Thus,
by Proposition 1.24,

‖A−B‖ = ‖∆‖ = ‖∆‖‖x‖ ≥ ‖∆x‖ = ‖Ax‖ ≥ m‖x‖ = m.

To demonstrate the converse for the three standard norms we can proceed as
follows. We need a matrix ∆ with B = A + ∆ singular and ‖∆‖ = m. Since
‖A−1‖ = 1/m there is a vector ym with ‖ym‖ = 1 and ‖A−1ym‖ = 1/m. Set
xm = A−1ym. We find a vector v so that, considering vectors to be single
column matrices, vT xm = 1/m and ‖ymvT ‖ = 1. Then for ∆ = −mymvT we
have ‖∆‖ = m and (A + ∆)xm = 0 so A + ∆ is singular. The choice of v is
different for each of the three norms and is given in the exercises.

Example 1.28. An unknown matrix A is approximated by the matrix

B =





0.1472 1.3900 0.6840
0.5100 3.0100 1.7700
0.2690 1.0200 0.3340



 .

The entries of B are derived from physical measurements made with a relative
accuracy bounded by .5× 10−4. Is it possible that A is singular?

Solution: If we use the Max-norm, then the relative error in the norm is
bounded by the relative error in the individual components and so

‖A−B‖∞
‖A‖∞

≤ ε = .5× 10−4

hence
‖A−B‖∞
‖B‖∞

≤ ε

1− ε
= .50025× 10−4.

The relative distance from B to A is at most .50025× 10−4.
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Using exact arithmetic software we find that

B−1 =
1

27317027





−200015000 58355000 100365000
76447500 −33707800 22074000
−72372500 55941500 −66457000





Thus the relative distance from B to the nearest singular matrix is

1

κ∞(B)
=

1

‖B‖∞‖B−1‖∞
= 0.014395 > .50025× 10−4

and A cannot be singular.

This method can sometimes be used to prove a matrix nonsingular. It cannot
be used to prove a matrix singular.

Exercises

1. Let

A =

(

a b
c d

)

,

F 2 = a2 + b2 + c2 + d2, and ∆ = detA. The singular values of A are
the numbers σ1 ≥ σ2 ≥ 0 defined by

σ2
1 =

F 2 +
√
F 4 − 4∆2

2
, σ2

2 =
F 2 −

√
F 4 − 4∆2

2
.

It can be shown that ‖A‖2 = σ1 and, in the notation of Defini-
tion 1.19, m = σ2.

a) Show that A is invertible if and only if σ2 6= 0 and then
‖A−1‖2 = 1/σ2 and κ2(A) = σ1/σ2.

b) Use these formulas to find ‖A‖2 and κ2(A) for

A =

(

1 2
3 4

)

the matrix for which the 2-norm and 2-condition number were
estimated from Figure .

2. An unknown matrix A is approximated by the matrix

B =

(

1 1
1 1.01

)

.
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The entries of B are derived from physical measurements made with
a relative accuracy bounded by .5×10−2. Is it possible that A is sin-
gular? What if the relative accuracy of the measurements is bounded
by .1× 10−2?

3. An unknown matrix A is approximated by the matrix

B =





3.429 4.357 4.150
1.869 2.339 3.254
1.607 1.964 4.100



 .

The entries of B are derived from physical measurements made with
a relative accuracy bounded by .5 × 10−4. Is it possible that A is
singular?

4. Let aij be an entry of the matrix A. Show that |aij | ≤ ‖A‖ for any
of the three standard norms.
Hint: For the 2-norm, note that if ei is the vector with 1 in the ith

place and zeros elsewhere then ‖ei‖2 = 1 and Aei is the ith column
of A.

5. Let A and B be square matrices of the same size.

a) Suppose the norm ‖ · ‖ has the property that |aij | ≤ |bij | for
all i, j forces ‖A‖ ≤ ‖B‖. If B is obtained from A by changing
the signs of some of the entries of A, then ‖A‖ = ‖B‖.

b) Using the formulas of Problem 1 show by example that the
2-norm does not have the property described in part a).

6. Show that κ1(A) = κ∞(A) for every nonsingular 2 × 2 matrix A.
Show the statement false for 3× 3 matrices.

7. Recall that matrices A and B are similar if there is a nonsingular
matrix P such that A = P−1BP . Let A and B be similar.

a) Show that if limn→∞ ‖Bn‖ is zero then the same is true of
limn→∞ ‖An‖.

b) Show that if limn→∞ ‖An‖ =∞ then limn→∞ ‖Bn‖ =∞
Hint: Statement (5) of Proposition 1.24.

8. Prove Proposition 1.18
9. Prove Proposition 1.20

10. Finish the proof of Proposition 1.22
11. Let ‖ · ‖ be a norm on Rn and let A be an n× n matrix. Show that

‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A is the zero matrix. (This is
the first statement of Proposition 1.24).
Hint: Show that Ax = 0 for every x 6= 0. Then apply A to the
elements of a basis.
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12. Let ‖ · ‖ be a norm on Rn and let A be an n × n matrix. Show
that ‖αA‖ = |α|‖A‖ for every real number α. (This is the second
statement of Proposition 1.24).

13. Let ‖ · ‖ be a norm on Rn and let A and B be two n × n matrices.
Show that ‖A + B‖ ≤ ‖A‖ + ‖B‖. (This is the third statement of
Proposition 1.24).

14. This exercise gives constructions for the vector v needed in the proof
of Proposition 1.27. Show that the vector v satisfies vT xm = 1/m
and ‖ymvT ‖ = 1.

a) (Max-norm) The vector ym will have components consisting
of ±1’s. Some component of xm, say the ith, must be ±m.
Take v = ei, the vector with 1 in the ith component and zeros
elsewhere.

b) (1-norm) Since ‖xm‖1 = 1/m there is a vector v with compo-
nents ±1 such that vT xm = 1/m (why?). Note that ym will
have one component equal to ±1 and the rest zeros.

c) (2-norm) In this case take v = mxm. To compute ‖∆‖2 you
will need the formula xT y = ‖x‖2‖y‖2 cos θ, where θ is the
angle between x and y, to show max‖x‖2=1 ‖ymvT x‖2 = 1.

d) Use the above constructions to find the singular matrix closest
to

A =

(

1 2
3 4

)

in the three standard norms.
Note: To find the vector ym for the 2-norm calculation you
can proceed as follows. The vector y(t) = (cos t, sin t) sweeps
out the unit sphere ‖x‖2 = 1 as t varies from 0 to 2π. The
maximum value of the function f(t) = ‖A−1y(t)‖22 may be
found by standard calculus techniques.

1.4. Error Estimation for a System of Linear Equations.

Let A be a nonsingular n × n matrix and b a vector in Rn and consider the
problem of solving the equation Ax = b for the unknown vector x in the presence
of error.

For the simplest case, assume that A−1 is known exactly but b is known only
approximately. How does the uncertainty in b translate into uncertainty in the
answer x = A−1b? The answer is that, in the worst case, the relative error in b

may be multiplied by the condition number, κ(A), of A.
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Proposition 1.29 (Perturbing the Right Hand Side). Let A be nonsin-
gular, Ax = b and Ax0 = b0. Then

‖x− x0‖
‖x‖ ≤ κ(A)

‖b− b0‖
‖b‖ .

Proof: Let Ax = b and Ax0 = b0. Note that ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ by
Proposition 1.24 and so 1/‖x‖ ≤ ‖A‖/‖b‖. Now

‖x− x0‖
‖x‖ =

‖A−1(b− b0)‖
‖x‖ ≤ ‖A−1‖ ‖b− b0‖

‖x‖ ≤ ‖A‖ ‖A−1‖‖b− b0‖
‖b‖

and so the result follows from Propositon 1.21.

So if, for example, b0 agrees with b to 6 digits and κ∞(A) has order of mag-
nitude 4 then x0 might agree with x to only 2 digits.

The previous proposition is accurate but misleading in a probalistic sense. On
the one hand, one may always find a b and a b0 for which the inequality is
an equality. Choose x so that ‖Ax‖ = ‖A‖ ‖x‖ and choose b − b0 for which
‖A−1(b − b0)‖ = ‖A−1‖‖b − b0‖ See the exercises for details. Refering to
Figure , this recipe calls for choosing b along the long axis of the ellipse and
b− b0 along the short axis. Because the ellipse is narrow, the choice of b− b0

is not critical but the choice of b is more restricted. The narrower the ellipse,
that is, the larger the condition number, the more critical the choice of b.

The situation is illustrated in Figure . The actual ratio k in

‖x− x0‖2
‖x‖2

= k
‖b− b0‖2
‖b‖2

is plotted as b varies through π radians along the first axis and b − b0 varies
through π radians along the second axis for the matrix of Figure . The values
along the first two axes have been chosen to roughly center the peak. The matrix
of Figure has κ2(A) ≈ 13.75 but for most choices of b and b − b0 the ratio k
is much smaller. Matrices with larger condition numbers have ridges that are
higher but thinner.

Next consider the problem of solving Ax = b where b is known exactly but
A is known only approximately. The next proposition is the basic result for this
case.

Proposition 1.30 (Perturbing the Left Hand Side). Let B be a nonsin-
gular and A the same shape as B. Let Ax = b and Bx0 = b. Then

‖x− x0‖
‖x‖ ≤ κ(B)

‖B −A‖
‖B‖ .
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Proof:

b = Ax = (B + (A−B))x

= Bx + (A−B)x

Multiplying on the left by B−1 gives

x0 = x +B−1(A−B)x

x0 − x = B−1(A−B)x

‖x− x0‖ ≤ ‖B−1‖ ‖A−B‖ ‖x‖
‖x− x0‖
‖x‖ ≤ ‖B−1‖ ‖A−B‖

and the result follows since κ(B) = ‖B−1‖ ‖B‖
Example 1.31. The matrix B below, which comes from physical measurements
made with a relative accuracy of .5 × 10−4, is used to solve a linear system
Bx = b. Find a bound on the accuracy of the answer obtained.

B =





3.687 9.500 5.292
0.5330 0.8194 0.8044
1.500 3.278 2.194





Solution: The measurements define B, an approximation to an exact matrix
A. If we use the Max-norm then

‖B −A‖∞
‖B‖∞

≤ .5× 10−4.

Using exact arithmetic software we find

B−1 =
1

3539657





−2097649000 −8739560000 8263838000
92995000 378195000 −362967000

1295185000 5410035000 5105930500





and the condition number of B is κ∞(B) = ‖B‖∞ ‖B−1‖∞ = 0.997182× 105. It
follows that the solution need have no digits correct.

The problem is that κ∞(B)−1 = 0.10028 × 10−4 < .5 × 10−4 and so, by
Proposition 1.27, A might be singular given the accuracy of the measurements.
For a singular matrix A the system Ax = b might have no solution or an infinity
of solutions with arbitrarily large norms.
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The above example assumes that the linear system will be solved using exact
arithmetic. More often such systems are solved using approximate arithmetic.
As a result further error is introduced during the computations. How does this
affect the accuracy of the result?

Suppose then that we have a matrix A known exactly and solve a system Ax =
b using approximate arithmetic. The principle of Backward Error Analysis,
which we will not attempt to justify, states that the solution obtained by the
approximate computations is the exact solution to a system Bx0 = b. To apply
Proposition 1.27 we need an estimate of κ(B) and the relative error of B as an
approximation to A. For the most common solution method, Gaussian reduction
with partial pivoting, an estimate of the relative error is known and the best
software optionally returns an estimate of κ(B) in one of the standard norms.

For Gaussian reduction with partial pivoting it is the consensus of numerical
analysts that, using the 1- or Max-norms,

‖A−B‖
‖A‖ ≤ Cεmach

where C is a constant that is rarely as large as n for an n× n matrix—although
examples can be constructed where C is as large as 2n. Replacing the denom-
inator ‖A‖ by ‖B‖ does not change the estimate significantly if C is not much
larger than n.

The estimates of the condition number of B reported by numerical routines
are underestimates but are rarely more than one or two orders of magnitude low.

If both the matrix A and the left hand side b in Ax = b are approximate
then the next propostion applies—A and b are the unknown exact quantities
and B and c are the approximations. The esimates of κ(A) reported by software
routines are usually computed from B and so are better estimates of κ(B).

Proposition 1.32 (Perturbing Both Sides). Let Ax = b and By = c

where B is nonsingular. Assume that

‖A−B‖
‖B‖ ≤ ε and

‖b− c‖
‖b‖ ≤ δ.

Then
‖x− y‖
‖x‖ ≤ κ(B)(ε+ δ) + (κ(B)ε)(κ(B)δ).

Proof: Let Bz = b. By Proposition 1.30,

‖x− z‖
‖x‖ ≤ κ(B)ε.
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By Proposition 1.29
‖z− y‖
‖z‖ ≤ κ(B)δ.

By Proposition 1.11,
‖z‖
‖x‖ ≤ 1 + κ(B)ε.

Using these estimates in the inequality

‖x− y‖
‖x‖ =

‖x− z + z− y‖
‖x‖ ≤ ‖x− z‖+ ‖z− y‖

‖x‖ =
‖x− z‖
‖x‖ +

‖z‖
‖x‖

‖z− y‖
‖z‖

gives the result.

If ε and δ have the same order of magnitude and the order of magnitude of
κ(B)ε is negative then the second term in the conculsion of this proposition will
be negligible compared to the first and we arrive at the rule of thumb stated in
the introduction: the order of magnitude of the condition number is the number
of digits of accuracy that may be lost in solving a linear system.

The next example shows that the estimate of Proposition 1.32 is often too
pessimistic. The example applies the estimate to an example for which the
‘exact’ answer is known.

Example 1.33. The unique polynomial of degree 4 through the points (1/2,-
121/16), (1/3,-91/27), (1/4,-213/256), (1/5,323/625), and (1/6,557/432) is

p(x) = 3 + 2x− 77x2 + 123x4.

Suppose that these data points are known only with an accuracy of 6 dig-
its. That is, we have the data (.5,-7.5625), (.333333,-3.37037), (.25,-0.832031),
(.2,0.516800), (.166667,1.28935), and we estimate the polynomial. How does the
accuracy of the the estimation compare with the estimate of Proposition 1.32?

Solution: The general polynomial of degree 4 is q(x) = a0 + a1x + a2x
2 +

a3x
3 + a4x

4. Denoting the above data points by (xi, yi), i = 1, 2, 3, 4, 5, the 5
equations

a0 + a1xi + a2x
2
i + a3x

3
i + a4x

4
i = yi i = 1, 2, 3, 4, 5

determine the unknown coefficients. The corresponding matrix equation (By =
c) is











1 x1 x2
1 x3

1 x4
1

1 x2 x2
2 x3

2 x4
2

1 x3 x2
3 x3

3 x4
3

1 x4 x2
4 x3

4 x4
4

1 x5 x2
5 x3

5 x4
5





















a0

a1

a2

a3

a4











=











y1

y2

y3

y4

y5













1.4. Error Estimation for a System of Linear Equations 27

The statement that the numbers are rounded to 6 digits means that the relative
error is at most .5 × 10−6 for each component of the data points. Assume that
the powers xj

i are computed with the same accuracy. it follows that, using either
the Max-norm or the 1-norm, which satisfy Property I for norms,we may take
ε = δ = .5×10−6/(1− .5×10−6) = .50000250 . . .×10−6. Using exact arithmetic
to compute B−1 and y = B−1c shows that κ∞(B) = .886987× 105 and

κ∞(B)(ε+ δ) + (κ∞(B)ε)(κ∞(B)δ) = .867

The value of y is

y = (3.00011, 1.99804,−76.9875,−0.0332275, 123.03).
so, except for the coefficient of the cubic term, one or two digits are correct. The
actual relative error is .270× 10−3.

Interestingly enough, the graphs of the original polynomial and the computed
polynomial agree to four digits in the interval containing the x values of the
data. This illustrates the fact that even if the computed solution x0 of a linear
system Ax = b is not a very accurate approximation of x, it still may be good
enough for the purpose because Ax0 is a good approximation to b. This brings
up the concept of the residuals of an approximate solution.

Residuals
Approximately solving a linear system Ax = b we obtain a vector x0 which

is, by the principle of backward error analysis, the exact solution to a system
Bx = b. Instead of asking how accurate the approximation x0 is we can ask how
well does it solve the system? That is, how accurate is Ax0 as an approximation
to b? It is usually quite accurate. The difference r = b−Ax0 is called the vector
of residuals and it is usually small compared to the size of b or b0. Note that
the condition number does not enter into the next result.

Proposition 1.34 (Residual error). Let A and B be n×n matrices and let
x, x0, b 6= 0, and b0 6= 0 be vectors such that Ax = b, Bx0 = b and Ax0 = b0.
Then

‖b− b0‖
‖b‖ ≤ ‖B −A‖

‖B‖

(‖B‖ ‖x0‖
‖Bx0‖

)

,

‖b− b0‖
‖b0‖

≤ ‖B −A‖
‖A‖

(‖A‖ ‖x0‖
‖Ax0‖

)

.

Proof:

‖b− b0‖
‖b‖ =

‖Bx0 −Ax0‖
‖b‖ =

‖(B −A)x0‖
‖b‖ ≤ ‖B −A‖ ‖x0‖

‖b‖

=
‖B −A‖
‖B‖

‖B‖ ‖x0‖
‖b‖ =

‖B −A‖
‖B‖

(‖B‖ ‖x0‖
‖Bx0‖

)
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and similarly for the second inequality.

This proposition is not needed to estimate the size of the residuals since we
usually have b and b0 at hand. Rather it helps explain why the residual vector
is usually small.

First note that for any nonsingular matrix A we have

1 ≤ ‖A‖ ‖x‖
‖Ax‖ =

‖A‖
‖A(x/‖x‖)‖ ≤ κ(A).

In particular, to study this factor we may restrict our attention to unit vectors
x. It is possible to find A, B, and b so that the above inequality is an equality
and the term in parenthesis in the proposition is κ(A). This is, however, a
rare occurence. Usualy this term is near 1. Figures and illustrate this point.
Figure is a graph of the ratio ‖A‖/‖Ax‖ for the unit vectors x = (cos t, sin t)
as t varies from 0 to π. The matrix is that of Figure which has a 2-condition
number of 14.99 (see exercises). The ratio is above 10 for only 5% of the range
of t. So in some sense the odds against the order of magnitude of the relative
residuals being even two orders of magnitude larger than the relative error in
the matrix are better than 10 to 1. Of course A is a well conditioned matrix.
Figure is the corresponding graph for a matrix with a 2-condition number of
one-million. It looks about the same. This time the ratio is above 10 for about
7% of the values of t. It can be shown that the ratio is never more than 7% for
any 2× 2 matrix.

Exercises

1. Verify the remark about the graphs of Example 1.33 by plotting the
difference of the two polynomials on the the interval containing the
x data.

2. This exercise shows how to construct an example for which the in-
equality of Proposition 1.29 is an equality. It uses the fact that for
any matrix the maximum ‖Ax‖/‖x‖ is attained for some value of x.
That is, there is always an x 6= 0 such that ‖Ax‖ = ‖A‖‖x‖.

a) Given a nonsingular matrix A, choose x such that ‖Ax‖ =
‖A‖‖x‖. Set b = Ax. Choose a vector y such that ‖A−1y‖ =
‖A−1‖‖y‖. Set b0 = b − y and x0 = A−1b0. Show that the
inequality of Proposition 1.29 is an equality.

b) Apply the construction to the matrix
(

1 2
3 4

)

using the Max-norm.



1.4. Error Estimation for a System of Linear Equations 29

3. Suppose the points (x1, y1) = (1.234, 1) and (x2, y2) = (1.235, 100)
are known with a relative accuracy of .5 × 10−6 in the individual
components. Find the straight line y = a0 + a1x through these
points. Use Propositions 1.32 and 1.12 to estimate the number of
correct digits of the coefficients a0 and a1 (use the Max-norm).


