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Energy of Harmonic Maps and Gardiner’s Formula

Richard A. Wentworth

ABSTRACT. It is shown that the usual first variational formula for the energy of
a harmonic map (or equivariant harmonic map) with respect to the conformal
structure on a two dimensional domain extends to case of nonpositively curved
metric space targets. As applications, we recover Gardiner’s formula for the
variation of the Hubbard-Masur differential and a proof of the existence and
uniqueness of quadratic differentials realizing a pair of measured foliations that
fill a surface.

1. Introduction

Energy minimizing maps to singular spaces have been useful in a variety of
problems related to groups actions (cf. [GrS, KS1, KS2, KS3, J2]). In a series
of papers, Mike Wolf showed that many of the important ideas and results in
Teichmiiller and Thurston theory could be interpreted and proved using the notion
of a harmonic map to an R-tree (cf. [W1, W2, W3] and also [ DDW1, DDW2]| -
for a survey of the subject, see [DW]). In this note we give another such application.

Let us first fix notation. We denote by X a closed, compact, oriented surface,
and by T(X) the Teichmiiller space of equivalence classes of conformal structures
on X. We will use o to denote a Riemannian metric on ¥ (or sometimes just its
conformal class) and [o] the point in T(X) corresponding to 0. Let X be a length
space that is nonpositively curved (NPC) in the sense of Alexandrov (see [KS1] or
[BH]), and let Iso(X) denote its isometry group.

Let p : m1(X) — Iso(X) be a homomorphism. In [KS1], Korevaar and Schoen
developed the Sobolev theory of p-equivariant finite energy maps (or L2-maps)
U : (i o) — X, where ¥ is the universal cover of 3, and by abuse of notation o is
the pullback to ¥ of the metric o on X (see also [J2]). If p is proper (see [KS2, §2]
for the definition) then there exists a p-equivariant map which has minimal energy
among all such maps [KS2, Theorem 2.1.3]. We call these energy minimizers
harmonic maps. The energy E(u, o) of such a map depends only on the conformal
structure and is a diffeomorphism invariant (provided the diffeomorphism fixes p
up to conjugation). Thus we can make the following
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DEFINITION 1.1. Given a proper homomorphism p : m1(X) — Iso(X), let E, :
T(X) — R* = [0, +00) be defined by the energy E,[o] = E(u,0), where o is in the
class [o] and u is a p-equivariant energy minimizing map v : (X,0) — X.

The observation of this article is that the well-known formula for the derivative
of F, continues to hold in this more general setting. To state this precisely, we
recall that the directional derivatives of an L?-map u give a symmetric L'-tensor
mij(u). The (2,0) part ® = ®,,dz? of m;; on (3, 0) is called the Hopf differential
of u. In terms of a local conformal coordinate z = 1 + ixz2 and 75,

1 ,
(11) (I)zz = Z {7T11 — T29 — 227‘(12} .

It was noted by Schoen (cf. [S, p. 154]) that when wu is harmonic ® is actually
holomorphic, and indeed it is the lift of a holomorphic quadratic differential on
(X, 0), which we also denote by ®. Next, recall from Kodaira-Spencer theory that
tangent vectors to the space of conformal structures on ¥ are given by Beltrami
differentials p = pZ(0/0z)®@dz. The natural pairing between quadratic differentials
and Beltrami differentials is given by

(1:2) @) = [ eepilazl
b
With this understood, we now state

THEOREM 1.2. Let p : m(X) — Iso(X) be proper, and let E, be defined as
in Definition 1.1. Then E, is differentiable on T(X). Ifo,, -1 <t <1, is a
differentiable family of metrics on 3 with Beltrami differential pp att =0, and ® is
the Hopf differential of a p-equivariant energy minimizer u : (ENJ, 00) — X, then

d

pn t:oEp[at] = —4Re(D, ) .

In the case where X is a smooth Riemannian manifold, this formula has some
history. Wolf [W4] provides a derivation and refers to earlier notes of Schoen, as
well as [T1, T2, J1]. The referee suggests that the earliest computation of this sort
may be due to Douglas (cf. [D, eq. (12.29)]). Since the pairing between holomorphic
quadratic differentials and harmonic Beltrami differentials is nondegenerate, an
immediate consequence of this theorem is the existence of (weakly) minimal surfaces
in X (cf. [SY, SU]J). Let us call a map conformal if it is harmonic with vanishing
Hopf differential. Then we have

COROLLARY 1.3. Let p : m(X) — Iso(X) be proper. If E, is a proper func-
tion on T(X) then there exists a conformal structure o on ¥ and a conformal
p-equivariant harmonic map u : (X,0) — X.

Properness of F, in the context of convex cocompact representations has been
addressed in [GW], and this can be used to deduce the properness of the action of
the mapping class group on the moduli space of representations. Here we show how
two other well-known facts follow from this result. Let F' be a measured foliation
on ¥ (for background see [FLP]). The Hubbard-Masur theorem [HM] asserts that
for any given conformal structure ¢ on X there is a unique holomorphic quadratic
differential ®r such that F' is measure equivalent to the horizontal trajectory of ® g
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(alternatively, the vertical trajectory of —®g). The extremal length of F is defined
by (see [GM])

(1.3) extpo] = /E | .

This gives a well-defined function exty : T(X) — RT. Now let F be the lift of F to
Y. Then the leaf space Tp of F along with the metric induced by the transversal
measure has the structure of an R-tree (see [W1]), which is a particular example
of an NPC space. Moreover, m1(X) acts in the obvious way by isometries, and this
action is proper. Hence, there is a 71 (X)-equivariant harmonic map w : (i, o) —Tr
with Hopf differential ®. In [W3] it was shown that ® = —®r and moreover, the
energy

(1.4) E(u,a):?/ |<I>\:2/ |Pp| = 2extplo] .
b b
Hence, Theorem 1.2 implies

THEOREM 1.4 (Gardiner’s formula, [G1, G2]). For any measured foliation F,
extp is differentiable on T(X). If o, —1 < t < 1, is a differentiable family of
conformal structures on X with Beltrami differential pn at t = 0, and ®p is the
Hubbard-Masur differential for F' at oq, then

d
— extploy] = 2Re(Pp, 1) .
dt|,_q

As a second application, consider the problem of realizing a pair of measured
foliations as the vertical and horizontal trajectories of a single quadratic differential.
We recall the following

DEFINITION 1.5. A pair F, F_ of measured foliations on ¥ is called filling if
for any third measured foliation G

Z(F+7G)+7’(F—7G) 7£ 0,
where i(-, ) denotes the intersection number.

It is relatively straightforward to see that the vertical and horizontal trajectories of
a quadratic differential are filling (cf. [GM, Lemma 5.3]). We will show in Section
3 that the converse is a consequence of Corollary 1.3.

THEOREM 1.6. A pair Fy, F_ of measured foliations on 3 is filling if and only
there is a conformal structure o and a holomorphic quadratic differential ® on
(X,0) such that F and F_ are measure equivalent to the vertical and horizontal
foliations of @, respectively. Moreover, the point [o] € T(X) is uniquely determined,
and for each o € [o] the quadratic differential ® is also unique.

COROLLARY 1.7. If F'L | F_ are filling, then there is a conformal structure o
and a holomorphic quadratic differential ® on (X,0) such that

PPy = [ o).

We note that Theorem 1.6 was essentially proven in [GM]. The strategy there
was to minimize the product extp, [o]extp_[o] for o € T(X), which occurs along a
Teichmiiller geodesic. The approach taken below (which is similar to that in [W4])
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amounts to minimizing the sum extg, [o]+extr_[o], which by (1.4) may be regarded
as half the energy of the equivariant harmonic map (ia) — X =T xTF_.
Minimizing the energy with respect to [o] gives an analytic proof of Theorem 1.6.
Moreover, we will show that the minimum is unique. Indeed, if [o] is a minimum
then for any other conformal structure the equivariant harmonic map to X factors
through the Teichmiiller map to (£, 0).

Acknowledgements. Thanks to Vladimir Fock and Bill Goldman for discussions. 1
am also grateful to Scott Wolpert and Mike Wolf for the invitation to the Ahlfors-
Bers Colloquium, and to the referee for several important comments and correc-
tions.

2. First Variational Formula

Let 0 = Z?,j:l 0;jdx; @ dr; be a Riemannian metric on ¥. As is customary,
the inverse of ¢ is denoted by ¢%. For convenience, we will continue to denote
by o the Riemannian metric on the universal cover Y of £. Let X be an NPC
space as in the introduction. Let w : (i,a) — X be an L?-map in the sense of
Korevaar and Schoen. Then there is a well-defined integrable directional energy
tensor m;; = m;;(u) associated to u (see [KS1, §2.3]). The energy of u is given by

1 1 -
(2.1) E(u,0) = 3 /2 |dul? = 3 Emja”\/detaij dxidzy .

Note that the integrand, a priori defined on i descends to ¥. Now suppose we are
given a differentiable family of metrics oy, —1 <¢ < 1, & = (doy/dt)|;=o. Then we
have constants C'(t) — 1 as t — 0, such that

(2.2) CY(t)E(u,00) < E(u,01) < C(t)E(u,00) .

In particular, u has finite energy with respect to all o; provided it has finite energy
for some t. Moreover, we have

LEMMA 2.1. Let u be an L2-map with oo-Hopf differential ®. Also, let u be the
Beltrami differential of the family o at t = 0. Then

lim =+ (B(u,00) — E(u,00)) = ~4Re(@, )

PROOF. Since the directional energy tensor m;;(u) is in L', the result follows

from the usual calculation (for smooth targets) and dominated convergence (see
(2.4) below). O

Now we assume that p : 71(X) — X is proper. For each metric in the family
oy we have a p-equivariant harmonic map wu; : (3, 0) — X with directional energy
tensors m;; (uy).

LEMMA 2.2. Ast— 0, m;j(u) — m;j(uo) weakly in L.

ProOOF. We have

E(ug,00) < E(ut,00) since ug is op-minimizing
< C(t)E(ut, o) by (2.2)
< C(t)E(ug,01) since u; is op-minimizing
< C%(t)E(uo, 00) by (2.2) again
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Since C(t) — 1 as t — 0, it follows that E(us,09) — E(uo,0p) as t — 0. The result
now follows from [KS2, Theorem 3.9]. O

We also have

LEMMA 2.3. Let o4 and uy be as above. Let ® be the oo-Hopf differential of ug,
and let p be as in Lemma 2.1. Then

Jim % (E(us, 00) — Eug, 00)) = —4Re(®, 1) .

t—0

PRrROOF. For this, we elaborate on the calculation in Lemma 2.1. First, since
the energy is conformally invariant, it suffices to restrict to traceless variations of

the metric. Set
1 iy i
e (‘7;] det(0¢)ij — o’ det(UO)”)

with ftij — Sj uniformly. Choose local conformal coordinates so that the metric
(00)ij = gdi; where g* = det(0¢);;. Then we compute fy’ = —g~ 15,5, and so

(2.3) Wij(uo)féj = —g 1 (611(m11 — Ta2) + 2019712) -

A simple computation shows that the correspondence between Beltrami differentials
and traceless symmetric 2-tensors representing variations of the metric is given by:
2gp% = 611 + 612 (cf. the discussion following Proposition 2.10 of [DW]). Hence,
by the definition of the Hopf differential (1.1),

1 . . ..

49{2((I>ZZ,LL§) = % D‘ie(ml — T2 — 2Z7T12)(0'11 =+ 20'12)

1 . .

(2.4) = 2% (011(m11 — T22) + 2612712)
= —%mj(uo) éj by (23)

Using this and (1.2),

1
tind 3 (B(ui,00) = Blu.on) +49%(,p)
L. ij ij
= 5 %141}% . {Wij(ut)ftj — Tl'ij(U())fOJ} dIldIQ
= S lim | {maw) (7 = £7) + (rigue) = mi5 (o)) £ } devadi
=

The second term above vanishes, since by Lemma 2.2, m;;(u;) — m;;(up) weakly.
By (2.2), mi;(ut) is uniformly bounded in L', so the first term is bounded by a
constant times sup |f;” — f;’|. Hence, it also vanishes as ¢ — 0. O

PROOF OF THEOREM 1.2. Since u; is minimizing for o; we have
E(ut,0¢) — E(ug,00) < E(ug,0¢) — E(uo, 09) -
Since ug is minimizing for oy we have

E(ut,at) — E(Uo,o'o) Z E(ut,at) - E(Ut,(fo) .
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By Lemmas 2.1 and 2.3 we have

1
limsup ; {E(utvgt) - E(u07 UO)} < _4me<®wu’>
10

lirill%)nf % {E(ut,0¢) — E(ug,00)} > —4Re(P, p)
Taken together, we conclude
ltil%l % {E(ut,01) — E(ug,00)} = —4Re(P, ) .
A similar argument applies for the limit as ¢ T 0. This completes the proof. O

3. Realizing Pairs of Measured Foliations

Let F'y, F_ be measured foliations on X, and let 74 = T, be their associated
R-trees. Set X = T, x T_. Then X is an NPC space with a proper action
p:m(X) — Iso(X) coming from the diagonal action of 71(X) on T} and T_. Let
E, be the associated energy functional defined in Definition 1.1. In this section we
prove the following

THEOREM 3.1. If F, F_ are filling, then E, is proper.

Let us introduce some more notation. Let C(X) denote the set of isotopy classes
of simple, closed, essential curves on . If we are given a conformal structure o,
we let £, () denote the length of the geodesic in the class v € C(X) with respect to
hyperbolic metric on ¥ in the conformal class of o. If p: 71 () — Iso(X) where X
is an NPC space, we let £x () denote the translation length of p(v) as an isometry
of X. Note that p() is ambiguous up to conjugation, but the translation length
is well-defined. Finally, let MCG denote the mapping class group of . Then
M(E) = T(X)/MCG is the Riemann moduli space of curves. If o is a conformal
structure on ¥ with [o] € T(X), we denote the associated point in M(X) by [[o]].
Given this, we continue now with the

PROOF OF THEOREM 3.1. The proof, which follows along the lines of [SU,
SY], proceeds by contradiction. Suppose F and F_ are filling but that E, fails
to be proper. Then we can find a divergent sequence {[o,]}, [0;] € T(X), and a
constant B such that E,[o;] < B for all j. By divergent we mean that the sequence
eventually leaves every compact subset. We first note the following

LEMMA 3.2. Let {[o;]} be a divergent sequence in T(X). Then either there
is v € C(X) such that £y, () — 0 along some subsequence; or there exist distinct
curves v; € C(X) and a constant C such that £y, (v;) < C along some subsequence.

ProoF. If the associated sequence [[o;]] € M(X) is divergent, then by the
Mumford-Mahler compactness theorem we can find v; € C(X) such that 45, (v;) — 0
along a subsequence. After passing to a further subsequence, at least one of the
two possibilities in the conclusion of the lemma holds. We may therefore assume
{[lo4]]} lies in a compact subset of M(X). Hence, there exist g; € MCG such that
gjloj] = [0x) € T(X) (again after perhaps passing to a subsequence). Since the
initial sequence {[o;]} is divergent, it must be the case that infinitely many of the
g; are distinct. It then follows by [McP, eq. (2.13)] that we can find v € C(X) such
that infinitely many v; = gj_l(’y) are distinct. On the other hand, for large j,

gf’j (PYJ') = 69;‘(%’)(7) <25 (7) .
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In particular, the second possibility in the conclusion of the lemma holds. This
completes the proof. (Il

Continuing with the proof of the theorem, since E,[o;] < B, the energy mini-
mizers _
uj: (X,05) = X
are uniformly Lipschitz (cf. [KS1, Theorem 2.4.6]). Hence, there is a constant,
which we also denote by B, such that

(3.1) {x () < Blg,(v)
for all v € C(X). Now consider Lemma 3.2. Since Fy and F_ are filling, we have
(3-2) Ge(y) = 0, (1) + 03 (7) = &(Fy, ) +°(F-, ) # 0

for every v € C(X). So the first possibility in the conclusion of Lemma 3.2 is ruled
out by (3.1). We therefore assume there are distinct v; with £,,(v;) < C. By (3.1)
there is a constant C’ such that

(3.3) lx(y) <
As in (3.2) we also have
(3-4) e () = P (Fy ) + 2 (F- ) -

Since the ; are distinct there are positive numbers r; — 0 and a measured foliation
G such that (after passing to a subsequence) r;v; — G in the Thurston topology.
Using (3.3) and (3.4) we conclude that

0= lim r; i(F},v;) = i(Fy,G)
j—o0

0= lim r;i(F_,v;) =i(F_,G) .
j—o0

This contradicts the assumption that F,, F_ are filling, and so completes the
proof. O

PROOF OF THEOREM 1.6. Assuming Theorem 3.1 above, it follows from Corol-
lary 1.3 that there is a conformal structure o for which the Hopf differential of an
energy minimizer u : (X,0) — X vanishes. But u is simply the product of energy
minimizers u4+ to T4 with Hopf differentials ®r, and ®p_, respectively. The van-
ishing of the Hopf differential of u implies ®p, +®r_ = 0. Hence, ® = ®p, = —Pp_
has vertical foliation equivalent to F., and horizontal foliation equivalent to F_.
Moreover, by (1.4),

(3.5) Efo] = 2extp, [o] + 2extp._[o] = 4 /E ] .

The uniqueness part is proven in [GM, Theorem 3.1]. Here we give an analytic
proof. For this, it suffices to show that E, has a unique critical point. Suppose
[o] € T(X) is a critical point of E,, and let ® be the Hopf differential of the
conformal harmonic map u : (ENJ,U) — X. If we endow ¥ with the (singular)
conformal metric 4|®|, then (f], 4|®|) is an NPC space. Let [01] # [o]. Then there
is a unique harmonic map v : (3,01) — (3, 4|®|) equivariant with respect to the
natural action of m1(X) (in fact, though we will not need this, the quotient map
v: (X,01) — (%,4]®]) is precisely the Teichmiiller map (cf. [Ku]) with terminal
differential 4®). Since T} and T_ are the vertical and horizontal leaf spaces for
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®, it is clear that u is an isometric, totally geodesic embedding (3, 4|®|) < X. In
particular, the pull-back by u of a convex function on X is convex on (3, 4|®|). Since
v is harmonic, it follows that the pull-back of a convex function on X by u; = uowv
is subharmonic on (3, 01) (cf. [KS1]). By a version of Ishihara’s theorem (which is
valid in this case; see [DW, Theorem 3.8]) we conclude that u; is harmonic. But
then if p is the Beltrami differential of v,

B, o] = E(uy) = E(v) = / (02 + o= ) 4|2 (0(2)) | d=?
—4 / (L + )| (0(2))][os 2| dz?
>4 / (0 (=) o 2|z ?

=4 [101=Eyl] by (5)

with equality if and only if y = 0, i.e. v is conformal. Since v is equivariantly
homotopic to the identity and [o1] # [o], the latter is not possible. Hence, E,[o1] >
E,[o]. If [01] were another critical point of E,, then the same argument would imply
E,[o] > E,[01]; contradiction. O
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