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Energy of Harmonic Maps and Gardiner’s Formula

Richard A. Wentworth

Abstract. It is shown that the usual first variational formula for the energy of
a harmonic map (or equivariant harmonic map) with respect to the conformal
structure on a two dimensional domain extends to case of nonpositively curved
metric space targets. As applications, we recover Gardiner’s formula for the
variation of the Hubbard-Masur differential and a proof of the existence and
uniqueness of quadratic differentials realizing a pair of measured foliations that
fill a surface.

1. Introduction

Energy minimizing maps to singular spaces have been useful in a variety of
problems related to groups actions (cf. [GrS, KS1, KS2, KS3, J2]). In a series
of papers, Mike Wolf showed that many of the important ideas and results in
Teichmüller and Thurston theory could be interpreted and proved using the notion
of a harmonic map to an R-tree (cf. [W1, W2, W3] and also [DDW1, DDW2] –
for a survey of the subject, see [DW]). In this note we give another such application.

Let us first fix notation. We denote by Σ a closed, compact, oriented surface,
and by T(Σ) the Teichmüller space of equivalence classes of conformal structures
on Σ. We will use σ to denote a Riemannian metric on Σ (or sometimes just its
conformal class) and [σ] the point in T(Σ) corresponding to σ. Let X be a length
space that is nonpositively curved (NPC) in the sense of Alexandrov (see [KS1] or
[BH]), and let Iso(X) denote its isometry group.

Let ρ : π1(Σ) → Iso(X) be a homomorphism. In [KS1], Korevaar and Schoen
developed the Sobolev theory of ρ-equivariant finite energy maps (or L2

1-maps)
u : (Σ̃, σ) −→ X, where Σ̃ is the universal cover of Σ, and by abuse of notation σ is
the pullback to Σ̃ of the metric σ on Σ (see also [J2]). If ρ is proper (see [KS2, §2]
for the definition) then there exists a ρ-equivariant map which has minimal energy
among all such maps [KS2, Theorem 2.1.3]. We call these energy minimizers
harmonic maps. The energy E(u, σ) of such a map depends only on the conformal
structure and is a diffeomorphism invariant (provided the diffeomorphism fixes ρ
up to conjugation). Thus we can make the following
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Definition 1.1. Given a proper homomorphism ρ : π1(Σ) → Iso(X), let Eρ :
T(Σ) → R+ = [0,+∞) be defined by the energy Eρ[σ] = E(u, σ), where σ is in the
class [σ] and u is a ρ-equivariant energy minimizing map u : (Σ̃, σ) → X.

The observation of this article is that the well-known formula for the derivative
of Eρ continues to hold in this more general setting. To state this precisely, we
recall that the directional derivatives of an L2

1-map u give a symmetric L1-tensor
πij(u). The (2, 0) part Φ = Φzzdz2 of πij on (Σ̃, σ) is called the Hopf differential
of u. In terms of a local conformal coordinate z = x1 + ix2 and πij ,

(1.1) Φzz =
1
4
{π11 − π22 − 2iπ12} .

It was noted by Schoen (cf. [S, p. 154]) that when u is harmonic Φ is actually
holomorphic, and indeed it is the lift of a holomorphic quadratic differential on
(Σ, σ), which we also denote by Φ. Next, recall from Kodaira-Spencer theory that
tangent vectors to the space of conformal structures on Σ are given by Beltrami
differentials µ = µz

z̄(∂/∂z)⊗dz̄. The natural pairing between quadratic differentials
and Beltrami differentials is given by

(1.2) 〈Φ, µ〉 =
∫

Σ

Φzzµ
z
z̄|dz|2 .

With this understood, we now state

Theorem 1.2. Let ρ : π1(Σ) → Iso(X) be proper, and let Eρ be defined as
in Definition 1.1. Then Eρ is differentiable on T(Σ). If σt, −1 ≤ t ≤ 1, is a
differentiable family of metrics on Σ with Beltrami differential µ at t = 0, and Φ is
the Hopf differential of a ρ-equivariant energy minimizer u : (Σ̃, σ0) → X, then

d

dt

∣∣∣∣
t=0

Eρ[σt] = −4 Re〈Φ, µ〉 .

In the case where X is a smooth Riemannian manifold, this formula has some
history. Wolf [W4] provides a derivation and refers to earlier notes of Schoen, as
well as [T1, T2, J1]. The referee suggests that the earliest computation of this sort
may be due to Douglas (cf. [D, eq. (12.29)]). Since the pairing between holomorphic
quadratic differentials and harmonic Beltrami differentials is nondegenerate, an
immediate consequence of this theorem is the existence of (weakly) minimal surfaces
in X (cf. [SY, SU]). Let us call a map conformal if it is harmonic with vanishing
Hopf differential. Then we have

Corollary 1.3. Let ρ : π1(Σ) → Iso(X) be proper. If Eρ is a proper func-
tion on T(Σ) then there exists a conformal structure σ on Σ and a conformal
ρ-equivariant harmonic map u : (Σ̃, σ) → X.

Properness of Eρ in the context of convex cocompact representations has been
addressed in [GW], and this can be used to deduce the properness of the action of
the mapping class group on the moduli space of representations. Here we show how
two other well-known facts follow from this result. Let F be a measured foliation
on Σ (for background see [FLP]). The Hubbard-Masur theorem [HM] asserts that
for any given conformal structure σ on Σ there is a unique holomorphic quadratic
differential ΦF such that F is measure equivalent to the horizontal trajectory of ΦF
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(alternatively, the vertical trajectory of −ΦF ). The extremal length of F is defined
by (see [GM])

(1.3) extF [σ] =
∫

Σ

|ΦF | .

This gives a well-defined function extF : T(Σ) → R+. Now let F̃ be the lift of F to
Σ̃. Then the leaf space TF of F̃ along with the metric induced by the transversal
measure has the structure of an R-tree (see [W1]), which is a particular example
of an NPC space. Moreover, π1(Σ) acts in the obvious way by isometries, and this
action is proper. Hence, there is a π1(Σ)-equivariant harmonic map u : (Σ̃, σ) → TF

with Hopf differential Φ. In [W3] it was shown that Φ = −ΦF and moreover, the
energy

(1.4) E(u, σ) = 2
∫

Σ

|Φ| = 2
∫

Σ

|ΦF | = 2 extF [σ] .

Hence, Theorem 1.2 implies

Theorem 1.4 (Gardiner’s formula, [G1, G2]). For any measured foliation F ,
extF is differentiable on T(Σ). If σt, −1 ≤ t ≤ 1, is a differentiable family of
conformal structures on Σ with Beltrami differential µ at t = 0, and ΦF is the
Hubbard-Masur differential for F at σ0, then

d

dt

∣∣∣∣
t=0

extF [σt] = 2 Re〈ΦF , µ〉 .

As a second application, consider the problem of realizing a pair of measured
foliations as the vertical and horizontal trajectories of a single quadratic differential.
We recall the following

Definition 1.5. A pair F+, F− of measured foliations on Σ is called filling if
for any third measured foliation G

i(F+, G) + i(F−, G) 6= 0 ,

where i(·, ·) denotes the intersection number.

It is relatively straightforward to see that the vertical and horizontal trajectories of
a quadratic differential are filling (cf. [GM, Lemma 5.3]). We will show in Section
3 that the converse is a consequence of Corollary 1.3.

Theorem 1.6. A pair F+, F− of measured foliations on Σ is filling if and only
there is a conformal structure σ and a holomorphic quadratic differential Φ on
(Σ, σ) such that F+ and F− are measure equivalent to the vertical and horizontal
foliations of Φ, respectively. Moreover, the point [σ] ∈ T(Σ) is uniquely determined,
and for each σ ∈ [σ] the quadratic differential Φ is also unique.

Corollary 1.7. If F+, F− are filling, then there is a conformal structure σ
and a holomorphic quadratic differential Φ on (Σ, σ) such that

i(F+, F−) =
∫

Σ

|Φ| .

We note that Theorem 1.6 was essentially proven in [GM]. The strategy there
was to minimize the product extF+ [σ] extF− [σ] for σ ∈ T(Σ), which occurs along a
Teichmüller geodesic. The approach taken below (which is similar to that in [W4])
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amounts to minimizing the sum extF+ [σ]+extF− [σ], which by (1.4) may be regarded
as half the energy of the equivariant harmonic map (Σ̃, σ) → X = TF+ × TF− .
Minimizing the energy with respect to [σ] gives an analytic proof of Theorem 1.6.
Moreover, we will show that the minimum is unique. Indeed, if [σ] is a minimum
then for any other conformal structure the equivariant harmonic map to X factors
through the Teichmüller map to (Σ̃, σ).

Acknowledgements. Thanks to Vladimir Fock and Bill Goldman for discussions. I
am also grateful to Scott Wolpert and Mike Wolf for the invitation to the Ahlfors-
Bers Colloquium, and to the referee for several important comments and correc-
tions.

2. First Variational Formula

Let σ =
∑2

i,j=1 σijdxi ⊗ dxj be a Riemannian metric on Σ. As is customary,
the inverse of σ is denoted by σij . For convenience, we will continue to denote
by σ the Riemannian metric on the universal cover Σ̃ of Σ. Let X be an NPC
space as in the introduction. Let u : (Σ̃, σ) → X be an L2

1-map in the sense of
Korevaar and Schoen. Then there is a well-defined integrable directional energy
tensor πij = πij(u) associated to u (see [KS1, §2.3]). The energy of u is given by

(2.1) E(u, σ) =
1
2

∫
Σ

|du|2 =
1
2

∫
Σ

πijσ
ij

√
det σij dx1dx2 .

Note that the integrand, a priori defined on Σ̃, descends to Σ. Now suppose we are
given a differentiable family of metrics σt, −1 ≤ t ≤ 1, σ̇ = (dσt/dt)|t=0. Then we
have constants C(t) → 1 as t → 0, such that

(2.2) C−1(t)E(u, σ0) ≤ E(u, σt) ≤ C(t)E(u, σ0) .

In particular, u has finite energy with respect to all σt provided it has finite energy
for some t. Moreover, we have

Lemma 2.1. Let u be an L2
1-map with σ0-Hopf differential Φ. Also, let µ be the

Beltrami differential of the family σt at t = 0. Then

lim
t→0

1
t

(E(u, σt)− E(u, σ0)) = −4 Re〈Φ, µ〉 .

Proof. Since the directional energy tensor πij(u) is in L1, the result follows
from the usual calculation (for smooth targets) and dominated convergence (see
(2.4) below). �

Now we assume that ρ : π1(Σ) → X is proper. For each metric in the family
σt we have a ρ-equivariant harmonic map ut : (Σ̃, σt) → X with directional energy
tensors πij(ut).

Lemma 2.2. As t → 0, πij(ut) → πij(u0) weakly in L1.

Proof. We have

E(u0, σ0) ≤ E(ut, σ0) since u0 is σ0-minimizing

≤ C(t)E(ut, σt) by (2.2)

≤ C(t)E(u0, σt) since ut is σt-minimizing

≤ C2(t)E(u0, σ0) by (2.2) again
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Since C(t) → 1 as t → 0, it follows that E(ut, σ0) → E(u0, σ0) as t → 0. The result
now follows from [KS2, Theorem 3.9]. �

We also have

Lemma 2.3. Let σt and ut be as above. Let Φ be the σ0-Hopf differential of u0,
and let µ be as in Lemma 2.1. Then

lim
t→0

1
t

(E(ut, σt)− E(ut, σ0)) = −4 Re〈Φ, µ〉 .

Proof. For this, we elaborate on the calculation in Lemma 2.1. First, since
the energy is conformally invariant, it suffices to restrict to traceless variations of
the metric. Set

f ij
t =

1
t

(
σij

t

√
det(σt)ij − σij

0

√
det(σ0)ij

)
with f ij

t → f ij
0 uniformly. Choose local conformal coordinates so that the metric

(σ0)ij = gδij where g2 = det(σ0)ij . Then we compute f ij
0 = −g−1σ̇ij , and so

(2.3) πij(u0)f
ij
0 = −g−1 (σ̇11(π11 − π22) + 2σ̇12π12) .

A simple computation shows that the correspondence between Beltrami differentials
and traceless symmetric 2-tensors representing variations of the metric is given by:
2gµz

z̄ = σ̇11 + iσ̇12 (cf. the discussion following Proposition 2.10 of [DW]). Hence,
by the definition of the Hopf differential (1.1),

4 Re(Φzzµ
z
z̄) =

1
2g

Re(π11 − π22 − 2iπ12)(σ̇11 + iσ̇12)

=
1
2g

(σ̇11(π11 − π22) + 2σ̇12π12)(2.4)

= − 1
2πij(u0)f

ij
0 by (2.3).

Using this and (1.2),

lim
t→0

{
1
t

(E(ut, σt)− E(ut, σ0)) + 4 Re〈Φ, µ〉
}

=
1
2

lim
t→0

∫
Σ

{
πij(ut)f

ij
t − πij(u0)f

ij
0

}
dx1dx2

=
1
2

lim
t→0

∫
Σ

{
πij(ut)(f

ij
t − f ij

0 ) + (πij(ut)− πij(u0))f
ij
0

}
dx1dx2

The second term above vanishes, since by Lemma 2.2, πij(ut) → πij(u0) weakly.
By (2.2), πij(ut) is uniformly bounded in L1, so the first term is bounded by a
constant times sup |f ij

t − f ij
0 |. Hence, it also vanishes as t → 0. �

Proof of Theorem 1.2. Since ut is minimizing for σt we have

E(ut, σt)− E(u0, σ0) ≤ E(u0, σt)− E(u0, σ0) .

Since u0 is minimizing for σ0 we have

E(ut, σt)− E(u0, σ0) ≥ E(ut, σt)− E(ut, σ0) .
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By Lemmas 2.1 and 2.3 we have

lim sup
t↓0

1
t
{E(ut, σt)− E(u0, σ0)} ≤ −4 Re〈Φ, µ〉

lim inf
t↓0

1
t
{E(ut, σt)− E(u0, σ0)} ≥ −4 Re〈Φ, µ〉

Taken together, we conclude

lim
t↓0

1
t
{E(ut, σt)− E(u0, σ0)} = −4 Re〈Φ, µ〉 .

A similar argument applies for the limit as t ↑ 0. This completes the proof. �

3. Realizing Pairs of Measured Foliations

Let F+, F− be measured foliations on Σ, and let T± = TF± be their associated
R-trees. Set X = T+ × T−. Then X is an NPC space with a proper action
ρ : π1(Σ) → Iso(X) coming from the diagonal action of π1(Σ) on T+ and T−. Let
Eρ be the associated energy functional defined in Definition 1.1. In this section we
prove the following

Theorem 3.1. If F+, F− are filling, then Eρ is proper.

Let us introduce some more notation. Let C(Σ) denote the set of isotopy classes
of simple, closed, essential curves on Σ. If we are given a conformal structure σ,
we let `σ(γ) denote the length of the geodesic in the class γ ∈ C(Σ) with respect to
hyperbolic metric on Σ in the conformal class of σ. If ρ : π1(Σ) → Iso(X) where X
is an NPC space, we let `X(γ) denote the translation length of ρ(γ) as an isometry
of X. Note that ρ(γ) is ambiguous up to conjugation, but the translation length
is well-defined. Finally, let MCG denote the mapping class group of Σ. Then
M(Σ) = T(Σ)/MCG is the Riemann moduli space of curves. If σ is a conformal
structure on Σ with [σ] ∈ T(Σ), we denote the associated point in M(Σ) by [[σ]].
Given this, we continue now with the

Proof of Theorem 3.1. The proof, which follows along the lines of [SU,
SY], proceeds by contradiction. Suppose F+ and F− are filling but that Eρ fails
to be proper. Then we can find a divergent sequence {[σj ]}, [σj ] ∈ T(Σ), and a
constant B such that Eρ[σj ] ≤ B for all j. By divergent we mean that the sequence
eventually leaves every compact subset. We first note the following

Lemma 3.2. Let {[σj ]} be a divergent sequence in T(Σ). Then either there
is γ ∈ C(Σ) such that `σj (γ) → 0 along some subsequence; or there exist distinct
curves γj ∈ C(Σ) and a constant C such that `σj

(γj) ≤ C along some subsequence.

Proof. If the associated sequence [[σj ]] ∈ M(Σ) is divergent, then by the
Mumford-Mahler compactness theorem we can find γj ∈ C(Σ) such that `σj (γj) → 0
along a subsequence. After passing to a further subsequence, at least one of the
two possibilities in the conclusion of the lemma holds. We may therefore assume
{[[σj ]]} lies in a compact subset of M(Σ). Hence, there exist gj ∈ MCG such that
gj [σj ] → [σ∞] ∈ T(Σ) (again after perhaps passing to a subsequence). Since the
initial sequence {[σj ]} is divergent, it must be the case that infinitely many of the
gj are distinct. It then follows by [McP, eq. (2.13)] that we can find γ ∈ C(Σ) such
that infinitely many γj = g−1

j (γ) are distinct. On the other hand, for large j,

`σj
(γj) = `gj(σj)(γ) ≤ 2`σ∞(γ) .
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In particular, the second possibility in the conclusion of the lemma holds. This
completes the proof. �

Continuing with the proof of the theorem, since Eρ[σj ] ≤ B, the energy mini-
mizers

uj : (Σ̃, σj) → X

are uniformly Lipschitz (cf. [KS1, Theorem 2.4.6]). Hence, there is a constant,
which we also denote by B, such that

(3.1) `X(γ) ≤ B`σj (γ)

for all γ ∈ C(Σ). Now consider Lemma 3.2. Since F+ and F− are filling, we have

(3.2) `2X(γ) = `2T+
(γ) + `2T−(γ) = i2(F+, γ) + i2(F−, γ) 6= 0

for every γ ∈ C(Σ). So the first possibility in the conclusion of Lemma 3.2 is ruled
out by (3.1). We therefore assume there are distinct γj with `σj

(γj) ≤ C. By (3.1)
there is a constant C ′ such that

(3.3) `X(γj) ≤ C ′ .

As in (3.2) we also have

(3.4) `2X(γj) = i2(F+, γj) + i2(F−, γj) .

Since the γj are distinct there are positive numbers rj → 0 and a measured foliation
G such that (after passing to a subsequence) rjγj → G in the Thurston topology.
Using (3.3) and (3.4) we conclude that

0 = lim
j→∞

rj i(F+, γj) = i(F+, G)

0 = lim
j→∞

rj i(F−, γj) = i(F−, G) .

This contradicts the assumption that F+, F− are filling, and so completes the
proof. �

Proof of Theorem 1.6. Assuming Theorem 3.1 above, it follows from Corol-
lary 1.3 that there is a conformal structure σ for which the Hopf differential of an
energy minimizer u : (Σ̃, σ) → X vanishes. But u is simply the product of energy
minimizers u± to T± with Hopf differentials ΦF+ and ΦF− , respectively. The van-
ishing of the Hopf differential of u implies ΦF++ΦF− = 0. Hence, Φ = ΦF+ = −ΦF−

has vertical foliation equivalent to F+, and horizontal foliation equivalent to F−.
Moreover, by (1.4),

(3.5) Eρ[σ] = 2 extF+ [σ] + 2 extF− [σ] = 4
∫

Σ

|Φ| .

The uniqueness part is proven in [GM, Theorem 3.1]. Here we give an analytic
proof. For this, it suffices to show that Eρ has a unique critical point. Suppose
[σ] ∈ T(Σ) is a critical point of Eρ, and let Φ be the Hopf differential of the
conformal harmonic map u : (Σ̃, σ) → X. If we endow Σ̃ with the (singular)
conformal metric 4|Φ|, then (Σ̃, 4|Φ|) is an NPC space. Let [σ1] 6= [σ]. Then there
is a unique harmonic map v : (Σ̃, σ1) −→ (Σ̃, 4|Φ|) equivariant with respect to the
natural action of π1(Σ) (in fact, though we will not need this, the quotient map
v : (Σ, σ1) → (Σ, 4|Φ|) is precisely the Teichmüller map (cf. [Ku]) with terminal
differential 4Φ). Since T+ and T− are the vertical and horizontal leaf spaces for



8 RICHARD A. WENTWORTH

Φ, it is clear that u is an isometric, totally geodesic embedding (Σ̃, 4|Φ|) ↪→ X. In
particular, the pull-back by u of a convex function on X is convex on (Σ̃, 4|Φ|). Since
v is harmonic, it follows that the pull-back of a convex function on X by u1 = u ◦ v

is subharmonic on (Σ̃, σ1) (cf. [KS1]). By a version of Ishihara’s theorem (which is
valid in this case; see [DW, Theorem 3.8]) we conclude that u1 is harmonic. But
then if µ is the Beltrami differential of v,

Eρ[σ1] = E(u1) = E(v) =
∫

Σ

(|vz|2 + |vz̄|2)4|Φ(v(z))||dz|2

= 4
∫

Σ

(1 + |µ|2)|Φ(v(z))||vz|2|dz|2

≥ 4
∫

Σ

|Φ(v(z))||vz|2|dz|2

= 4
∫

Σ

|Φ| = Eρ[σ] by (3.5),

with equality if and only if µ ≡ 0, i.e. v is conformal. Since v is equivariantly
homotopic to the identity and [σ1] 6= [σ], the latter is not possible. Hence, Eρ[σ1] >
Eρ[σ]. If [σ1] were another critical point of Eρ, then the same argument would imply
Eρ[σ] > Eρ[σ1]; contradiction. �
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