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Abstract

Adaptive finite element methods (AFEM) are a fundamental numerical tool in
science and engineering. They are known to outperform classical FEM in prac-
tice and deliver optimal convergence rates when the latter cannot. This paper
surveys recent progress in the theory of AFEM which explains their success and
provides a solid mathematical framework for further developments.
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1. Introduction

Mathematically sound adaptive finite element methods (AFEM) have been the
subject of intense research since the late 70’s, starting with the pioneering
work of Babuška [4, 3]. It is known to practitioners that AFEM can achieve
optimal performance, measured as error vs degrees of freedom, in situations
when classical FEM cannot. However, it took about 30 years to develop a theory
for the energy norm that explains this behavior and provides solid mathematical
foundations for further development. This paper presents this theory [10, 33],
and its connection to nonlinear approximation [17], for the model elliptic PDE

− div(A∇u) = f in Ω, (1)

with Ω a polyhedral domain of Rd (d ≥ 2), homogeneous Dirichlet boundary
condition on ∂Ω, and A symmetric, bounded, and uniformly positive definite.
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Figure 1. Discontinuous coefficients in checkerboard pattern: (a) graph of the discrete
solution u, which is u ≈ r0.1, and underlying strongly graded grid T towards the
origin (notice the steep gradient of u at the origin); (b) estimate and true error in
terms of #T (the optimal decay for piecewise linear elements in 2d is indicated by
the straight line with slope −1/2).

We start with a simple yet quite demanding example with discontinuous
coefficients for d = 2 due to Kellogg [20], and used by Morin, Nochetto, and
Siebert [25, 26] as a benchmark for AFEM. We consider Ω = (−1, 1)2, A = a1I
in the first and third quadrants, and A = a2I in the second and fourth quad-
rants. This chekerboard pattern is the worst for the regularity of the solution u
at the origin. For f = 0, a function of the form u(r, θ) = rγµ(θ) in polar coor-
dinates solves (1) with nonvanishing Dirichlet condition for suitable 0 < γ < 1
and µ [25, 26, 28]. We choose γ = 0.1, which leads to u ∈ Hs(Ω) for s < 1.1
and piecewise in W 1

p for some p > 1. This corresponds to diffusion coefficients
a1 ∼= 161.44 and a2 = 1, which can be computed via Newton’s method; the
closer γ is to 0, the larger is the ratio a1/a2. The solution u and a sample mesh
are depicted in Figure 1(a).

Figure 1(b) documents the optimal performance of AFEM: both the energy
error and estimator exhibit optimal decay (#T )−1/2 in terms of the cardinal-
ity #T of the underlying mesh T for piecewise linear finite elements. On the
other hand, Figure 2 displays a strongly graded mesh T towards the origin
generated by AFEM using bisection, and three zooms which reveal a selfsim-
ilar structure. It is worth stressing that the meshsize is of order 10−10 at the
origin and #T ≈ 2 × 103, whereas to reach a similar resolution with a uni-
form mesh T we would need #T ≈ 1020. This example clearly reveals that
adaptivity can restore optimal performance even with modest computational
resources.

Classical FEM with quasi-uniform meshes T require regularity u ∈ H2(Ω)
to deliver an optimal convergence rate (#T )−1/2. Since u /∈ Hs(Ω) for any
s > 1.1, this is not possible for the example above. However, the problem is
not quite the lack of second derivatives, but rather the fact that they are not
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Figure 2. Discontinuous coefficients in checkerboard pattern: (a) final grid T highly
graded towards the origin with #T ≈ 2000; (b) zoom to (−10−3, 10−3)2; (c) zoom to
(−10−6, 10−6)2; (d) zoom to (−10−9, 10−9)2. For a similar resolution, a uniform grid
T would require #T ≈ 1020.

square integrable. In fact, the function u is in W 2
p for p > 1 in each quadrant,

and so over the initial mesh T0, namely u ∈W 2
p (Ω; T0).

To measure the performance of AFEM we introduce an approximation class
As for s > 0. Given an initial grid T0, and the set TN of all conforming refine-
ments T0 by bisection with at most N elements more than T0, we consider the
best error

σN (u) := inf
T ∈TN

inf
V ∈V(T )

|||u− V |||Ω (2)

in the energy norm |||·|||Ω = ‖A1/2∇ · ‖L2(Ω), where V(T ) ⊂ H1
0 (Ω) is the con-

forming finite element space of piecewise polynomials of degree ≤ n with n ≥ 1
over T . We say that u ∈ As if

σN (u) . N−s. (3)

We wonder whether or not AFEM is able to deliver this asymptotic error decay.
If we have access to the local energy error, we give a constructive proof in §3
of the fact that for d = 2

u ∈W 2
p (Ω; T0) ∩H1

0 (Ω) ⇒ u ∈ A1/2. (4)

This shows that piecewise linear finite element approximations can deliver op-
timal error decay. However, we only have indirect access to the solution u of
(1) via the error estimators, so it is highly nontrivial whether a similar result
holds for the Galerkin solution given by AFEM. The answer to this question
requires two steps:

• Contraction property: we show in §5.1 that the energy error contracts pro-
vided the data is piecewise constant (so that the oscillation vanishes) and
the interior node property holds. Otherwise, we identify in §5.2 a novel con-
tractive quantity for general data, the so-called quasi-error, and prove that
AFEM contracts it.

• Convergence rate: we show in §6.3 that the class As is adequate provided the
oscillation vanishes. However, the concept of approximation class for AFEM
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is generally more involved than just As because it entails dealing with the
total error, namely the sum of energy error and oscillation. We discuss this
issue in §6.1 and §6.2, and next prove that AFEM delivers a convergence rate
similar to (3) up a multiplicative constant in §6.4.

It is worth stressing that AFEM learns about the decay rate s > 0 via the
estimator. In fact, this exponent is never used in the design of AFEM. We
discuss the basic modules of AFEM along with their key properties in §4, and
the properties of bisection in §2.

2. The Bisection Method

We briefly discuss the bisection method, the most elegant and successful tech-
nique for subdividing Ω in any dimension into a conforming mesh made of
simplices. We mention the recursive algorithms by Mitchell [24] for d = 2 and
Kossaczky [21] for d = 3. We focus on the special case d = 2, and follow Binev,
Dahmen, and DeVore [5] and Nochetto and Veeser [29], but the key Theorem 2
holds for any d ≥ 2 as shown by Stevenson [34]. We refer to Nochetto, Siebert,
and Veeser [28] for a rather complete discussion for d ≥ 2.

2.1. Definition and Properties of Bisection. Let T denote a
mesh (triangulation or grid) made of simplices T , and let T be conforming
(edge-to-edge). Each element is labeled, namely it has an edge E(T ) assigned
for refinement (and an opposite vertex v(T ) for d = 2); see Figure 3.

2

2

1 2

1

1

E(T )

T

v(T ) = v(T )

v(T)
T

TE(T)
E(T )

Figure 3. Triangle T ∈ T with vertex v(T ) and opposite refinement edge E(T ). The
bisection rule for d = 2 consists of connecting v(T ) with the midpoint of E(T ), thereby
giving rise to children T1, T2 with common vertex v(T1) = v(T2), the newly created
vertex, and opposite refinement edges E(T1), E(T2).

The bisection method consists of a suitable labeling of the initial mesh T0
and a rule to assign the refinement edge to the two children. For d = 2 we follow
Mitchell [24] and consider the newest vertex bisection as depicted in Figure 3.
For d > 2 the situation is more complicated and one needs the concepts of type
and vertex order [21, 28, 34].

Let T be the set of all conforming bisection refinements of T0. If T∗ ∈ T

is a conforming refinement of T ∈ T, we write T∗ ≥ T . For instance, Figure
4 displays a sequence {Tk}

2
k=0 with T0 = {Ti}

4
i=1 and Tk ≥ Tk−1 obtained by

bisecting the longest edge.



Why Adaptive Finite Element Methods Outperform Classical Ones 5

11 9

10

1

2

3

4

2

3

5 6

7

8

2

3

5

8

12

T T

T
T

T

T

T

T

T
T

T

TT

T

T
T

T
T

Figure 4. Sequence of bisection meshes {Tk}
2
k=0 starting from the initial mesh T0 =

{Ti}
4
i=1 with longest edges labeled for bisection. Mesh T1 is created from T0 upon

bisecting T1 and T4, whereas mesh T2 arises from T1 upon refining T6 and T7. The
bisection rule is described in Figure 3.

The following assertion about element shape is valid for d ≥ 2 but we state
it for d = 2.

Lemma 1 (Shape regularity). The partitions T ∈ T generated by newest vertex
bisection satisfy a uniform minimal angle condition, or equivalently the maximal
ratio of element diameter over diameter of largest inscribed ball for all T ∈ T
is uniformly bounded, only depending on the initial partition T0.

We define the generation g(T ) of an element T ∈ T as the number of
bisections needed to create T from its ancestor T0 ∈ T0. Since bisection splits
an element into two children with equal measure, we realize that

hT = |T |1/2 = 2−g(T )/2hT0
for all T ∈ T . (5)

Whether the recursive application of bisection does not lead to inconsisten-
cies depends on a suitable initial labeling of edges and a bisection rule. For d = 2
they are simple to state [5], but for d > 2 we refer to Condition (b) of Section 4
of [34]. Given T ∈ T with generation g(T ) = i, we assign the label (i+1, i+1, i)
to T with i corresponding to the refinement edge E(T ). The following rule dic-
tates how the labeling changes with refinement: the side i is bisected and both
new sides as well as the bisector are labeled i+2 whereas the remaining labels
do not change. To guarantee that the label of an edge is independent of the
elements sharing this edge, we need a special labeling for T0 [5]:

edges of T0 have labels 0 or 1 and all elements T ∈ T have
exactly two edges with label 1 and one with label 0.

(6)

It is not obvious that such a labeling exists, but if it does then all elements of T0
can be split into pairs of compatibly divisible elements. We refer to Figure 5 for
an example of initial labeling of T0 satisfying (6) and the way it evolves for two
successive refinements T2 ≥ T1 ≥ T0 corresponding to Figure 4. Condition (6)
can be enforced for d = 2 upon bisecting twice each element of T0 and labeling
0 the two newest edges [5]. For d > 2 the construction is much trickier [34].



6 Ricardo H. Nochetto

0

00 0

0 0

0

0

11

1 1

11

1

1

1

1 1

2

2

2 2

2

2

2

2

2

2

2 2

3

3
3

3

Figure 5. Initial labeling and its evolution for the sequence of conforming refinements
of Figure 4.

2.2. Complexity of Bisection. Given T ∈ T and a subsetM⊂ T of
marked elements to be refined, the procedure

T∗ = REFINE(T ,M)

creates a new conforming refinement T∗ of T by bisecting all elements ofM at
least once and perhaps additional elements to keep conformity.
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Figure 6. Recursive refinement of T10 ∈ T in Figures 4 and 5. This entails refining
the chain {T10, T8, T2}, starting from the last element T2 ∈ T , which form alone
a compatible bisection patch because its refinement edge is on the boundary, and
continuing with T8 ∈ T and finally T10 ∈ T . Note that the successive meshes are
always conforming, that each element in the chain is bisected twice before getting
back to T10, and that #{T10, T8, T2} = g(T10) = 3.

Conformity is a constraint in the refinement procedure that prevents it from
being completely local. The propagation of refinement beyond the set of marked
elements M is a rather delicate matter. Figure 6 shows that a naive estimate
of the form

#T∗ −#T ≤ Λ0 #M

is not valid with an absolute constant Λ0 independent of the refinement level
because the constant may be as large as g(T ) with T ∈M.

This can be repaired upon considering the cumulative effect for a sequence
of conforming bisection meshes {Tk}

∞
k=0. This is expressed in the following

crucial complexity result due to Binev, Dahmen, and DeVore [5] for d = 2 and
Stevenson [34] for d > 2. We refer to Nochetto, Siebert and Veeser [28] for a
complete discussion for d ≥ 2.
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Theorem 2 (Complexity of REFINE). If T0 satisfies the initial labeling (6) for
d = 2, or that in [34, Section 4] for d > 2, then there exists a constant Λ0 > 0
only depending on T0 and d such that for all k ≥ 1

#Tk −#T0 ≤ Λ0

k−1
∑

j=0

#Mj .

If elements T ∈ M are to be bisected b ≥ 1 times, then the procedure
REFINE can be applied recursively, and Theorem 2 remains valid with Λ0 also
depending on b.

3. Piecewise Polynomial Interpolation

3.1. Quasi-interpolation. If v ∈ C0(Ω) we define the Lagrange inter-
polant IT v of v as follows:

IT v(x) =
∑

z∈N

v(z)φz(x).

For functions without point values, such as those in H1(Ω) for d > 1, we need to
determine nodal values by averaging. For any conforming refinement T ≥ T0 of
T0, the averaging process extends beyond nodes and so gives rise to the discrete
neigborhood

NT (T ) := {T
′ ∈ T | T ′ ∩ T 6= ∅} for all T ∈ T

which satisfies maxT∈T #NT (T ) ≤ C(T0) and maxT ′∈NT (T )
|T |
|T ′| ≤ C(T0) with

C(T0) depending only on the shape coefficient of T0. We consider now the quasi-
interpolation operator IT : W 1

1 (Ω)→ V(T ) due to Scott and Zhang [9, 30]. For
n = 1 it reads

IT v =
∑

z∈N (T )

〈v, φ∗
z〉φz,

where {φ∗
z}z∈N (T ) is a suitable set of dual functions for each node z so that

IT v = 0 on ∂Ω provided v = 0 on ∂Ω. We recall the notion of Sobolev number:
sob(W s

p ) = s− d/p.

Proposition 3 (Local interpolation error). Let s, t be regularity indices with
0 ≤ t ≤ s ≤ n+ 1, and 1 ≤ p, q ≤ ∞ be integrability indices so that sob(W s

p ) >
sob(W t

q ). The quasi-interpolation operator IT is invariant in V(T ) and satisfies
for s ≥ 1

‖Dt(v− IT v)‖Lq(T ) . h
sob(W s

p )−sob(W t
q )

T ‖Dsv‖Lp(NT (T )) for all T ∈ T , (7)

provided T is shape regular. Moreover, if sob(W 2
p ) > 0, then v is continuous

and (7) remains valid with IT replaced by the Lagrange interpolation operator
and NT (T ) by T .
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3.2. Principle of Error Equidistribution. We investigate the re-
lation between local meshsize and regularity for the design of graded meshes
adapted to a given function v ∈ H1(Ω) for d = 2. We formulate this as an
optimization problem:

Given a function v ∈ C2(Ω) ∩W 2
p (Ω) and an integer N > 0 find

conditions for a shape regular mesh T to minimize the error |v −
IT v|H1(Ω) subject to the constraint that the number of degrees of
freedom #T ≤ N .

We first convert this discrete optimization problem into a continuous model,
following Babuška and Rheinboldt [4]. Let

#T =

∫

Ω

dx

h(x)2

be the number of elements of T and let the Lagrange interpolation error

‖∇(v − IT v)‖
p
L2(Ω) =

∫

Ω

h(x)2(p−1)|D2v(x)|pdx

be dictated by (7) with s = 2 and 1 < p ≤ 2; note that r = sob(W 2
p )−sob(H

1) =
2 − 2/p whence rp = 2(p − 1) is the exponent of h(x). We next propose the
Lagrangian

L[h, λ] =

∫

Ω

(

h(x)2(p−1)|D2v(x)|p −
λ

h(x)2

)

dx

with Lagrange multiplier λ ∈ R. The optimality condition reads
h(x)2(p−1)+2|D2v(x)|p = Λ, where Λ > 0 is a constant. To interpret this ex-
pression, we compute the interpolation error ET incurred in element T ∈ T .
According to Proposition 3, ET is given by

Ep
T ≈ h

2(p−1)
T

∫

T

|D2v(x)|p ≈ Λ

provided D2v(x) is about constant in T . Therefore we reach the heuristic, but
insightful, conclusion that ET is about constant, or equivalently

A graded mesh is quasi-optimal if the local error is equidistributed. (8)

Meshes satisfying (8) have been constructed by Babuška et al [2] for corner
singularities and d = 2; see also [19]. If 0 < γ < 1 and the function v behaves
like v(x) ≈ r(x)γ , where r(x) is the distance from x ∈ Ω to a reentrant corner
of Ω, then

h(x) = Λ
1

2p r(x)−
1

2
(γ−2)

is the optimal mesh grading. This in turn implies

#T =

∫

Ω

h(x)−2dx ≈ Λ− 1

p

∫ diam(Ω)

0

rγ−1dr ≈ Λ− 1

p .
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This crucial relation is valid for any γ > 0 and p > 1; in fact the only condition
on p is that r = 2− 2/p > 0, or equivalently sob(W 2

p ) > sob(H1). Therefore,

‖∇(v − IT v)‖
2
L2(Ω) =

∑

T∈T

E2
T = Λ

2

p (#T ) ≈ (#T )−1 (9)

gives the optimal decay rate for d = 2, n = 1. What this argument does not ad-
dress is whether such meshes T exist in general and, more importantly, whether
they can actually be constructed upon bisecting the initial mesh T0 so that
T ∈ T.

3.3. Thresholding. We now construct graded bisection meshes T for
n = 1, d = 2 that achieve the optimal decay rate (#T )−1/2 under the global
regularity assumption

v ∈W 2
p (Ω; T0) ∩H1

0 (Ω), p > 1. (10)

Following Binev, Dahmen, DeVore and Petrushev [6], we use a thresholding
algorithm that is based on the knowledge of the element errors and on bisection.
The algorithm hinges on (8): if δ > 0 is a given tolerance, the element error is
equidistributed, that is ET ≈ δ2, and the global error decays with maximum
rate (#T )−1/2, then

δ4#T ≈
∑

T∈T

E2
T = |v − IT v|

2
H1(Ω) . (#T )−1

that is #T . δ−2. With this in mind, we impose ET ≤ δ2 as a common thresh-
old to stop refining and expect #T . δ−2. The following algorithm implements
this idea.

Thresholding Algorithm. Given a tolerance δ > 0 and a conforming mesh
T0, the procedure THRESHOLD finds a conforming refinement T ≥ T0 of T0 by
bisection such that ET ≤ δ2 for all T ∈ T : let T = T0 and

THRESHOLD(T , δ)
whileM := {T ∈ T |ET > δ2} 6= ∅
T := REFINE(T ,M)

end while
return(T )

Since W 2
p (Ω; T0) ∩ H1

0 (Ω) ⊂ C0(Ω), because p > 1, we can use the Lagrange
interpolant and local estimate (7) with r = sob(W 2

p )− sob(H1) = 2− 2/p > 0
and NT (T ) = T :

ET . hr
T ‖D

2v‖Lp(T ). (11)

Hence THRESHOLD terminates because hT decreases monotonically to 0 with
bisection. The quality of the resulting mesh is assessed next.
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Theorem 4 (Thresholding). If v verifies (10), then the output T ∈ T of
THRESHOLD satisfies

|v − IT v|H1(Ω) ≤ δ2(#T )1/2, #T −#T0 . δ−2 |Ω|1−1/p‖D2v‖Lp(Ω;T0).

Proof. Let k ≥ 1 be the number of iterations of THRESHOLD before termina-
tion. Let M =M0 ∪ · · · ∪Mk−1 be the set of marked elements. We organize
the elements inM by size in such a way that allows for a counting argument.
Let Pj be the set of elements T ofM with size

2−(j+1) ≤ |T | < 2−j ⇒ 2−(j+1)/2 ≤ hT < h
−j/2
T .

We proceed in several steps.

1 We first observe that all T ’s in Pj are disjoint. This is because if T1, T2 ∈ Pj

and T̊1 ∩ T̊2 6= ∅, then one of them is contained in the other, say T1 ⊂ T2, due
to the bisection procedure. Thus |T1| ≤

1
2 |T2|, contradicting the definition of

Pj . This implies

2−(j+1) #Pj ≤ |Ω| ⇒ #Pj ≤ |Ω| 2
j+1. (12)

2 In light of (11), we have for T ∈ Pj

δ2 ≤ ET . 2−(j/2)r‖D2v‖Lp(T ).

Therefore

δ2p #Pj . 2−(j/2)rp
∑

T∈Pj

‖D2v‖pLp(T ) ≤ 2−(j/2)rp ‖D2v‖pLp(Ω;T0)

whence
#Pj . δ−2p 2−(j/2)rp ‖D2v‖pLp(Ω;T0)

. (13)

3 The two bounds for #P in (12) and (13) are complementary. The first is
good for j small whereas the second is suitable for j large (think of δ � 1).
The crossover takes place for j0 such that

2j0+1|Ω| = δ−2p 2−j0(rp/2)‖D2v‖pLp(Ω;T0)
⇒ 2j0 ≈ δ−2 ‖D

2v‖Lp(Ω;T0)

|Ω|1/p
.

4 We now compute

#M =
∑

j

#Pj .
∑

j≤j0

2j |Ω|+ δ−2p ‖D2v‖pLp(Ω;T0)

∑

j>j0

(2−rp/2)j .

Since
∑

j≤j0

2j ≈ 2j0 ,
∑

j>j0

(2−rp/2)j . 2−(rp/2)j0 = 2−(p−1)j0
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we can write

#M .
(

δ−2 + δ−2pδ2(p−1)) |Ω|1−1/p ‖D2v‖Lp(Ω;T0) ≈ δ−2 |Ω|1−1/p ‖D2v‖Lp(Ω;T0).

We finally apply Theorem 2 to arrive at

#T −#T0 . #M . δ−2 |Ω|1−1/p ‖D2v‖Lp(Ω;T0).

5 It remains to estimate the energy error. We have, upon termination of
THRESHOLD, that ET ≤ δ2 for all T ∈ T . Then

|v − IT v|
2
H1(Ω) =

∑

T∈T

E2
T ≤ δ4 #T .

This concludes the Theorem.

Upon relating the threshold δ and the number of elements N , we obtain a
convergence rate. In particular, this implies (4): σN (v) . ‖D2v‖Lp(Ω;T0)N

−1/2

for all N ≥ #T0.

Corollary 5 (Convergence rate). Let v satisfy (10). Then for N > #T0 integer
there exists T ∈ T such that

|v − IT v|H1(Ω) . |Ω|
1−1/p ‖D2v‖Lp(Ω;T0)N

−1/2, #T −#T0 . N.

Proof. Choose δ2 = |Ω|1−1/p ‖D2v‖Lp(Ω;T0)N
−1 in Theorem 4. Then, there ex-

ists T ∈ T such that #T −#T0 . N and

|v − IT v|H1(Ω) . |Ω|1−1/p ‖D2v‖Lp(Ω;T0)N
−1(#T )1/2 . |Ω|1−1/p ‖D2v‖Lp(Ω;T0)N

−1/2,

because #T . N . This finishes the Corollary.

Remark 6 (Case p < 1). We consider now polynomial degree n ≥ 1. The
integrability p corresponding to differentiability n + 1 results from equating
Sobolev numbers:

n+ 1−
d

p
= sob(H1) = 1−

d

2
⇒ p =

2d

2n+ d
.

Depending on d ≥ 2 and n ≥ 1, this may lead to 0 < p < 1, in which case
Wn+1

p (Ω) is to be replaced by the Besov space Bn+1
p,p (Ω) [17]. The argument of

Theorem 4 works provided we replace (11) by a modulus of regularity [6].

Remark 7 (Isotropic elements). Corollary 5 shows that isotropic graded
meshes can always deal with geometric singularities for d = 2. This is no longer
true for d > 2 due to edge singularities: if d = 3 and v(x) ≈ r(x)γ near an edge,
then n = 1 requires γ > 1

3 whereas n = 2 needs γ > 2
3 . The latter corresponds

to a dihedral angle ω < 3π
2 .
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4. Adaptive Finite Element Methods (AFEM)

We now present the four basic modules of AFEM for (1) and discuss their main
properties.

4.1. Modules of AFEM. They are SOLVE, ESTIMATE, MARK, and
REFINE.

Module SOLVE. If T ∈ T is a conforming refinement of T0 and V = V(T ) is
the finite element space of C0 piecewise polynomials of degree ≤ n, then

U = SOLVE(T )

determines the Galerkin solution exactly, namely,

U ∈ V :

∫

Ω

A∇U · ∇V =

∫

Ω

fV for all V ∈ V. (14)

Module ESTIMATE. Given a conforming mesh T ∈ T and the Galerkin solu-
tion U ∈ V(T ), the output {ET (U, T )}T∈T of

{ET (U, T )}T∈T = ESTIMATE(U, T )

are the element indicators defined as follows: for any V ∈ V

E2T (V, T ) = h2
T ‖r(V )‖2T + hT ‖j(V )‖2∂T for all T ∈ T , (15)

where the interior and jump residuals are given by

r(V )|T = f + div(A∇V ) for all T ∈ T

j(V )|S = [A∇V ] · ν |S for all S ∈ S (internal sides of T ),

and j(V )|S = 0 for boundary sides S ∈ S. We denote E2T (V,P) =
∑

T∈P E
2
T (V, T ) for any subset P of T and ET (V ) = ET (V, T ).

Module MARK. Given T ∈ T, the Galerkin solution U ∈ V(T ), and element
indicators {ET (U, T )}T∈T , the module MARK selects elements for refinement
using Dörfler Marking (or bulk chasing) [18], i. e., using a fixed parameter
θ ∈ (0, 1] the outputM of

M = MARK
(

{ET (U, T )}T∈T , T
)

satisfies
ET (U,M) ≥ θ ET (U, T ). (16)

This marking guarantees that M contains a substantial part of the total (or
bulk), thus its name. The choice of M does not have to be minimal at this
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stage, that is, the marked elements T ∈ M do not necessarily must be those
with largest indicators.

Module REFINE. Let b ∈ N be the number of desired bisections per marked
element. Given T ∈ T and a subsetM of marked elements, the output T∗ ∈ T of

T∗ = REFINE
(

T ,M
)

is the smallest refinement T∗ of T so that all elements of M are at least
bisected b times. Therefore, the piecewise constant meshsize functions satisfy
hT∗
≤ hT and the strict reduction property

hT∗
|T ≤ 2−b/dhT |T for all T ∈M. (17)

We finally let RT →T∗
be the subset of refined elements of T and note that

M⊂ RT →T∗
.

AFEM. Given an initial grid T0, set k = 0 and iterate

Uk = SOLVE(Tk);
{Ek(Uk, T )}T∈Tk

= ESTIMATE(Uk, Tk);
Mk = MARK

(

{Ek(Uk, T )}T∈Tk
, Tk

)

;
Tk+1 = REFINE(Tk,Mk); k ← k + 1.

4.2. Basic Properties of AFEM. We next follow Cascón, Kreuzer,
Nochetto, and Siebert [10] and summarize some basic properties of AFEM that
emanate from the symmetry of the differential operator (i.e. of A) and features
of the modules. In doing this, any explicit constant or hidden constant in .

will only depend on the uniform shape-regularity of T, the dimension d, the
polynomial degree n, and the (global) eigenvalues of A, but not on a specific
grid T ∈ T, except if explicitly stated. Furthermore, u will always be the weak
solution of (1).

The following property relies on the fact that the underlying bilinear form
is coercive and symmetric, and so induces a scalar product in V equivalent to
the H1

0 -scalar product.

Lemma 8 (Pythagoras). Let T , T∗ ∈ T be such that T ≤ T∗. The corresponding
Galerkin solutions U ∈ V(T ) and U∗ ∈ V(T∗) satisfy the following orthogonality
property

|||u− U |||2Ω = |||u− U∗|||
2
Ω + |||U∗ − U |||2Ω . (18)

Property (18) is valid for (1) for the energy norm exclusively. This restricts
the subsequent analysis to the energy norm, or equivalent norms, but does not
extend to other, perhaps more practical, norms such as the maximum norm.
This is an important open problem and a serious limitation of this theory.
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We now continue with the concept of oscillation. We denote by oscT (V, T )
the element oscillation for any V ∈ V

oscT (V, T ) = ‖h(r(V )− r(V ))‖L2(T ) + ‖h
1/2(j(V )− j(V ))‖L2(∂T∩Ω), (19)

where r(V ) = P2n−2r(V ) and j(V ) = P2n−1j(V ) stand for L2-projections of the
residuals r(V ) and j(V ) onto the polynomials P2n−2(T ) and P2n−1(S) defined
on the element T or side S ⊂ ∂T , respectively. For variable A, oscT (V, T )
depends on the discrete function V ∈ V, and its study is more involved than
for piecewise constant A. In the latter case, oscT (V, T ) = ‖h(f − f̄)‖L2(T ) is
called data oscillation [25, 26].

Proposition 9 (A posteriori error estimates). There exist constants 0 < C2 ≤
C1, such that for any T ∈ T and the corresponding Galerkin solution U ∈ V(T )
there holds

|||u− U |||2Ω ≤ C1 E
2
T (U) (20a)

C2 E
2
T (U) ≤ |||u− U |||2Ω + osc2T (U). (20b)

This Proposition is essentially due to Babuška and Miller [3]; see also [1,
8, 28, 35]. The constants C1 and C2 depend on the smallest and largest global
eigenvalues of A as well as interpolation estimates. The definitions of r(V ) and
j(V ), as well as the lower bound (20b), are immaterial for deriving a contraction
property of §5 but are important for proving convergence rates in §6; we refer
to [28] for a discussion of oscillation.

One serious difficulty in dealing with AFEM is that one has access to the
energy error |||u− U |||Ω only through the estimator ET (U). The latter, however,
fails to be monotone because it depends on the discrete solution U ∈ V(T ) that
changes with the mesh. This is tackled in the next two lemmas [10, 27].

Lemma 10 (Reduction of ET (V ) with respect to T ). If λ = 1− 2−b/d, then

E2T∗
(V, T∗) ≤ E

2
T (V, T )− λE2T (V,M) for all V ∈ V(T ). (21)

Lemma 11 (Lipschitz property of ET (V ) with respect to V ). Let divA be the
divergence of A computed by rows, and ηT (A) := max∈T

(

hT ‖divA‖L∞(T ) +

‖A‖L∞(T )

)

. Then the following estimate is valid

|ET (V )− ET (W )| . ηT (A) |||V −W |||Ω for all V,W ∈ V(T ).

Upon combining Lemmas 10 and 11 we obtain the following crucial property.

Proposition 12 (Estimator reduction). Given T ∈ T and a subsetM⊂ T of
marked elements, let T∗ = REFINE

(

T ,M
)

. Then there exists a constant Λ > 0,
such that for all V ∈ V(T ), V∗ ∈ V∗(T∗) and any δ > 0 we have

E2T∗
(V∗, T∗) ≤ (1+ δ)

(

E2T (V, T )−λ E2T (V,M)
)

+(1+ δ−1) Λ η2T (A) |||V∗ − V |||2Ω .
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5. Contraction Property of AFEM

A key question to ask is what is (are) the quantity(ies) that AFEM may con-
tract. In light of (18), an obvious candidate is the energy error |||u− Uk|||Ω; see
Dörfler [18]. We first show in §5.1, in the simplest scenario of piecewise constant
data A and f , that this is in fact the case provided an interior node property
holds. However, the energy error may not contract in general unless REFINE

enforces several levels of refinement. We discuss this in §5.2, and present an
approach that eliminates the interior node property at the expense of a more
complicated contractive quantity, the quasi-error; see Theorem 16.

5.1. Piecewise Constant Data. We now assume that both f and A

are piecewise constant in the initial mesh T0, so that osck(Uk) = 0 for all k ≥ 0.
The following property was introduced by Morin, Nochetto, and Siebert [25].

Definition 13 (Interior node property). The refinement Tk+1 ≥ Tk satisfies
an interior node property with respect to Tk if each element T ∈ Mk contains
at least one node of Tk+1 in the interiors of T and of each side of T .

This property is valid upon enforcing a fixed number b∗ of bisections (b∗ =
3, 6 for d = 2, 3). An immediate consequence of this property, proved in [25, 26],
is the following discrete lower a posteriori bound:

C2E
2
k(Uk,Mk) ≤ |||Uk − Uk+1|||

2
Ω + osc2k(Uk). (22)

Lemma 14 (Contraction property for piecewise constant data). If Tk+1 sat-
isfies an interior node property with respect to Tk and osck(Uk) = 0, then for
α := (1− θ2C2

C1

)1/2 < 1

|||u− Uk+1|||Ω ≤ α |||u− Uk|||Ω , (23)

where 0 < θ < 1 is the parameter in (16) and C1 ≥ C2 are the constants in
(20).

Proof. For convenience, we use the notation

ek = |||u− Uk|||Ω , Ek = |||Uk+1 − Uk|||Ω , Ek = Ek(Uk, Tk), Ek(Mk) = Ek(Uk,Mk).

The key idea is to use the Pythagoras equality (18), namely e2k+1 = e2k−E
2
k, and

show that Ek is a significant portion of ek. Since (22) together with osck(Uk) = 0
imply C2E

2
k(Mk) ≤ E2

k, applying Dörfler marking (16) and the upper bound
(20a), we deduce

E2
k ≥ C2θ

2E2k ≥
C2

C1
θ2e2k.

This is the desired property of Ek and leads to (23).

We wonder whether or not the interior node property is necessary for (23).
We present an example, introduced in [25, 26] to justify such a property for
constant data and n = 1.
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Example 15 (Lack of strict monotonicity). Let Ω = (0, 1)2, A = I, f = 1
(constant data), and consider the following sequences of meshes depicted in
Figure 7. If φ0 denotes the basis function associated with the only interior node
of the initial mesh T0, then U0 = U1 = 1

12 φ0 and U2 6= U1.

Figure 7. Grids T0, T1, and T2 of Example 15. The mesh T1 has nodes in the middle of
sides of T0, but only T2 has nodes in the interior of elements of T0. Hence, T2 satisfies
the interior node property of Definition 13 with respect to T0 whereas T1 does not.

The mesh T1 ≥ T0 is produced by a standard 2-step bisection (b = 2) in 2d.
Since U0 = U1 we conclude that the energy error does not change |||u− U0|||Ω =
|||u− U1|||Ω between two consecutive steps of AFEM for b = d = 2. This is
no longer true provided an interior node in each marked element is created,
because then Lemma 14 holds.

5.2. General Data. If osck(Uk) 6= 0, then the contraction property of
AFEM becomes trickier because the energy error and estimator are no longer
equivalent regardless of the interior node property. The first question to ask is
what quantity replaces the energy error in the analysis. We explore this next
and remove the interior node property.

Heuristics. According to (18), the energy error is monotone |||u− Uk+1|||Ω ≤
|||u− Uk|||Ω, but the previous Example shows that strict inequality may fail.
However, if Uk+1 = Uk, estimate (21) reveals a strict estimator reduction
Ek+1(Uk) < Ek(Uk). We thus expect that, for a suitable scaling factor γ > 0,
the so-called quasi error

|||u− Uk|||
2
Ω + γ E2k(Uk) (24)

may be contractive. This heuristics illustrates a distinct aspect of AFEM theory,
the interplay between continuous quantities such the energy error |||u− Uk|||Ω
and discrete ones such as the estimator Ek(Uk): no one alone has the requisite
properties to yield a contraction between consecutive adaptive steps.

Theorem 16 (Contraction property). Let θ ∈ (0, 1] be the Dörfler Marking
parameter, and {Tk,Vk, Uk}

∞
k=0 be a sequence of conforming meshes, finite ele-

ment spaces and discrete solutions created by AFEM for the model problem (1).
Then there exist constants γ > 0 and 0 < α < 1, additionally depending on the
number b ≥ 1 of bisections and θ, such that for all k ≥ 0

|||u− Uk+1|||
2
Ω + γ E2k+1(Uk+1) ≤ α2

(

|||u− Uk|||
2
Ω + γ E2k(Uk)

)

. (25)
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Proof. We split the proof into four steps and use the notation in Lemma 14.

1 The error orthogonality (18) reads

e2k+1 = e2k − E2
k. (26)

Employing Proposition 12 with T = Tk, T∗ = Tk+1, V = Uk and V∗ = Uk+1

gives
E2k+1 ≤ (1 + δ)

(

E2k − λ E2k(Mk)
)

+ (1 + δ−1) Λ0 E
2
k, (27)

where Λ0 = Λη2T0
(A) ≥ Λη2Tk

(A). After multiplying (27) by γ > 0, to be
determined later, we add (26) and (27) to obtain

e2k+1 + γ E2k+1 ≤ e2k +
(

γ (1 + δ−1) Λ0 − 1
)

E2
k + γ (1 + δ)

(

E2k − λ E2k(Mk)
)

.

2 We now choose the parameters δ, γ, the former so that

(1 + δ)
(

1− λθ2
)

= 1−
λθ2

2
,

and the latter to verify
γ (1 + δ−1) Λ0 = 1.

Note that this choice of γ yields

e2k+1 + γ E2k+1 ≤ e2k + γ (1 + δ)
(

E2k − λ E2k(Mk)
)

.

3 We next employ Dörfler Marking, namely Ek(Mk) ≥ θEk, to deduce

e2k+1 + γ E2k+1 ≤ e2k + γ(1 + δ)(1− λθ2)E2k

which, in conjunction with the choice of δ, gives

e2k+1 + γ E2k+1 ≤ e2k + γ

(

1−
λθ2

2

)

E2k = e2k −
γλθ2

4
E2k + γ

(

1−
λθ2

4

)

E2k .

4 Finally, the upper bound (20a), namely e2k ≤ C1 E
2
k , implies that

e2k+1 + γ E2k+1 ≤

(

1−
γλθ2

4C1

)

e2k + γ

(

1−
λθ2

4

)

E2k .

This in turn leads to

e2k+1 + γ E2k+1 ≤ α2
(

e2k + γ E2k
)

,

with α2 := max
{

1− γλθ2

4C1

, 1− λθ2

4

}

< 1, and thus concludes the theorem.

Remark 17 (Basic ingredients). This proof solely uses Dörfler marking,
Pythagoras identity (18), the a posteriori upper bound (20a), and the esti-
mator reduction property (Proposition 12). The proof does not use the lower
bound (20b).
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Remark 18 (Separate marking). MARK is driven by Ek exclusively, as it hap-
pens in all practical AFEM. Previous proofs in [14, 23, 25, 26] require separate
marking by estimator and oscillation. It is shown in [10] that separate marking
may lead to suboptimal convergence rates. On the other hand, we will prove in
§6 that the present AFEM yields quasi-optimal convergence rates.

6. Convergence Rates of AFEM

A crucial insight for the simplest scenario, the Laplacian and piecewise constant
forcing f , is due to Stevenson [33]:

any marking strategy that reduces the energy error relative to the
current value must contain a substantial portion of ET (U), and so
it can be related to Dörfler Marking.

(28)

This allows one to compare meshes produced by AFEM with optimal ones and
to conclude a quasi-optimal error decay. We discuss this issue in §6.3. However,
this is not enough to handle the model problem (1) with variable data A and f .

The objective of this section is to study (1) for general data A and f . This
study hinges on the total error and its relation with the quasi-error, which is
contracted by AFEM. This approach allows us to improve upon and extend
Stevenson [33] to variable data. In doing so, we follow closely Cascón, Kreuzer,
Nochetto, and Siebert [10]. The present theory, however, does not extend to
noncoercive problems and marking strategies other than Dörfler’s. These remain
important open questions.

As in §5, u will always be the weak solution of (1) and, except when stated
otherwise, any explicit constant or hidden constant in . may depend on the
uniform shape-regularity of T, the dimension d, the polynomial degree n, the
(global) eigenvalues of A, and the oscillation oscT0

(A) of A on the initial mesh
T0, but not on a specific grid T ∈ T.

6.1. The Total Error. We first present the concept of total error for the
Galerkin function U ∈ V(T ), introduced by Mekchay and Nochetto [23],

|||u− U |||2Ω + osc2T (U), (29)

and next assert its equivalence to the quasi error (24). In fact, in view of the
upper and lower a posteriori error bounds (20), and osc2T (U) ≤ E2T (U), we have

C2 E
2
T (U) ≤ |||u− U |||2Ω + osc2T (U) ≤ |||u− U |||2Ω + E2T (U) ≤ (1 + C1) E

2
T (U),

whence
E2T (U) ≈ |||u− U |||2Ω + osc2T (U). (30)

Since AFEM selects elements for refinement based on information extracted
exclusively from the error indicators {ET (U, T )}T∈T , we realize that the decay
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rate of AFEM must be characterized by the total error. Moreover, on invoking
the upper bound (20a) again, we also see that the total error is equivalent to
the quasi error

|||u− U |||2Ω + osc2T (U) ≈ |||u− U |||2Ω + E2T (U).

The latter is the quantity being strictly reduced by AFEM (Theorem 16). Fi-
nally, the total error satisfies the following Cea’s type-lemma, or equivalently
AFEM is quasi-optimal regarding the total error [10].

Lemma 19 (Quasi-optimality of total error). Let Λ1 = 2Λ with Λ the constant
in Proposition 12, and let C3 := Λ1 osc

2
T0
(A) and Λ2 := max{2, 1+C3}. Then,

for any T ∈ T and the corresponding Galerkin solution U ∈ V(T ), there holds

|||u− U |||2Ω + osc2T (U) ≤ Λ2 inf
V ∈V(T )

(

|||u− V |||2Ω + osc2T (V )
)

.

6.2. Approximation Classes. In view of (30) and Lemma 19, the
definition of approximation class As depends on the triple (u, f,A), not just
u, and hinges on the concept of best total error for meshes T with N elements
more than T0, namely T ∈ TN :

σN (u, f,A) := inf
T ∈TN

inf
V ∈V(T )

(

|||u− V |||2Ω + osc2T (V )
)1/2

.

We say that (u, f,A) ∈ As for s > 0 if and only if σN (u, f,A) . N−s, and
denote |u, f,A|s := supN>0

(

Ns σN (u, f,A)
)

. We point out the upper bound
s ≤ n/d for polynomial degree n ≥ 1; this can be seen with full regularity
Hn+1(Ω) and uniform refinement. Note that if (u, f,A) ∈ As then for all ε > 0
there exist Tε ≥ T0 conforming and Vε ∈ V(Tε) such that

|||v − Vε|||
2
Ω + osc2Tε

(Vε) ≤ ε2 and #Tε −#T0 ≤ |v, f,A|
1/s
s ε−1/s. (31)

Mesh Overlay. For the subsequent discussion it will be convenient to merge
(or superpose) two conforming meshes T1, T2 ∈ T, thereby giving rise to the
so-called overlay T1 ⊕T2. This operation corresponds to the union in the sense
of trees [10, 33]. We next bound the cardinality of T1 ⊕ T2 in terms of that of
T1 and T2; see [10, 33].

Lemma 20 (Overlay). The overlay T = T1 ⊕ T2 is conforming and

#T ≤ #T1 +#T2 −#T0. (32)

Discussion of As. We now would like to show a few examples of membership
in As and highlight some important open questions. We first investigate the
class As for A piecewise polynomial of degree ≤ n over T0. In this simplified
scenario, the oscillation oscT (U) of (19) reduces to data oscillation oscT (f) :=
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‖h(f − P2n−2 f)‖L2(Ω). We then have the following characterization of As in
terms of the approximation class As and [5, 6, 33]:

Bs :=
{

g ∈ L2(Ω) | |g|Bs
:= sup

N>0

(

Ns inf
T ∈TN

oscT (g)
)

<∞
}

.

Lemma 21 (Equivalence of classes). Let A be piecewise polynomial of degree
≤ n over T0. Then (u, f,A) ∈ As if and only if (u, f) ∈ As × Bs and

|u, f,A|s ≈ |u|As
+ |f |Bs

. (33)

Corollary 22 (Membership in A1/2 with piecewise constant A). Let d = 2,
n = 1, p > 1. If f ∈ L2(Ω), A is piecewise constant over T0, and the solution
u ∈ W 2

p (Ω; T0) ∩ H1
0 (Ω) of (1) is piecewise W 2

p over the initial grid T0, then
(u, f,A) ∈ A1/2 and

|u, f,A|1/2 . ‖D2u‖Lp(Ω;T0) + ‖f‖L2(Ω).

Proof. Since f ∈ L2(Ω), we realize that for all quasi-uniform refinements T ∈ T

oscT (f) = ‖h(f − P0f)‖L2(Ω) ≤ hmax(T )‖f‖L2(Ω) . (#T )−1/2‖f‖L2(Ω).

This implies f ∈ B1/2 with |f |B1/2
. ‖f‖L2(Ω). On the other hand, for

u ∈ W 2
p (Ω; T0) we learn from Corollary 5 that u ∈ A1/2 and |u|A1/2

.

‖D2u‖L2(Ω;T0). The assertion then follows from Lemma 21.

Corollary 23 (Membership in A1/2 with variable A). Let d = 2, n = 1,
p > 1. If f ∈ L2(Ω), A ∈ W 1

∞(Ω, T0) is piecewise Lipschitz over T0, and
u ∈W 2

p (Ω; T0) ∩H1
0 (Ω) is piecewise W 2

p over T0, then (u, f,A) ∈ A1/2 and

|u, f,A|1/2 . ‖D2u‖Lp(Ω;T0) + ‖f‖L2(Ω) + ‖A‖W 1
∞

(Ω;T0).

6.3. Quasi-Optimal Cardinality: Vanishing Oscillation. In
this section we follow the ideas of Stevenson [33] for the simplest scenario with
vanishing oscillation oscT (U) = 0, and thereby explore the insight (28). We
recall that in this case the a posteriori error estimates (20) become

C2 E
2
T (U) ≤ |||u− U |||2Ω ≤ C1 E

2
T (U). (34)

It is then evident that the ratio C2/C1 ≤ 1, between the reliability constant C1

and the efficiency constant C2, is a quality measure of the estimatior ET (U):
the closer to 1 the better! This ratio is usually closer to 1 for non-residual
estimators for which this theory extends [12, 22].

Assumptions for Optimal Decay Rate. The following are further restric-
tions on AFEM to achieve optimal error decay, as predicted by the approxima-
tion class As.
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Assumption 24 (Marking parameter: vanishing oscillation). The parameter θ
of Dörfler marking satisfies θ ∈ (0, θ∗) with θ∗ :=

√

C2/C1.

Assumption 25 (Cardinality of M). MARK selects a set M with minimal
cardinality.

Assumption 26 (Initial labeling). The labeling of the initial mesh T0 satisfies
(6) for d = 2 [24, 5] or its multimensional counterpart for d > 2 [33, 28].

A few comments about these assumptions are now in order.

Remark 27 (Threshold θ∗ < 1). It is reasonable to be cautious in making
marking decisions if the constants C1 and C2 are very disparate, and thus the
ratio C2/C1 is far from 1. This justifies the upper bound θ∗ < 1 in Assumption
24.

Remark 28 (Minimal M). According to the equidistribution principle (8)
and the local lower bound C2ET (U, T ) ≤ |||u− U |||NT (T ) without oscillation,
it is natural to mark elements with largest error indicators. This leads to a
minimal setM, as stated in Assumption 25, and turns out to be crucial to link
AFEM with optimal meshes.

Remark 29 (Initial triangulation). Assumption 26 guarantees the complexity

estimate of module REFINE stated in Theorem 2: #Tk−#T0 ≤ Λ0

∑k−1
j=0 #Mj .

Even though we cannot expect local upper bounds between the continuous
and discrete solution, the following crucial result shows that this is not the case
between discrete solutions on nested meshes T∗ ≥ T : what matters is the set of
elements of T which are no longer in T∗ [33, 10, 28].

Lemma 30 (Localized upper bound). Let T , T∗ ∈ T satisfy T∗ ≥ T and let
R := RT →T∗

be the refined set. If U ∈ V, U∗ ∈ V∗ are the corresponding
Galerkin solutions, then

|||U∗ − U |||2Ω ≤ C1 E
2
T (U,R). (35)

We are now ready to explore Stevenson’s insight (28) for the simplest sce-
nario with vanishing oscillation oscT (U) = 0.

Lemma 31 (Dörfler marking: vanishing oscillation). Let θ satisfy Assumption
24 and set µ := 1− θ2/θ2∗ > 0. Let T∗ ≥ T and U∗ ∈ V(T∗) satisfy

|||u− U∗|||
2
Ω ≤ µ |||u− U |||2Ω . (36)

Then the refined set R = RT →T∗
satisfies the Dörfler property

ET (U,R) ≥ θ ET (U, T ). (37)
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Proof. Since µ < 1 we use the lower bound in (34), in conjunction with (36)
and Pythagoras equality (18), to derive

(1− µ)C2E
2
T (U, T ) ≤ (1− µ) |||u− U |||2Ω ≤ |||u− U |||2Ω − |||u− U∗|||

2
Ω = |||U − U∗|||

2
Ω .

In view of Lemma 30, we thus deduce

(1− µ)C2E
2
T (U, T ) ≤ C1E

2
T (U,R),

which is the assertion in disguise.

To examine the cardinality of Mk in terms of |||u− Uk|||Ω we must relate
AFEM with the approximation class As. Even though this might appear like
an undoable task, the key to unravel this connection is given by Lemma 31. We
show this now.

Lemma 32 (Cardinality ofMk). Let Assumptions 24 and 25 hold. If u ∈ As

then
#Mk . |u|1/ss |||u− Uk|||

−1/s
Ω for all k ≥ 0. (38)

Proof. We invoke that u ∈ As and (31) with ε2 = µ |||u− Uk|||
2
Ω to find a mesh

Tε ∈ T and the Galerkin solution Uε ∈ V(Tε) so that

|||u− Uε|||
2
Ω ≤ ε2, #Tε −#T0 . |u|

1

s
s ε

− 1

s .

Since Tε may be totally unrelated to Tk, we introduce the overlay T∗ = Tε⊕Tk.
We exploit the property T∗ ≥ Tε to conclude that the Galerkin solution U∗ ∈
V(T∗) satisfies

|||u− U∗|||
2
Ω ≤ |||u− Uε|||

2
Ω ≤ ε2 = µ |||u− U |||2Ω .

Therefore, Lemma 31 implies that the refined setR = RT →T∗
satisfies a Dörfler

marking with parameter θ < θ∗. But MARK delivers a minimal set Mk with
this property, according to Assumption 25, whence

#Mk ≤ #R ≤ #T∗ −#Tk ≤ #Tε −#T0 . |u|
1

s
s ε

− 1

s ,

where we use Lemma 20 to account for the overlay. The proof is complete.

Proposition 33 (Quasi-optimality: vanishing oscillation). Let Assumptions
24-26 hold. If u ∈ As, then AFEM gives rise to a sequence (Tk,Vk, Uk)

∞
k=0

such that
|||u− Uk|||Ω . |u|s (#Tk −#T0)

−s for all k ≥ 1.

Proof. We make use of Assumption 26, along with Theorem 2, to infer that

#Tk −#T0 ≤ Λ0

k−1
∑

j=0

#Mj . |u|
1

s
s

k−1
∑

j=0

|||u− Uj |||
− 1

s

Ω .
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We now use the contraction property |||u− Uk|||Ω ≤ αk−j |||u− Uj |||Ω of Lemma
14 to replace the sum above by

k−1
∑

j=0

|||u− Uj |||
− 1

s

Ω ≤ |||u− Uk|||
− 1

s

Ω

k−1
∑

j=0

α
k−j
s <

α
1

s

1− α
1

s

|||u− Uk|||
− 1

s

Ω ,

because α < 1 and the series is summable. This completes the proof.

6.4. Quasi-Optimal Cardinality: General Data. In this section
we remove the restriction oscT (U) = 0, and thereby make use of the basic
ingredients developed in §6.1 and §6.2. Therefore, we replace the energy error
by the total error and the linear approximation class As for u by the nonlinear
class As for the triple (u, f,A); see (31) for the definition of As. To account for
the presence of general data f and A, we need to make an even more stringent
assumption on the threshold θ∗.

Assumption 34 (Marking parameter: general data). Let C3 = Λ1 osc
2
T0
(A) be

the constant in Lemma 19. The marking parameter θ satisfies θ ∈ (0, θ∗) with

θ∗ =

√

C2

1 + C1(1 + C3)
.

We now proceed along the same lines as those of §6.3.

Lemma 35 (Dörfler marking: general data). Let Assumption 34 hold and set

µ := 1
2 (1−

θ2

θ2
∗

) > 0. If T∗ ≥ T and U∗ ∈ V(T∗) satisfy

|||u− U∗|||
2
Ω + osc2T∗

(U∗) ≤ µ
(

|||u− U |||2Ω + osc2T (U)
)

, (39)

then the refined set R = RT →T∗
satisfies the Dörfler property

ET (U,R) ≥ θ ET (U, T ). (40)

Proof. We split the proof into four steps.

1 In view of the global lower bound (20b) and (39), we can write

(1− 2µ)C2 E
2
T (U) ≤ (1− 2µ)

(

|||u− U |||2Ω + osc2T (U)
)

≤
(

|||u− U |||2Ω − 2 |||u− U∗|||
2
Ω

)

+
(

osc2T (U)− 2 osc2T∗
(U∗)

)

.

2 Combining the Pythagoras orthogonality relation (18)

|||u− U |||2Ω − |||u− U∗|||
2
Ω = |||U − U∗|||

2
Ω .

with the localized upper bound (35) yields

|||u− U |||2Ω − 2 |||u− U∗|||
2
Ω ≤ |||U − U∗|||

2
Ω ≤ C1 E

2
T (U,R).
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3 To deal with oscillation we decompose the elements of T into two disjoint
sets: R and T \ R. In the former case, we have

osc2T (U,R)− 2 osc2T∗
(U∗,R) ≤ osc2T (U,R) ≤ E2T (U,R),

because oscT (U, T ) ≤ ET (U, T ) for all T ∈ T . On the other hand, we use that
T \ R = T ∩ T∗ and apply a variant of Lemma 11 for oscT (U) together with
Lemma 30, to get

osc2T (U, T \ R)− 2 osc2T∗
(U∗, T \ R) ≤ C3 |||U − U∗|||

2
Ω ≤ C1C3E

2
T (U,R).

Adding these two estimates gives

osc2T (U)− 2 osc2T∗
(U∗) ≤ (1 + C1C3)E

2
T (U,R).

4 Returning to 1 we realize that

(1− 2µ)C2 E
2
T (U, T ) ≤

(

1 + C1(1 + C3)
)

E2T (U,R),

which is the asserted estimate (40) in disguise.

Lemma 36 (Cardinality of Mk: general data). Let Assumptions 25 and 34
hold. If the triple (u, f,A) ∈ As, then

#Mk . |u, f,A|1/ss

(

|||u− Uk|||Ω + osck(Uk)
)−1/s

for all k ≥ 0. (41)

Proof. We split the proof into three steps.

1 We set ε2 := µΛ−1
2

(

|||u− Uk|||
2
Ω + osc2k(Uk)

)

with µ = 1
2

(

1 − θ2

θ2
∗

)

> 0 as in

Lemma 35 and Λ2 given Lemma 19. Since (u, f,A) ∈ As, in view of (31) there
exists Tε ∈ T and Uε ∈ V(Tε) such that

|||u− Uε|||
2
Ω + osc2ε(Uε) ≤ ε2 and #Tε −#T0 . |u, f,A|1/2s ε−1/s.

Since Tε may be totally unrelated to Tk we introduce the overlay T∗ = Tk ⊕Tε.

2 We claim that the total error over T∗ reduces by a factor µ relative to that
one over Tk. In fact, since T∗ ≥ Tε and so V(T∗) ⊃ V(Tε), we use Lemma 19 to
obtain

|||u− U∗|||
2
Ω + osc2T∗

(U∗) ≤ Λ2

(

|||u− Uε|||
2
Ω + osc2ε(Uε)

)

≤ Λ2ε
2 = µ

(

|||u− Uk|||
2
Ω + osc2k(Uk)

)

.

Upon applying Lemma 35 we conclude that the set R = RTk→T∗
of refined

elements satisfies a Dörfler marking (40) with parameter θ < θ∗.
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3 According to Assumption 25, MARK selects a minimal set Mk satisfying
this property. Therefore, employing Lemma 20 to account for the cardinality of
the overlay, we deduce

#Mk ≤ #R ≤ #T∗ −#Tk ≤ #Tε −#T0 . |u, f,A|1/ss ε−1/s.

Finally, recalling the definition of ε we end up with the asserted estimate (41).

We are ready to prove the main result of this section, which combines The-
orem 16 and Lemma 36.

Theorem 37 (Quasi-optimality: general data). Let Assumptions 25, 26 and
34 hold. If (u, f,A) ∈ As, then AFEM gives rise to a sequence (Tk,Vk, Uk)

∞
k=0

such that

|||u− Uk|||Ω + osck(Uk) . |u, f,A|s (#Tk −#T0)
−s for all k ≥ 1.

Proof. Since no confusion arises, we use the notation oscj = oscj(Uj) and Ej =
Ej(Uj).

1 In light of Assumption 26, which yields Theorem 2, and (41) we have

#Tk −#T0 .

k−1
∑

j=0

#Mj . |u, f,A|
1/s
s

k−1
∑

j=0

(

|||u− Uj |||
2
Ω + osc2j

)−1/(2s)
.

2 Let γ > 0 be the scaling factor in the (contraction) Theorem 16. The lower
bound (20b) along with oscj ≤ Ej implies

|||u− Uj |||
2
Ω + γ osc2j ≤ |||u− Uj |||

2
Ω + γ E2j ≤

(

1 +
γ

C2

)

(

|||u− Uj |||
2
Ω + osc2j

)

.

3 Theorem 16 yields for 0 ≤ j < k

|||u− Uk|||
2
Ω + γ E2k ≤ α2(k−j)

(

|||u− Uj |||
2
Ω + γ E2j

)

,

whence

#Tk −#T0 . |u, f,A|1/ss

(

|||u− Uk|||
2
Ω + γ E2k

)−1/(2s)
k−1
∑

j=0

α(k−j)/s.

Since
∑k−1

j=0 α
(k−j)/s <

∑∞
j=1 α

j/s < ∞ because α < 1, the assertion follows
easily.
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We conclude this section with a couple of applications of Theorem 37. The
first one is valid for the example of §1.

Corollary 38 (W 2
p -regularity with piecewise constant A). Let d = 2, the poly-

nomial degree be n = 1, f ∈ L2(Ω), and let A be piecewise constant over T0. If
u ∈ W 2

p (Ω; T0) for p > 1, then AFEM gives rise to a sequence {Tk,Vk, Uk}
∞
k=0

satisfying osck(Uk) = ‖hk(f − P0f)‖L2(Ω) and for all k ≥ 1

|||u− Uk|||Ω + osck(Uk) .
(

‖D2u‖Lp(Ω;T0) + ‖f‖L2(Ω)

)

(#Tk −#T0)
−1/2.

Proof. Combine Corollary 22 with Theorem 37.

Corollary 39 (W 2
p -regularity with variable A). Besides the assumptions of

Corollary 38, let A be piecewise Lipschitz over the initial grid T0. Then AFEM
gives rise to a sequence {Tk,Vk, Uk}

∞
k=0 satisfying for all k ≥ 1

|||u− Uk|||Ω + osck(Uk)

.
(

‖D2u‖Lp(Ω;T0) + ‖f‖L2(Ω) + ‖A‖W 1
∞

(Ω;T0)

)

(#Tk −#T0)
−1/2.

Proof. Combine Corollary 23 with Theorem 37.

7. Extensions and Limitations

Nonconforming Meshes. Bonito and Nochetto [7] have shown that Theorem
2 extends to admissible nonconforming meshes for d ≥ 2 (those with a fixed
level of nonconformity), along with the theory of §5 and §6.

Discontinuous Galerkin Methods (dG). Bonito and Nochetto [7] have also
shown that such theory extends to the interior penalty dG method for the model
problem (1) and for d ≥ 2. This relies on a result of independent interest:

the approximation classes for discontinuous and continuous ele-
ments of any degree n ≥ 1 coincide.

Non-residual Estimators. Cascón and Nochetto [12] and Kreuzer and Siebert
[22] have extended the above theory to non-residual estimators (hierarchical
estimators, Zienkiewicz-Zhu and Braess-Schoerbel estimators, and those based
on the solution of local problems).

Other Norms. The above theory is just for the energy norm. We refer to
Demlow [15] for local energy norms and Demlow and Stevenson [16] for the
L2-norm. The theory for more practical norms, such as L∞ or W 1

∞, is open.

Other Problems and Markings. The theory above relies strongly on the
Pythagoras equality (18) and Dörfler marking (16), and extends to symmetric
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problems in H(div) [11] and H(curl) [37] as well as to non-symmetric coercive
problems [12]. For non-coercive problems, for which we just have an inf-sup
condition, as well as markings other than Dörfler, the theory is mostly lacking
except for mixed AFEM for (1) [13]. We refer to Morin, Siebert, and Vesser
[27] and Siebert [31] for convergence results without rates.

Multilevel Methods on Graded Meshes. We refer to Xu, Chen, and No-
chetto [36] for a theory of multilevel methods on graded meshes created by
bisection. The analysis uses several geometric properties of bisection, discussed
in [36], and is valid for any d and n.
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