Properties of BMO functions whose reciprocals are also BMO

R. L. JounsoN and C. J. NEUGEBAUER

The main result says that a non-negative BM O-function w, whose reciprocal is also in BM O, belongs
to (>, Ap,and that an arbitrary u € BMO can be written as u = w — 1/w, for w as above. This leads
then to some observations concerning the John-Nirenberg distribution inequality for F o u,u € BMO
and F € Lip a.
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1. Introduction

We will consider the question of when a function w and its reciprocal 1/w are in BMO. If we
assume that w : R — Ry and consider this question for various spaces X, we obtain distinct
results. The answer for LP(R") is that if w,1/w € LP(R"), then p = co while w,1/w € L™
implies that w ~ 1 which is also equivalent to the fact that w,1/w € A; (for the precise definition
of the A, classes see below). It is known that BMO is the right space to consider in place of
LP as p — oo in a number of situations and we will give the answer to this question for BMO
in this paper.
The definition of BMO is that f € BMO if

1
sgp@/Q!f@) — foldz = ||f]l. < +oo

where fg = ﬁ fQ f(x)dx, and @ is a cube with sides parallel to the coordinate axes. It is
important to know that the L' norm can be replaced by the LP norm for 0 < p < oo,

1 e N
sgp(|Q|/Q|f(:c) fol dw) — {1 fllep =~ 1]l

We need also to recall the John-Nirenberg lemma, the reason for the above result, for functions
of bounded mean oscillation. If f € BMO, there are constants c1,cy > 0 independent of f and
() such that

{teQ: |f(1t) — fol > N} < eIl q),

for all A > 0. Of course, bounded functions are in BMO and In 1/|z| is an unbounded function
in BMO. The precise space we will study is

BMO, ={w:R" — Ry :w,1/w € BMO}.



We need to recall the A, weights which are defined by the condition

Ap(w) = sup (@/@w) (@/le—ﬂ)pl < 400,

where @ is again a cube. The A, weights solve the problem of characterizing when the Hardy-
Littlewood maximal function maps L%, into L, where M f(x) = sup,¢q ﬁ Jo 1f(y)| dy, and

w?
the result is

/|Mf(a:)|pw(a:) de < cp/ (@) Pw(z) de — w € A,

We will also need to consider A; = {w|Mw(z) < Cw(z)}, with the smallest such C being
denoted A;(w) and Aoo = U1 Ap. Since the A, constants decrease by Hélder’s inequality, we
can set Ao (w) = limy_o Ap(w). We have the set inclusions

AlgApgAquOO7

where 1 < p < g < oo. The A, weights also solve the corresponding problem for the Hilbert
transform

Hf(z) = lim Mal

=0 Je<lz—y|<1/e T — Y
It is known that if w,1/w € A,, then w € Ay, and we may limit our study to the case 1 <p <2
by the inclusion properties of A,. It is also known that [1, p. 474]

w,l/w e mAp<:>lnw€closBMoL°o. (1)
p>1

We say that w € RHp,(reverse Holder) if

1/po
(@ l) " <l

and we abbreviate by RH,,,(w) the infimum of all such C. We will use the fact, due to Strémberg
and Wheeden, that w € RH,, if and only if wP® € A. An alternate proof of this fact can be
found in [3, Lemma 3.1].

2. Preliminary results

Our first result shows that Holder continuous functions operate on BMO.

Lemma 1: If F is Hélder continuous of order a, where 0 < a < 1 and f € BMO, then
FofeBMO and||F o f|[. <2|[F|Lip ol IFII3-

Proof. If there is a constant ¢ such that ﬁ fQ |f(z) — ¢|dz < A, then it is well known that
| f]]« < 2A. We compute

(i1 e o)™ < (g, 1500~ saran) ™



Thus we obtain with p = 1/a, ||[F o f||« < 2||F||Lipal| fIIS-

This has been, at least partially, observed by many people. If f € BMO, then |f|* € BMO,
for 0 < a < 1 and max{f, g} and min{f, g} are in BMO if f, g are in BMO.

We haven’t noticed the converse observed, but it is true. If ||F o f||. < A||f||<, then F €
Lip a. The proof may be found in [2], but as this is not generally available, we give the proof
here. Without loss of generality, we may assume F'(0) = 0 and consider only cubes centered at

d d

the origin since BMO is translation invariant. Suppose that Q@ = [~§, §]" and that

o) = x1 on the double of Q)
| 0 outside the double of Q.

One checks that

F(z1) forz €2Q),
F —
(f(@)) { 0 outside the double of Q.
d
and since ||f|[« < ||f||loc < 4, one finds L [?, |F(21) — Fg,|dx1 < Ad®, where Q1 is the one-
2
dimensional cube [—g, %}, and by the Campanato-Meyer theorem [4], this proves the result.

We can use the lemma to show that there is a close connection between BMO and BMO...

Theorem 1: A real valued function u is in BMO <= there exists a w € BMO, such that
u=w—1/w and ||w[[« +[|1/w[|« > |[ul]..

Proof. If u admits the decomposition, it is clear that u € BMO. If we are given a u €
BMO, it is easy to see that the equation for w leads to a quadratic equation with a solution
of w = %(u+ Vu2+4). The function F(z) = (z + V22 + 4) is everywhere differentiable with
derivative bounded by 1. By Lemma 1, w € BMO.

Remark. We note that the same proof proves the corresponding result for functions of vanishing
mean oscillation, which are defined as is BM O but when the sup is taken over cubes of side r,
and the resulting sup goes to 0 as r — 0+.

Another application of Lemma, 1 is to the determination of conditions under which the square
of a function belongs to BMO. By Lemma 1 with F(z) = \/z, it follows that such a function
belongs to BMO. We show that more is true.

Lemma 2: If f = F(u),F € Lip a,u € BMO, then

1/«

Hzx e Q:|f(z) — F(ug)| > A} < cle_@)‘l/“/HF”Lip ol g,

Proof. Because u € BMO, by the John-Nirenberg lemma, there are constants ¢; and ¢y such
that | {t € Q : [u(t) —ug| > A} | < cre=@VIlull<|Q]. Hence, since

1/a
{teQ:[f(t) - Flug)l > A} € tGQilu(t)—uQ\><#,> :
1] Lip

we have the inequality

M/l

HteQ:|f(t) — F(ug)| > A} < 016702(HF|\2@ a Q|,



which is the desired result.

Corollary 1: For any € < co,

(e2—)|f(@)—F(ug)|'/®

1/ _
/Q e Flpgllulls —1|dex <y <Cz 6) QI

Proof. Let ¢(z) = eA7"/® _ 1, which is increasing with ¢'(z) = axt/at eA'*  As long as A is
positive,

et rea ar g = 27 e € Qi 17(w) — Flug) > YAVt
Q@ 0

€2

€22 @@ A |\

A o) < 1/ B )

< _cl/ e HFHsz ol )\1/04*1 dA|Q‘
0

T«

If we choose A less than the fraction, we can use the fact that

1 / e~ N T eAl/o=1 gy = / edu =1
a Jo 0

to obtain the above estimate.

If we modify the choice of ¢ slightly by putting ¢ (z) = Axl/a, we see that for a < 1, 1 is
convex and we can apply Jensen’s formula to Q,p =1, f = |f(z) — F(ug)| and if we note that

1
o — Flug)| \‘Q, (x) - F(um)]s@ /Q (@) - Flug)|,

we can make the estimate

V(2|fo — F(uq)l)

1
v (i [ 2@ - Fug))
L[ a2l @) - Flug) /e
‘Q’/Qe Q .

We now combine this with Corollary 1 and obtain

/ GAlf@)—fol /e _ / Alf(2)—F (ug)+F (uq)—fol /

Q Q

< / A2/ f(2)— F(ug)| M/ @+ 421/ f - F(ug) |/
Q

A2 fq—F(ug)[/* / A2 @)= Fug)'/*
Q

1/a
Lip

[ el < e (2=5) +1) QLo - Flug))

If we choose A2V = (¢co — €)/(||F]||

[|u||«), we can estimate this and




by using Corollary 1 and now we apply Jensen’s inequality to get

/e"“f(“f)‘fQ'”a < (cl <C2_6>+1) \Q!L/eAQ”()‘lf(I)—F(“Q””“
Q € Q| Jq

(5 )

We can now state and prove the following.

IN

Theorem 2: Consider the set of f = F(u),u € BMO,0 < a < 1. The following two statements
are equivalent.

(i) F € Lip «

(ii) there ezists 0 < ¢1,c2 < 00,0 < A < 00, independent of Q,u € BMO such that

A/

{z € Q: |f(z) — fol > A\}| < cre” AT |Q).

and then A ~ ||F|]1L/l; o

Proof. We will first prove that (i) implies (ii). By restricting the range of integration in the
inequality derived after Corollary 1, we see that

Bx = {z € Q:|f(x) - fol > N} < e /QeAlfm—le/a d.

since e~ AN/ Alf@—=fol* 5 1 on E)\. This is the desired result if we choose ¢ = % and A as
above.

We next show that (ii) implies (i). We first observe that (ii) implies that for some constants

sl () — foll/e
/Qe"p< Al ) < aldl

1 eslf(a) - ol
LQ‘!@\/Q Al =

0<c3,cq <0

This implies that

Holder now gives us, since 1/a > 1,
(0% _ 1/a
o> (i [ ) Jal)
QI Jg  A%lullg

1
0 /Q F() — fol < CA%|jullo.

Hence
The proof is now completed by an application of [2]; see the argument after Lemma 1.

Corollary 2: Ifb* € BMO, then

{z € Q: |b(x) —bg| > A} < cre= 2/ IMIl Q).



Proof. Apply the above theorem with u(z) = b*, F(z) = /¥ which is Lipschitz continuous of
order 1/k with Lipschitz constant 1.

Remark. The argument actually shows that if
{o € Q: lulz) —ugl > A}| < cre™ V[,

ol/a
_c24 7 Ak/‘)‘

{zeQ:|f(x) - fol >N} < (a1 + 1) "Mliwa Q).

Our main result connects the behavior of functions in BM O, with the A, classes.

Theorem 3: The set of nonnegative functions which are BMO along with their reciprocals is
contained in the intersection of all the Ay classes for p > 1, i.e. BMOx C (51 Ap.

Remarks.(1) Of course, if b € BMOs, then 1/b € BMO, C(,~; 4p and (1) above implies
Inbe ClOSBMoLOO.

(2) The class BMO, is non-empty. For example, b;(z) = max(In 1/|z|,e) € BMO and
1/by € L C BMO. Moreover, if we take

bo(x) = max(In1/|z|, 1/1In(|z|e?))

we get an example of a function which is unbounded and whose inverse is unbounded, yet both
bQ, 1/b2 € BMO.

(3) The result is sharp in the sense that the function b in the theorem cannot be in A; since
if it were, 1/b would also be in A; and then by a result of Johnson and Neugebauer [3, Lemma
2.2], b~ 1.

(4) The converse is, however, not true because with the same function by as above, b} satisfies
1/b3 € L™ and Inb? = 2Inb; € clospyoL™ and therefore b3 € Np>1 Ap and % € =1 Ap, but

b? ¢ BMO.
We will prove Theorem 3 as a special case of a more general result, but let us indicate how
it can be proved directly. The first step is a lemma.

Lemma 3: Let us denote by
1
fo= 17 | f@)da.
7Rl Je

then we have

U@Q_ﬂwQ—i%AJﬂ@_ﬁ@@@%ﬂmﬂm

Proof. Compute and use the fact that g — gg has mean value zero.

We are ready for the first step in this version of the proof of Theorem 3.

Theorem 4: Suppose b € BM Oy, then b is in As.



Proof. Apply Lemma 3 to b and 1/b which gives

1— bo(1/b)g ’Q|/ z) — bo)(1/b(x) — (1/b)o)dx

and allows us to make the estimate |1 —bg(1/b)g| < ||b]]«]|1/b||«. Holder’s inequality shows that
1 <bg(1/b)g and the above becomes 1 < bg(1/b)g < 1+ ||b]|«||1/0]]+.

Theorem 5: Ifb € BMO., then b € Ag/s.

For the proof of this statement we have to estimate
() Gai o)
QlJq / \IQlJq¥?)

Lemma 4: With the same notation as in Lemma 3, we have
1
01 L (70 = Fo)(a(t) = Q) () ) 1e) ~ tg)a

= (fghl)q — fo(ghl)q — go(fhl)q — hq(fal)q — lo(fah)q + foaq(hl)q
+fohq(9l)q + fola(gh)q + 9ohq(f)q + g9Qle(fh)q
+hqle(f9)q — 3fqQaqhqlg-

First we require another lemma.

Proof. We expand the integrand and compute the resulting terms.
Take f=h=0bg=1= %. We obtain

1- bQ(%)Q - (%)QbQ - bQ(%)Q - (%)QbQ
+ {bQ(%)Q + (bQ)Q(b%)Q + bQ(%)Q + (%)QbQ + ((%)Q)Q(bQ)Q + bQ(%)Q}

~3000)*((3)0)’

=g |00 = (50 - (D)

This allows us to estimate
5 1 1. \?%, o (1. \?
1+ (bq) (ﬁ)@"" (g)Q (b%)q — 3(bq) (Z)Q <
which means that
2 1 1 2 2 2 1 2 2 1 2
+ 0P+ () 00 <300 (o) + B2

In particular, I)Q(%)l/2 < bl $]]+ + v/3A2(b), which proves that

1 2
g||*,4

Agya(6) < VB + (VB + DIl 1

The remainder of the direct proof of Theorem 3 proceeds like this. To prove that b, 1/b are
in Ay/3 do the corresponding formula with 8 terms of which 4 are b and 4 are 1 /b, ete. ...

7



3. A, weights whose reciprocals are A, weights

We will now obtain Theorem 3 as a special case of the next result.

Theorem 6: Suppose 1 < py < 2. Then the following are equivalent.
w, 1/w € Ap, (2)

1 / 1 1 /
L :—/ w—woPo = — (S)plPo™! < ¢ < +o00. (3)
Q= 1g] QI el = (el

PROOF. Suppose (2) holds. Let » = pj — 1 > 1. Note that

Lo < o [ v = wayll: - (o

< 1+(w’")Q(1)Q+ wo (- ! )Q"‘wQ(l)Z?

1
S L Apy() + Apy(w) + As(w)” < ¢ < +oo,

because w € Ay, implies w € As.
Conversely, if (3) holds, then we first note that w € Ay. This follows from the next sequence
of inequalities:

Mz = o [ -l - (ol

1 1
> —/ w—w —)o — —
1] Q( ()~ )
= woly)e —1-wqly)o +wals)
= wo( ) wq( e +we( o
We use the fact that if r > 1, then |a" — b"| > 5%+ — b". Write
1 1 1 1 1
_ — (= = - — 1
(W= wo)(y ~ ())| = w50+ 3o — (wal()a + 1)

which allows us to estimate the integrand below by
1 1 r 1 1 1 " 1 "
- (= > — (= d - - 1
(w-wo)s— (o) = rr{ulpe+puaf — (wolo+1) .
1 1 1 1 "
Z o1 {w’"(;)g + Jwég} - (UJQ(E)Q + 1) ‘
Now we take the average of this over () which gives

st { (@)a( o + (oo doul | <t (Aa(w) + 1"

w

and we conclude that w, = € Ap,.
Theorem 3 follows from this result; in fact, we obtain the estimate

1
P B o
and as BM O is characterized by ||f||«p for any p > 0, we can have any py > 1 which proves the
result.

Although we proved Theorem 6 for A, it immediately implies a result about RH,.



Theorem 7: The following statements are equivalent for 1 <r < oco:

w,1/w € RH, (4)
w, 1/w € A1+1/r (5)
W' € As. (6)

Proof. (4) — (5). Since w",1/w" € A, we have that w", 1/w" € A, and hence w, 1/w € Ay,
(

(5) = (4). w € A4y — 1/w € RH,. Similarly, w € RH,.

(4) — (6). Since w",1/w" € Ay, we have that w" € Ag as above.

(6) — (4). Since w" € Az, w € Aj4y), — 1/w € RH,.. From the fact that w" € Ay, it follows
that w™" € Az and this implies that we can apply the above remark to 1/w.

Theorem 8: Suppose u € BMO and o > 0. Then u?> + o € Np>1 Ap-

Proof. For any A > 0, write Au = w) — 1/wy, for some wy € BMO,. Then A2 = wf\—i— = —2.
/\

By Theorem 7, w3 € As and since wy € 51 Ap, by Lemma 2.4 in [3], w} € 5 4p and a

similar result holds for # This shows that A2u? +2 € Np>1 Ap and hence, u? + % € Np>1 4p-

A
Since A is an arbitrary positive number, the result follows.
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