
Properties of BMO functions whose reciprocals are also BMO

R. L. Johnson and C. J. Neugebauer

The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs

to
⋂

p>1
Ap,and that an arbitrary u ∈ BMO can be written as u = w − 1/w, for w as above. This leads

then to some observations concerning the John-Nirenberg distribution inequality for F ◦ u, u ∈ BMO

and F ∈ Lip α.

Key words: Bounded mean oscillation, Ap-weights

AMS subject classifications: 42B25

1. Introduction

We will consider the question of when a function w and its reciprocal 1/w are in BMO. If we

assume that w : Rn → R+ and consider this question for various spaces X, we obtain distinct

results. The answer for Lp(Rn) is that if w, 1/w ∈ Lp(Rn), then p = ∞ while w, 1/w ∈ L∞

implies that w ' 1 which is also equivalent to the fact that w, 1/w ∈ A1 (for the precise definition

of the Ap classes see below). It is known that BMO is the right space to consider in place of

Lp as p → ∞ in a number of situations and we will give the answer to this question for BMO

in this paper.

The definition of BMO is that f ∈ BMO if

sup
Q

1

|Q|

∫

Q
|f(x)− fQ|dx = ||f ||∗ < +∞

where fQ = 1
|Q|

∫

Q f(x)dx, and Q is a cube with sides parallel to the coordinate axes. It is

important to know that the L1 norm can be replaced by the Lp norm for 0 < p <∞,

sup
Q

(

1

|Q|

∫

Q
|f(x)− fQ|pdx

)1/p

= ||f ||∗,p ' ||f ||∗.

We need also to recall the John-Nirenberg lemma, the reason for the above result, for functions

of bounded mean oscillation. If f ∈ BMO, there are constants c1, c2 > 0 independent of f and

Q such that

|{t ∈ Q : |f(t)− fQ| > λ}| ≤ c1e−c2λ/||f ||∗ |Q|,
for all λ > 0. Of course, bounded functions are in BMO and ln 1/|x| is an unbounded function

in BMO. The precise space we will study is

BMO∗ = {w : Rn → R+ : w, 1/w ∈ BMO}.
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We need to recall the Ap weights which are defined by the condition

Ap(w) = sup
Q

(

1

|Q|

∫

Q
w

)(

1

|Q|

∫

Q
w1−p′

)p−1

< +∞,

where Q is again a cube. The Ap weights solve the problem of characterizing when the Hardy-

Littlewood maximal function maps Lp
w into Lp

w, where Mf(x) = supx∈Q
1
|Q|

∫

Q |f(y)| dy, and

the result is
∫

|Mf(x)|pw(x) dx ≤ Cp
∫

|f(x)|pw(x) dx←→ w ∈ Ap.

We will also need to consider A1 = {w|Mw(x) ≤ Cw(x)}, with the smallest such C being

denoted A1(w) and A∞ =
⋃

p>1Ap. Since the Ap constants decrease by Hölder’s inequality, we

can set A∞(w) = limp→∞Ap(w). We have the set inclusions

A1 ⊆ Ap ⊆ Aq ⊆ A∞ ,

where 1 ≤ p ≤ q ≤ ∞. The Ap weights also solve the corresponding problem for the Hilbert

transform

Hf(x) = lim
ε→0

∫

ε<|x−y|<1/ε

f(y)

x− y dy.

It is known that if w, 1/w ∈ Ap, then w ∈ A2, and we may limit our study to the case 1 ≤ p ≤ 2

by the inclusion properties of Ap. It is also known that [1, p. 474]

w, 1/w ∈
⋂

p>1

Ap ⇐⇒ lnw ∈ closBMOL
∞. (1)

We say that w ∈ RHp0(reverse Hölder) if

(

1

|Q|

∫

Q
wp0

)1/p0

≤ C

|Q|

∫

Q
w,

and we abbreviate by RHp0(w) the infimum of all such C. We will use the fact, due to Strömberg

and Wheeden, that w ∈ RHp0 if and only if wp0 ∈ A∞. An alternate proof of this fact can be

found in [3, Lemma 3.1].

2. Preliminary results

Our first result shows that Hölder continuous functions operate on BMO.

Lemma 1: If F is Hölder continuous of order α, where 0 < α ≤ 1 and f ∈ BMO, then

F ◦ f ∈ BMO and ||F ◦ f ||∗ ≤ 2||F ||Lip α||f ||α∗ .

Proof. If there is a constant c such that 1
|Q|

∫

Q |f(x) − c|dx ≤ A, then it is well known that

||f ||∗ ≤ 2A. We compute

(

1

|Q|

∫

Q
|F (f(x))− F (fQ)|pdx

)1/p

≤
(

1

|Q| ||F ||
p
Lip α

∫

Q
|f(x)− fQ|αpdx

)1/p

.
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Thus we obtain with p = 1/α, ||F ◦ f ||∗ ≤ 2||F ||Lip α||f ||α∗ .

This has been, at least partially, observed by many people. If f ∈ BMO, then |f |α ∈ BMO,

for 0 < α ≤ 1 and max{f, g} and min{f, g} are in BMO if f, g are in BMO.

We haven’t noticed the converse observed, but it is true. If ||F ◦ f ||∗ ≤ A||f ||α∗ , then F ∈
Lipα. The proof may be found in [2], but as this is not generally available, we give the proof

here. Without loss of generality, we may assume F (0) = 0 and consider only cubes centered at

the origin since BMO is translation invariant. Suppose that Q = [− d
2 ,

d
2 ]n and that

f(x) =

{

x1 on the double of Q

0 outside the double of Q.

One checks that

F (f(x)) =

{

F (x1) for x ∈ 2Q,

0 outside the double of Q.

and since ||f ||∗ ≤ ||f ||∞ ≤ d
2 , one finds 1

d

∫

d
2

− d
2

|F (x1)− FQ1 | dx1 ≤ Adα, where Q1 is the one-

dimensional cube [−d
2 ,

d
2 ], and by the Campanato-Meyer theorem [4], this proves the result.

We can use the lemma to show that there is a close connection between BMO and BMO∗.

Theorem 1: A real valued function u is in BMO ⇐⇒ there exists a w ∈ BMO∗ such that

u = w − 1/w and ||w||∗ + ||1/w||∗ ' ||u||∗.

Proof. If u admits the decomposition, it is clear that u ∈ BMO. If we are given a u ∈
BMO, it is easy to see that the equation for w leads to a quadratic equation with a solution

of w = 1
2(u+

√
u2 + 4). The function F (x) = 1

2(x +
√
x2 + 4) is everywhere differentiable with

derivative bounded by 1. By Lemma 1, w ∈ BMO.

Remark. We note that the same proof proves the corresponding result for functions of vanishing

mean oscillation, which are defined as is BMO but when the sup is taken over cubes of side r,

and the resulting sup goes to 0 as r → 0+.

Another application of Lemma 1 is to the determination of conditions under which the square

of a function belongs to BMO. By Lemma 1 with F (x) =
√
x, it follows that such a function

belongs to BMO. We show that more is true.

Lemma 2: If f = F (u), F ∈ Lip α, u ∈ BMO, then

|{x ∈ Q : |f(x)− F (uQ)| > λ}| ≤ c1e−c2λ1/α/||F ||
1/α
Lip α||u||∗ |Q|.

Proof. Because u ∈ BMO, by the John-Nirenberg lemma, there are constants c1 and c2 such

that | {t ∈ Q : |u(t)− uQ| > λ} | ≤ c1e−c2λ/||u||∗ |Q|. Hence, since

{t ∈ Q : |f(t)− F (uQ)| > λ} ⊆







t ∈ Q : |u(t)− uQ| >
(

λ

||F ||Lip α

)1/α






,

we have the inequality

|{t ∈ Q : |f(t)− F (uQ)| > λ}| ≤ c1e
−c2( λ

||F ||Lip α
)1/α/||u||∗ |Q|,
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which is the desired result.

Corollary 1: For any ε < c2,

∫

Q






e

(c2−ε)|f(x)−F (uQ)|1/α

||F ||
1/α
Lipα

||u||∗ − 1






dx ≤ c1

(

c2 − ε
ε

)

|Q|.

Proof. Let φ(x) = eAx1/α − 1, which is increasing with φ′(x) = A
αx

1/α−1eAx1/α
. As long as A is

positive,

∫

Q
eA|f(x)−F (uQ)|1/α

dx− |Q| =
A

α

∫ ∞

0
|{x ∈ Q : |f(x)− F (uQ)| > λ}|λ1/α−1eAλ1/α

dλ

≤ A

α
c1

∫ ∞

0
e

−

(

c2

||F ||
1/α
Lip α

||u||∗

−A

)

λ1/α

λ1/α−1 dλ|Q|.

If we choose A less than the fraction, we can use the fact that

1

α

∫ ∞

0
e−ελ1/α

ελ1/α−1 dλ =

∫ ∞

0
e−u du = 1

to obtain the above estimate.

If we modify the choice of φ slightly by putting ψ(x) = eAx1/α
, we see that for α ≤ 1, ψ is

convex and we can apply Jensen’s formula to Q, p = 1, f = |f(x)− F (uQ)| and if we note that

|fQ − F (uQ)| =
∣

∣

∣

∣

1

|Q|

∫

Q
(f(x)− F (uQ))

∣

∣

∣

∣

≤ 1

|Q|

∫

Q
|f(x)− F (uQ)|,

we can make the estimate

ψ(2|fQ − F (uQ)|) ≤ ψ

(

1

|Q|

∫

Q
2|f(x)− F (uQ)|

)

≤ 1

|Q|

∫

Q
eA21/α|f(x)−F (uQ)|1/α

.

We now combine this with Corollary 1 and obtain
∫

Q
eA|f(x)−fQ|1/α

=

∫

Q
eA|f(x)−F (uQ)+F (uQ)−fQ|1/α

≤
∫

Q
eA21/α|f(x)−F (uQ)|1/α+A21/α|fQ−F (uQ)|1/α

= eA21/α|fQ−F (uQ)|1/α
∫

Q
eA21/α|f(x)−F (uQ)|1/α

.

If we choose A21/α = (c2 − ε)/(||F ||1/α
Lip α||u||∗), we can estimate this and

∫

Q
eA|f(x)−fQ|1/α ≤

(

c1

(

c2 − ε
ε

)

+ 1

)

|Q|ψ(2|fQ − F (uQ)|)
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by using Corollary 1 and now we apply Jensen’s inequality to get

∫

Q
eA|f(x)−fQ|1/α ≤

(

c1

(

c2 − ε
ε

)

+ 1

)

|Q| 1

|Q|

∫

Q
eA21/α|f(x)−F (uQ)|1/α

≤
(

c1

(

c2 − ε
ε

)

+ 1

)2

|Q|.

We can now state and prove the following.

Theorem 2: Consider the set of f = F (u), u ∈ BMO, 0 < α ≤ 1. The following two statements

are equivalent.

(i) F ∈ Lip α
(ii) there exists 0 < c1, c2 <∞, 0 < A <∞, independent of Q, u ∈ BMO such that

|{x ∈ Q : |f(x)− fQ| > λ}| ≤ c1e−
c2λ1/α

A||u||∗ |Q|.

and then A ' ||F ||1/α
Lip α.

Proof. We will first prove that (i) implies (ii). By restricting the range of integration in the

inequality derived after Corollary 1, we see that

|Eλ| ≡ |{x ∈ Q : |f(x)− fQ| > λ}| ≤ e−Aλ1/α
∫

Q
eA|f(x)−fQ|1/α

dx,

since e−Aλ1/α
eA|f(x)−fQ|1/α

> 1 on Eλ. This is the desired result if we choose ε = c2
2 and A as

above.

We next show that (ii) implies (i). We first observe that (ii) implies that for some constants

0 < c3, c4 <∞
∫

Q
exp

(

c3|f(x)− fQ|1/α

A||u||∗

)

≤ c4|Q|.

This implies that

LQ ≡
1

|Q|

∫

Q

c3|f(x)− fQ|1/α

A||u||∗
≤ c4.

Hölder now gives us, since 1/α ≥ 1,

LQ ≥
(

1

|Q|

∫

Q

cα3 |f(x)− fQ|
Aα||u||α∗

)1/α

.

Hence
1

|Q|

∫

Q
|f(x)− fQ| ≤ CAα||u||α∗ .

The proof is now completed by an application of [2]; see the argument after Lemma 1.

Corollary 2: If bk ∈ BMO, then

|{x ∈ Q : |b(x)− bQ| > λ}| ≤ c1e−c2λk/||bk||∗ |Q|.

5



Proof. Apply the above theorem with u(x) = bk, F (x) = x1/k which is Lipschitz continuous of

order 1/k with Lipschitz constant 1.

Remark. The argument actually shows that if

|{x ∈ Q : |u(x)− uQ| > λ}| ≤ c1e−c2λk |Q|,

then

|{x ∈ Q : |f(x)− fQ| > λ}| ≤ (c1 + 1)2e
−

c221/α

||F ||
1/α
Lip α

λk/α

|Q|.

Our main result connects the behavior of functions in BMO∗ with the Ap classes.

Theorem 3: The set of nonnegative functions which are BMO along with their reciprocals is

contained in the intersection of all the Ap classes for p > 1, i.e. BMO∗ ⊆
⋂

p>1Ap.

Remarks.(1) Of course, if b ∈ BMO∗, then 1/b ∈ BMO∗ ⊆
⋂

p>1Ap and (1) above implies

ln b ∈ closBMOL
∞.

(2) The class BMO∗ is non-empty. For example, b1(x) = max(ln 1/|x|, e) ∈ BMO and

1/b1 ∈ L∞ ⊆ BMO. Moreover, if we take

b2(x) = max(ln 1/|x|, 1/ ln(|x|e2))

we get an example of a function which is unbounded and whose inverse is unbounded, yet both

b2, 1/b2 ∈ BMO.

(3) The result is sharp in the sense that the function b in the theorem cannot be in A1 since

if it were, 1/b would also be in A1 and then by a result of Johnson and Neugebauer [3, Lemma

2.2], b ' 1.

(4) The converse is, however, not true because with the same function b1 as above, b21 satisfies

1/b21 ∈ L∞ and ln b21 = 2 ln b1 ∈ closBMOL
∞ and therefore b21 ∈

⋂

p>1Ap and 1
b21
∈ ⋂p>1Ap, but

b21 /∈ BMO.

We will prove Theorem 3 as a special case of a more general result, but let us indicate how

it can be proved directly. The first step is a lemma.

Lemma 3: Let us denote by

fQ =
1

|Q|

∫

Q
f(x)dx,

then we have

(fg)Q − fQgQ =
1

|Q|

∫

Q
(f(x)− fQ)(g(x)− gQ)dx.

Proof. Compute and use the fact that g − gQ has mean value zero.

We are ready for the first step in this version of the proof of Theorem 3.

Theorem 4: Suppose b ∈ BMO∗, then b is in A2.
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Proof. Apply Lemma 3 to b and 1/b which gives

1− bQ(1/b)Q =
1

|Q|

∫

Q
(b(x)− bQ)(1/b(x)− (1/b)Q)dx

and allows us to make the estimate |1− bQ(1/b)Q| ≤ ||b||∗||1/b||∗. Hölder’s inequality shows that

1 ≤ bQ(1/b)Q and the above becomes 1 ≤ bQ(1/b)Q ≤ 1 + ||b||∗||1/b||∗.

Theorem 5: If b ∈ BMO∗, then b ∈ A3/2.

For the proof of this statement we have to estimate
(

1

|Q|

∫

Q
b

)(

1

|Q|

∫

Q

1

b2

)1/2

.

First we require another lemma.

Lemma 4: With the same notation as in Lemma 3, we have

1

|Q|

∫

Q
(f(t)− fQ)(g(t)− gQ)(h(t)− hQ)(l(t)− lQ)dt

= (fghl)Q − fQ(ghl)Q − gQ(fhl)Q − hQ(fgl)Q − lQ(fgh)Q + fQgQ(hl)Q

+fQhQ(gl)Q + fQlQ(gh)Q + gQhQ(fl)Q + gQlQ(fh)Q

+hQlQ(fg)Q − 3fQgQhQlQ.

Proof. We expand the integrand and compute the resulting terms.

Take f = h = b, g = l = 1
b . We obtain

1− bQ(
1

b
)Q − (

1

b
)QbQ − bQ(

1

b
)Q − (

1

b
)QbQ

+

{

bQ(
1

b
)Q + (bQ)2(

1

b2
)Q + bQ(

1

b
)Q + (

1

b
)QbQ + ((

1

b
)Q)2(b2)Q + bQ(

1

b
)Q

}

−3(bQ)2((
1

b
)Q)2

=
1

|Q|

∫

Q
(b(t)− bQ)2

(

1

b
(t)− (

1

b
)Q

)2

dt.

This allows us to estimate

1 + (bQ)2(
1

b2
)Q +

(

(
1

b
)Q

)2

(b2)Q − 3(bQ)2
(

(
1

b
)Q

)2

≤ ||b||2∗,4||
1

b
||2∗,4

which means that

1 + (bQ)2(
1

b2
)Q +

(

(
1

b
)Q

)2

(b2)Q ≤ 3(bQ)2
(

(
1

b
)Q

)2

+ ||b||2∗,4||
1

b
||2∗,4.

In particular, bQ( 1
b2

)
1/2
Q ≤ ||b||∗||1b ||∗ +

√
3A2(b), which proves that

A3/2(b) ≤
√

3 + (
√

3 + 1)||b||∗||
1

b
||∗.

The remainder of the direct proof of Theorem 3 proceeds like this. To prove that b, 1/b are

in A4/3 do the corresponding formula with 8 terms of which 4 are b and 4 are 1/b, etc. . . . .
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3. Ap weights whose reciprocals are Ap weights

We will now obtain Theorem 3 as a special case of the next result.

Theorem 6: Suppose 1 < p0 ≤ 2. Then the following are equivalent.

w, 1/w ∈ Ap0 (2)

LQ =
1

|Q|

∫

Q
|w − wQ|p

′
0−1| 1

w
− (

1

w
)Q|p

′
0−1 ≤ c < +∞. (3)

Proof. Suppose (2) holds. Let r = p′0 − 1 ≥ 1. Note that

LQ ≤ 1

|Q|

∫

Q
|wr − (wQ)r|| 1

wr
− (

1

w
)r
Q|

≤ 1 + (wr)Q(
1

w
)r
Q + wr

Q(
1

wr
)Q + wr

Q(
1

w
)r
Q

≤ 1 +Ap0(
1

w
) +Ap0(w) +A2(w)r ≤ c < +∞,

because w ∈ Ap0 implies w ∈ A2.

Conversely, if (3) holds, then we first note that w ∈ A2. This follows from the next sequence

of inequalities:

c1/r ≥ L
1/r
Q ≥ 1

|Q|

∫

Q
|w − wQ||

1

w
− (

1

w
)Q|

≥ 1

|Q|

∫

Q
(w − wQ)((

1

w
)Q −

1

w
)

= wQ(
1

w
)Q − 1− wQ(

1

w
)Q + wQ(

1

w
)Q.

We use the fact that if r ≥ 1, then |ar − br| ≥ ar

2r−1 − br. Write
∣

∣

∣

∣

(w − wQ)(
1

w
− (

1

w
)Q)

∣

∣

∣

∣

=

∣

∣

∣

∣

w(
1

w
)Q +

1

w
wQ − (wQ(

1

w
)Q + 1)

∣

∣

∣

∣

which allows us to estimate the integrand below by
∣

∣

∣

∣

(w − wQ)(
1

w
− (

1

w
)Q)

∣

∣

∣

∣

r

≥ 1

2r−1

{

w(
1

w
)Q +

1

w
wQ

}r

−
(

wQ(
1

w
)Q + 1

)r

,

≥ 1

2r−1

{

wr(
1

w
)r
Q +

1

wr
wr

Q

}

−
(

wQ(
1

w
)Q + 1

)r

.

Now we take the average of this over Q which gives

1

2r−1

{

(wr)Q(
1

w
)r
Q + (

1

wr
)Qw

r
Q

}

≤ c+ (A2(w) + 1)r,

and we conclude that w, 1
w ∈ Ap0 .

Theorem 3 follows from this result; in fact, we obtain the estimate

LQ ≤ ||w||p
′
0−1

∗,p(p′0−1)||
1

w
||p

′
0−1

∗,p′(p′0−1)

and as BMO is characterized by ||f ||∗,p for any p > 0, we can have any p0 > 1 which proves the

result.

Although we proved Theorem 6 for Ap, it immediately implies a result about RHr.
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Theorem 7: The following statements are equivalent for 1 ≤ r <∞:

w, 1/w ∈ RHr (4)

w, 1/w ∈ A1+1/r (5)

wr ∈ A2. (6)

Proof. (4)→ (5). Since wr, 1/wr ∈ A∞, we have that wr, 1/wr ∈ A2, and hence w, 1/w ∈ A1+1/r.

(5)→ (4). w ∈ A1+1/r → 1/w ∈ RHr. Similarly, w ∈ RHr.

(4)→ (6). Since wr, 1/wr ∈ A∞, we have that wr ∈ A2 as above.

(6)→ (4). Since wr ∈ A2, w ∈ A1+1/r → 1/w ∈ RHr. From the fact that wr ∈ A2, it follows

that w−r ∈ A2 and this implies that we can apply the above remark to 1/w.

Theorem 8: Suppose u ∈ BMO and α > 0. Then u2 + α ∈ ⋂p>1Ap.

Proof. For any λ > 0, write λu = wλ−1/wλ, for some wλ ∈ BMO∗. Then λ2u2 = w2
λ + 1

w2
λ
−2.

By Theorem 7, w2
λ ∈ A∞ and since wλ ∈

⋂

p>1Ap, by Lemma 2.4 in [3], w2
λ ∈

⋂

p>1Ap and a

similar result holds for 1
w2

λ
. This shows that λ2u2 + 2 ∈ ⋂p>1Ap and hence, u2 + 2

λ2 ∈
⋂

p>1Ap.

Since λ is an arbitrary positive number, the result follows.
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15(1964), 717-721.

R. L. Johnson

Supported by a grant from the NSF

Department of Mathematics

University of Maryland

College Park, Maryland 20742

and

C. J. Neugebauer

Department of Mathematics

Purdue University

West Lafayette, Indiana 47907

June 21, 1991

9


