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Abstract

In this paper we complete the theory of punctual and local integrability

of smooth and analytic distributions starting with the classical Hermann's
and Nagano's results (of which we give new proofs). Then we discuss

Stefan's and Sussmann's papers (where we assert that there are some

errors) and we give a di�erent version of a theorem. Finally we give a
new proof of Cerveau's theorem that is a complete characterization of

�nitely-generated involutive F(M)-module of smooth vector �elds.

1 Introduction

Let M be a Cr �nite-dimensional, connected and paracompact manifold (r =1

or ! , by the case ); let F(M ) denote the ring of the Cr real-valued functions

de�ned on M and let V r(M ) be the F(M )-module of Cr vector �elds on M .

We put n = dimM .

We call distribution on M , the mapping :

L : x 2M �! L(x) � TxM

where L(x) is a vector subspace of the tangent space to M at x. The dimen-
sion(or rank) of the distribution is dim L(x) (it is punctually de�ned).

Let S be a set of Cr vector �elds everywhere de�ned. The distribution

generated by the set S is :

L(x) = spanRf vjx ; v 2 S g 8x 2M:

1



We call Cr -distribution on M , a distribution L generated by a set S of Cr

vector �elds.

The distribution L is called integrable at x0 2M if there exists a submanifold

Nx0

i

,!M (i being the canonical inclusion) passing through x0, such that:

TxNx0
= L(x) ; for all x 2 Nx0

:

(more precisely, we have: i�;x(TxNx0
) = L(x) ; 8 x 2 Nx0

; where i�;x is the

di�erential of i in x). Nx0
is called an integral manifold of the distribution

and we say that L is punctually integrable in x0. From the de�nition it follows

directly that dim Nx0
= dimL(x0) and L is also punctually integrable in every

q 2 Nx0
.

The distribution is called locally integrable (or to have the integral manifold
property if for each point in M there is an integral manifold of the distribution

L ( namely if it is punctually integrable at every point of M ).

Let us consider the distribution L and a point x0 2 M . If there exists

a neighborhood of x0 where the distribution has constant dimension then the

point x0 is called an ordinary point (or a regular point), otherwise it is called a

singular point. If the distribution has singular points then we say that it is a

distribution with singularities.
Our goal is to �nd criteria of punctual and local integrability of a distribution

generated by a F(M )-module of Cr vector �elds (this distribution may be a

distribution with singularities).

In x2 we discuss Stefan's and Sussmann's papers pointing out some errors.

Also we give a few examples about involutivity of modules and distributions.

In x3 we construct a split of distribution that will be useful through the

whole paper. This split was suggested us by the Nagano's paper ([Na66]).

Based on this construction we will prove results about punctual integrability

(in x4): Theorem(4.4) which represents the punctual version of Nagano's the-

orem (the result appears in [Fr78] but with an algebraic proof), Theorem(4.6)

which represents a reformulation of a theorem presented in [Su73, St74, St80]

but always with di�erent statements, a new proof of a theorem presented in

[St74], as well as criteria involving various conditions (for example the involu-

tivity). We point out that the Theorem(4.4) works in the analytic case while

Theorem(4.6) requires only r =1:

By extending the study on an open subset of the manifold, we will obtain

results about local integrability (x5):the well-known Nagano's theorem (in the

analytic case), Hermann's theorem (with a new proof) and a normal form of the

�nitely-generated involutive module. From the last theorem Hermann's theorem

follows as a simply corollary and we can give another proof of Nagano's theorem

using a known algebraic result (the notherianity of the module of analytic vector

�elds).

Since our study is punctual or local, we point out that the integral manifolds

are always regular embedding submanifolds.
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2 Preliminary de�nitions and results

If S is a set of vector �elds everywhere de�ned on M then we denote by S# the

F(M )-module generated by S (i.e. the smallest F(M )-module which includes

S). We observe that the distribution generated by S is the same with the

distribution generated by S#.

2.1 Discussion about Stefan's and Sussmann's papers

We assert that the implication e ) d of Theorem 4:2 from Sussmann's paper

([Su73]) and Theorem 4 from Stefan's paper ( [St80]) are not correct (implicitly

Theorem 5 -in [St80]- has a wrong proof). However, the equivalences

a, b, c, d, f in [Su73] are correct. To prove this we will use an example

given by Stefan himself in [St80] relative to a wrong theorem by Lobry ([Lo70]).

We refer now to Stefan's paper and we begin by recalling the de�nition of local

subintegrability. A set S of C1 vector �elds is locally subintegrable at x0 2 M

if there exists a neighborhood 
 of x0 in M and a subset Sb of S which

satis�es the following conditions :

(LS.1) Lb(x0) = L(x0) and Sb is integrable on 


(LS.2) For every vector �eld X in S there exists " > 0 such that

dXt(x0):L
b(x0) = Lb(Xt(x0)) for jtj < "

(we have denoted by L the distribution generated by S, by Lb the distribution

generated by Sb and by Xt(x0) the 
ow generated by the vector �eld X).

We say that S is locally subintegrable (on M ) if it is locally subintegrable at

every x 2 M . We remark that the choice of the subset Sb may depend on the

point x0. The theorem that we assert it is not correct, is the following

"Theorem 4 (from [St80]) A set S of C1 vector �elds is integrable if and
only if the set S# is locally subintegrable on M . "2
The example that proves this is the following:

EXAMPLE 2.1 Let M = R2 and let S be the set of all vector �elds of the

form:
@

@x
+ �(x; y)

@

@y

where � is an arbitrary smooth (i.e. C1) function which satis�es two require-

ments:

1) �(0,0)=0

2) @�
@x

� 0 in some neighborhood of the origin depending on �. 3

The distribution generated by S will be of the form:

L(x0) =

�
Tx0R

2 ; x0 6= (0; 0)

spanRf
@

@x
j(0;0)g ; x0 = (0; 0)
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So:

dimL(x0) =

�
2 ; x0 6= (0; 0)

1 ; x0 = (0; 0)

It is clear that L is not integrable in the origin. We will prove that S# is locally

subintegrable on M = R2. To this purpose we will use Proposition(6:3) (from

[St80])-�rst point:

Proposition 6.3 For a set S of C1 vector�elds to be locally subintegrable at
x0 2M it is su�cient that there exist a neighborhood 
 of x0 in M and vector
�elds Y1; Y2; : : : ; Yp in S which satisfy the following conditions:
(a) The vectors Y1; Y2; : : : ; Yp span L(x0)

(L denotes the distribution generated by S)
(b) There exist continuous functions �ijk : 
 �! R such that,

for every y 2 
 and 1 � i; j � p ,

[Yi; Yj](y) =
X
k

�ijk(y)Yk(y)

(c) Given X 2 S there exist " > 0 and continuous functions �ik : [�"; "]! R

such that, for jtj � " and 1 � i � p,

[X;Yi](xt) =
X
k

�ik(t)Yk(xt) ; where xt = Xt(x0); as above: 2

Now, the proof that S# is locally subintegrable on M = R2.

Let x0 2 R2; x0 6= (0; 0).Let 
 be a neighborhood of x0 such that O(0; 0) 62 


(
 denote the closure of 
). Then there exists a function � so that �(q) 6=

0; 8q 2 
 and �(x; y) @

@y
2 S# . Let 	 : R2 ! R be a smooth function such

that 	(q) 6= 0; 8q 2 R2 and 	(q) = �(q) 8q 2 
 (	 can be found , possibly

by reducing the neighborhood 
 and using the partition of unit) and let Y2 =

	�1� @

@y
2 S#. On 
 we have Y2j
 = @

@y
j
. Let Y1 = @

@x
2 S#. We verify

(a){(c) of the previous proposition using Y1; Y2 and 
 like above.

(a) fY1(x0); Y2(x0)g = f @

@x
jx0 ;

@

@y
jx0g and it spans Tx0R

2 = L(x0)

(b) [Y1; Y2]j
 = 0

(c) For X 2 S we can choose " > 0 such that xt = Xt(x0) 2 
 ; 8jtj < ". Then

the functions �ik(t) will be even the components of [X;Yi] in the local frame

f @

@x
j
;

@

@y
j
g:

Now, let x0 = (0; 0). We put Y1 = @

@x
2 S# and let 
 be an arbitrary

neighborhood of the origin. We verify (a),(b),(c):

(a) Y1(x0) =
@

@x
jx0 and spans L(0)

(b) [Y1; Y1] = 0

(c) Let X 2 S#. Then X is of the form:

X = f1
@

@x
+ f2�

@

@y
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where f1; f2 : R
2 ! R are arbitrarly smooth functions and � satis�es the two

requirements. Remark that 9� > 0 such that �(x; 0) = 0, for all jxj < �.

We �nd the integral curve of the vector �eld X passing through the origin. We

have the system: �
_x = f1(x; y) ; x(0) = 0

_y = f2(x; y)�(x; y) ; y(0) = 0

We obtain a solution x=x(t) at least continuous. We choose " > 0 such that we

have: jx(t)j < � , for all jtj < ".

Since y(t) = 0; jtj < " is a particular solution of the second equation and using

the theorem of existence and unicity of the Cauchy problem we obtain the sys-

tem solution: �
x = x(t) ; jtj < " such that jx(t)j < �

y = 0

So we have:

[X;Y1] = [f1
@

@x
+ f2�

@

@y
;
@

@x
] = �

@f1

@x

@

@x
� (

@f2

@x
�+ f2

@�

@x
)
@

@y

By choosing �11(t) = �@f1

@x
(x(t); 0) and because �(x(t); 0) = 0 and @�

@x
(x(t); 0) =

0 we obtain:

[X;Y1](xt) = �11(t)Y1(xt) ; for all jtj < ":

So we have checked that S# is locally subintegrable (we can check it also

directly using the de�nition | respectively the conditions (LS:1) and (LS:2)).

The mistake (in [St80]) consists in the next assertion of the Lemma(6:2) : "...it

is easy to produce a subsequence (sm) of (tm) and a C1 vector�eld V on 


such that V 2 S#, PV = 0 and V (�(sm)) 6= 0 for all m."(here PV means the

projection in the bases given by Y1; :::; Yd 2 Sb ; d = dim L(x0) and �(sm) =

Xsm (x); for some X 2 S and x 2M ). In the above example this is equivalent

to ask for a sequence (sm) ! 0 , where (�(sm)) is a sequence of points taken

on an integral curve through the origin (�(0) = 0) , V = f1
@

@x
+ f2�

@

@y
and

PV = f1
@

@x
= 0. So V = f2�

@

@y
and the assertion requires �(�(sm)) 6= 0 for

all m. But we have seen that for every vector �eld X 2 S# the integral curve

through the origin has a piece which is included into the axis Ox. We take (sm)

such as: �(sm) = (xm; 0). On the other hand, giving � (like above) there exists

� > 0 such that �(x; 0) = 0 , for all jxj < �. Then we obtain that there exists

an integer N� such that �(�(sm)) = 0 , for all m > N�.

The solution that we propose in section 4 is to reformulate the condition

of the existence of " (see the point (c) above) in such a way that it becomes

independent of every other conditions (that means there exists an " > 0 "good"

for all vector �elds ). This happens , for example, in the case when S# is �nitely
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generated, because we choose " = mini "Xi
, where fXigi=1;p spans the module.

With this condition, theorem(5) for [St80] is proved, but we will give a proof

without the criterion of local subintegrability ( modi�ed).

Now we turn to Sussmann's paper. Even though the implication e)d is false,

the other equivalences are true. We prove this directly on the Sussmann's

proof (for this we suppose that the reader is familiar with the Sussmann's pa-

per | [Su73]): We will prove that from (a) it results (d) (in Theorem 4:2).

The implication (a))(e) is true (for example it is included in Theorem (4:6)

of this paper) and from both (a) and (e) we will obtain (d). We have that

W 1(t); : : : ;W k(t) 2 �(Xt(m)) are independent. Since Xt(m) belongs to the

integral manifold of � passing through m it results dim�(Xt(m)) = dim�(m)

and so W 1(t); : : : ;W k(t) form a basis for �(Xt(m)). Now the proof is complete.

2.2 Discussion about involutivity

Let L be a F(M )-module of Cr vector �elds and L be the distribution generated

by L. We say that a vector �eldX belongs to the distribution L (we write X 2 L)

if for all p 2 M , X(p) 2 L(p). We say that the module L is involutive if for

every X;Y 2 L we have that [X;Y ] 2 L. A distribution L is called involutive
if for every two vector �elds X;Y 2 L we have [X;Y ] 2 L.

If the distribution has not any singularities then the problem of integrability

is completely solved by Frobenius' theorem:

THEOREM 2.2 If L is a Cr-distribution without singularities then the fol-
lowing conditions are equivalent:
(a) L is locally integrable
(b) L is involutive
(c) L is involutive. 2

In the general case of the distributions with singularities, the following result

is obvious:

PROPOSITION 2.3 If L is a locally integrable distribution then L is involu-

tive. 2

On the contrary, the following examples show that if L is integrable then L

need not to be involutive.

EXAMPLE 2.4 (smooth case) Let X1 = '(x; y) @

@x
and X2 = (x2 + y2) @

@y
;

where

'(x; y) =

(
e
�

1

x2+y2 ; (x; y) 6= (0; 0)

0 ; (x; y) = (0; 0)

We have: L = spanF(M )fX1; X2g = ff1'
@

@x
+f2(x

2+y2) @

@y
; f1; f2 2 F(M ) g;

M = R2 and

L(p) =

�
TpR

2 ; p 6= (0; 0)

f0g ; p = (0; 0)
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The distribution L is punctually integrable at every point p 2 R2 (in the origin
the integral manifold is the point O(0; 0) ), but

[X1; X2] = 2x'(x; y)
@

@y
�(x2+y2)

@'

@y

@

@x
= 2x

'(x; y)

x2 + y)
X2�

(x2 + y2)@'
@y
(x; y)

'(x; y)
X1

It is very easy to prove that: 2x
'(x;y)

x2+y2
2 F(M ) , but:

(x2+y2)
@'

@y

'(x;y)
= 2y

x2+y2
;

(x; y) 6= 0 does not admit a limit at x=y=0. So [X1; X2] 62 L 3

EXAMPLE 2.5 (analytic case) Let X1 = (x2 + y2) @

@x
, X2 = (x4 + y4) @

@y

and M = R2.
We put L = spanF(M )fX1; X2g and the distribution generated by L is:

L(p) =

�
TpR

2 ; p 6= (0; 0)

f0g ; p = (0; 0)

The distribution L is integrable on M (is the same distribution that in the pre-
vious example) but: [X1; X2] = 4x3(x2+y2) @

@y
�2y(x4+y4) @

@x
= f1X1+f2X2;

where f1 = �
2y(x4+y4)

x2+y2
, f2 =

4x3(x2+y2)

x4+y4
and @f2

@x
= 4x8�4x6y2+20x4y4+12x2y6

x8+2x4y4+y8
.

Since @f2

@x
j(x;0) = 4 @f2

@x
j(0;y) = 0 , f2 is not a C1 function and [X1; X2] 62 L. 3

If we note smtr(L) = fX 2 V r(M ); such that X 2 Lg then the explanation

is that we have the inequality: smtr(L) 6= L though L � smtr (L) (r = 1 or

r = !). From the Proposition(2:3) it follows immediately:

PROPOSITION 2.6 If L is a locally integrable distribution, then smtr (L) is
involutive (r =1 or r = !). 2

In the case of punctual inegrability the following example shows that the

module may be not involutive:

EXAMPLE 2.7 (see [Fr78]) Let X1 = xz @

@x
+ @

@y
and X2 = @

@z
. Then

L=spanF(M )fX1; X2g , L(p) = Ljp for all p 2M = R3.

Since dimL(p) = 2; 8p 2 M , L is a distribution without singularities. Let
p = (0; 0; 0). The submanifold N0 = f(x; y; z) 2 R3jx = 0g (the plane Oyz) is
a maximal integral manifold through p. But [X1; X2] = �x @

@x
62 L. So L is not

involutive. 3

The following example shows that if L is involutive it does not necessarely

follow that L is involutive:

EXAMPLE 2.8 (see [Na66]) Let M = R2; X1 =
@

@x
; X2 = '(x) @

@y
, where

'(x) =

�
e
� 1

x2 ; x 6= 0

0 ; x = 0

7



Then: L=spanF(M )f
@

@x
; ' @

@y
; '0(x) @

@y
; � � � ; '(n)(x) @

@y
; � � �g is involutive. The

distribution generated by L is:

L(x; y) =

�
T(x;y)R

2 ; x 6= 0

spanRf
@

@x
j(0;y)g ; x = 0

We have that Y = x @

@y
2 L, but [X1; Y ] =

@

@y
62 L. 3

If the distribution is without singularities then it is easy to prove that his rank

(that is the dimension of the vector subspace) is constant on M (we have sup-

posed that M is connected). Also we can prove that the set of ordinary (or

regular) points of distribution is an open dense subset of M .

3 Split of the distribution

Let L be a F(M )-module of Cr vector �elds and let L denote the associated

distribution. Let x0 2 M be a �xed point. Let k = dimL(x0) � n = dimM .

Then there exist k vector �elds ~a1; : : : ; ~ak 2 L such that ~a1jx0 ; : : : ; ~akjx0 are

independent. We assume that a system of local coordinates at x0 has been �xed,

and we put ~A(x)
def
= [~a1jx; : : : ; ~akjx] 2 Rn�k, where ~aijx are the components of

the vector �eld ~ai evaluated at x and ordered according to the column. Since

rank ~A(x0) = k there exists a neighborhood U where ~A is a full-rank matrix.

We suppose, possibly renumbering the coordinates, that the �rst k rows of A

are independent. We partition the matrix ~A as follows:

~A(x) =

2
4 ~A1(x)

� � �
~A2(x)

3
5 gk

where ~A1(x) is nonsingular on U . From now on will agree implicitly that x 2 U .

Let

A(x)
def
= ~A(x) ~A�11 (x) =

2
4 Ik

� � �

A2(x)

3
5 = [a1jx : : : akjx] (1)

In local coordinates we have:

ai =
@

@xi
+

nX
j=k+1

A2;ji

@

@xj

We associate to A the family F" de�ned by:

F" = fa� 2 V r(M )ja�
def
=

kX
i=1

�iai ; � = (�1; : : : ; �k) 2 R
k; j�j

def
=

kX
i=1

< "g
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F" can be identi�ed with a ball in a k-dimensional space. For " > 0 small

enough we know that exp : F" !M is a regular embedding. So expF":x0
�M

is a submanifold in M of dimension k (expF":x0

def
= fexp a�:x0j a� 2 F"g

and exp a�:x0 denotes x(1) where x(t) is the solution of the di�erential system

_x(t) = a�jx(t) with the initial condition x(0) = x0).

PROPOSITION 3.1 If L is punctually integrable at x0, then N":x0

def
= expF":x0

is an integral manifold of L passing through x0.

Proof

Let a� 2 L as above and let ~Nx0
be an integral manifold of L passing through

x0. Then:

a�jx 2 Tx ~Nx0
; for all x 2 ~Nx0

:

A piece of integral curve of a�, passing through x0, will be included in ~Nx0
.

So exp ta�:x0 2 ~Nx0
for jtj < �(�). We consider the unit ball in k-real space:

B1 def
= f� 2 Rkj j�j = 1g and we obtain � : B1 ! R a continuous function

(� 7! �(�)). Since B1 is a compact set we obtain that there exists �0 2 B1

such that inf �(B1) = min�(B1) = �(�0) > 0. Let " = �(�0). We conclude
N":x0

� ~Nx0
and, since N":x0

is a k-dimensional manifold like ~Nx0
, it is an

open subset of ~Nx0
. So N":x0

is an integral manifold too. Q.E.D. 2

The problem to be solved is to determine conditions which guarantee that N":x0

is an integral manifold of L (that means, for all x 2 N":x0
L(x) = TxN":x0

).

Relied on the vector �elds, we will construct now a split of the distribution.

Let

G
def
= fb 2 Ljb =

nX
j=k+1

bj(x)cj(x); where b
j(x) 2 F(M ) and cj(x)jU =

@

@xj
g

L(�1)
def
= fa� 2 V r(M )j� = (�1; : : : ; �k) 2 R

kg = F1

.

It is very easy to prove the following lemma:

LEMMA 3.2 The distribution generated by G�L(�1) coincides locally with L.
That means: L(x) = Gjx � L(�1)jx , for all x 2 U (� denotes a direct sum). 2

By dimensional relation: dimL(x0) = dimL(�1)jx0 and it results: Gjx0 = f0g.

We have obtained two algebraic structures which generate locally the distribu-

tion: L(�1) , which is a k-dimensional R- vector subspace, and G , wich is a

F(M )-module and we say that (L(�1);G) is a split of the distribution generated
by L.

9



4 Punctual results

We have the following result:

PROPOSITION 4.1 The distribution L is punctually integrable at x0 if and
only if we have the relations:
R1. L(�1)jx = TxN":x0

, for all x 2 N":x0

R2. GjN":x0
= 0 (that means Gjx = 0 , for all x 2 N":x0

).
Proof
00 ) 00 Let L be integrable at x0. It follows from Proposition(3:1) that N":x0

is an integral manifold. Using Lemma(3:2) we obtain:

Gjx � L(�1)jx = TxN":x0
; for all x 2 N":x0

From dimL(�1)jx = dimLjx0 = k = dimTxN":x0
it results L(�1)jx = TxN":x0

.
If there exists x 2 N":x0

such that Gjx 6= f0g then also there exists b 2 L(x)

such that bT = [0 bT2 ] with b2 6= 0. But then b 62 L(�1)jx. This implies that:

k = dimL(x) = dim(Gjx � L(�1)jx) > dimL(�1)jx = dimTxN":x0
= k

A contradiction. Therefore GjN":x0
= 0.

00 ( 00 It results that:

L(x) = Gjx + L(�1)jx
R2
= L(�1)jx

R1
= TxN":x0

; for all x 2 N":x0

So N":x0
is an integral manifold of L passing through x0. Q.E.D. 2

Following the proof of Nagano's theorem we have the next lemma (see [Na66]

for proof):

LEMMA 4.2 Let u; v 2 V1(M ); x0 2M and s; t 2 R; jsj; jtj< ", where " > 0

is so small that f(s; t) = exp[t(su + v)]:x0 makes sense. If [u; v]jexp tv:x0 = 0,

8jtj < " then
@f(s;t)

@s
js=0 = tujf(0;t), 8jtj < ". 2

The above result allows us to �nd a condition equivalent to R1 of Proposition(4:1).

COROLLARY 4.3 The distribution L is punctually integrable at x0 if and
only if:
1) [u; v]jexp tv:x0 = 0, for all u; v 2 L(�1) and jtj < "; " depending on v.
2) GjN":x0

= 0

Sketch of Proof
00 ( 00 From Lemma(4:2) and by dimensional reasons we obtain: L(�1)jx =

TxN":x0
, for all x 2 N":x0

.
00 ) 00 Let u; v 2 L(�1) of the form:

u =

kX
i=1

�i
@

@xi
+

nX
j=k+1

uj
@

@xj
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v =

kX
i=1

�i
@

@xi
+

nX
j=k+1

vj
@

@xj

where �i; �i 2 R and uj; vj 2 F(M ), such that u; v 2 L(�1). We obtain:

[u; v] =

nX
j=k+1

[u(vj) � v(uj)]
@

@xj

Let x = exp tv:x0 . Since [u; v]jx 2 L(x) we have [u; v]jx = 0 . Q.E.D. 2

We emphasize from the second part of proof the relation:

[u; v] =

nX
j=k+1

[u(vj) � v(uj)]
@

@xj
for all u; v 2 L(�1) (2)

The same relation is also valid for u; v 2 G or u 2 L(�1) and v 2 G.

Let L be a F(M )-module of Cr vector �elds. We denote by L1L the Lie

closure of L (i.e. the minimal involutive module that contains L). We can

state the following result due to Freeman ([Fr78]) (here we use a proof

borrowed from Nagano):

THEOREM 4.4 Let L be an analytic F(M )-module of vector �elds and let
L denote the associated distribution. Then L is punctually integrable at x0 if
and only if: L1Ljx0 = L(x0)

Sketch of Proof

We will apply the Corollary(4:3).
00) 00 It follows directly by using the Proposition (2:3) and the fact that any
vector �eld from L1L is written as a �nite combination of Lie brackets of
vector �elds from L.
00( 00 Let L1

(�1)
and G1 be obtained by splitting the distribution generated by

L1L. From L(�1) � L1(1);G � G
1 and L1Ljx0 = L(x0) we have that:

L(�1) = L1(�1) and G = G1 \ L

From involutivity of L1L and relations(2) we have that:

[L(�1); L(�1)] � G1; [L(�1);G
1] � G1; [G1;G1] � G1

and from analyticity and Taylor series we obtain: GjN":x0
= 0 and [u; v]jN":x0

=

0 for all u; v 2 L(�1) Q.E.D. 2

Now we pass to the smooth case (r =1). First we need the following lemma:

LEMMA 4.5 Let a1; : : : ; ak 2 V 1(U) (U being an open neighborhood of x0)
be smooth vector �elds and let Q = spanF(U)fa1; : : : ; akg. Let Z 2 V1(U)

11



and fb1; : : : ; bkg � Q such that bi =
P

k

j=1 fijaj and ai =
P

k

j=1 gijbj where
fij ; gij : U ! R are smooth functions.

If there exist C1 functions �j
i
: (�"; ")! R; i; j = 1; k such that:

[Z; ai]jexp tZ:x0 =

kX
j=1

�
j

i
(t)ajjexp tZ:x0

then there exist C1 functions �j
i
: (�"; ")! R; i; j = 1; k such that:

[Z; bi]jexp tZ:x0 =

kX
j=1

�
j

i
(t)bjjexp tZ:x0

Proof

We obtain:

[Z; bi]jexp tZ:x0 =

kX
l=1

[

kX
j=1

gjlZ(fij) +

kX
j;s=1

gsl�
s

j
fij]bljexp tZ:x0 =

kX
l=1

�l
i
bljexp tZ:x0

Q.E.D. 2

Next theorem is our version of the result from [St74][St80][Su73]:

THEOREM 4.6 Let L be a F(M )-module of C1 vector �elds on M and let
L denote the associated distribution. Let x0 2 M and k = dimL(x0). Then
L is punctually integrable at x0 if and only if there exist " > 0 , vector �elds
a1; : : : ; ak 2 L and a neighborhood U of x0 that satisfy the following conditions:
1) In the point x0 a1jx0 ; : : : ; akjx0 span L(x0)

2) For all smooth vector �eld Z 2 L, there exist smooth functions
�
j

i
: (��Z ; �Z)! R such that for all t 2 (��Z ; �Z) and 1 � i � k we have:

[Z; ai]jexp tZ:x0 =

kX
j=1

�
j

i
(t)ajjexp tZ:x0 (3)

where: �Z
def
= supf�j� � " and exp tZ:x0 2 U for all jtj < �g

Proof

Lemma(4:5) shows that (3) is invariant under a change of the basis. Then
we choose for faig the vector �elds which form the basis of L(�1) obtained by
splitting of L. Moreover, let " as in the de�nition of N":x0

.
00 ) 00 We choose U as in x3.
1) It is checked by construction of vector �elds faig

2) Let Z 2 L. Then Z =
P

k

j=1 fjaj + b where b 2 G and fj 2 F(M ). We
obtain:

[Z; ai] =

kX
j=1

fj [aj; ai] + [b; ai]�

kX
j=1

ai(fj)aj

12



Since L is integrable at x0 and tZjx 2 L(x); 8x 2 N":x0
we have xt = exp tZ:x0 2

N":x0
and we obtain: [Z; ai]jxt =

P
k

j=1 �
j

i
(t)aj jxt for all jtj < �Z .

00( 00 We apply the Corollary(4:3)
a) We show that for all a1; a2 2 L(�1); [a1; a2]jexp ta1:x0 = 0, with jtj < " = �a1 .
We write the given relation for Z = a1 and ai = a2.
On one hand we have: [a1; a2] =

P
n

j=k+1 �j
@

@xj

on the other hand:
P

k

j=1 �
j

2(t)aj = �12(t)
@

@x1
+ � � �+�k2(t)

@

@xk
+
P

n

s=k+1�
s

2(t)
@

@xs

From [Z; ai]jexp tZ:x0 =
P

k

j=1 �
j

i
(t)ajjexp tZ:x0 we obtain: [a1; a2]jexp tZ:x0 = 0;

jtj < ".

b) We show that GjN":x0
= 0 Let X 2 G. We put Zi = X + ai and write:

[Zi; ai] = [X; ai]. Then, as above, we obtain: [X; ai]jexp tZi:x0 = 0; jtj < �Zi .
Obviously: [X;X]jexp tZi:x0 = 0. Then:

[X; (X + ai)]jexp t(X + ai):x0 = 0 or [Zi; X]jexp tZi:x0 = 0; jtj < �Zi

We can apply a formula from 3:2 ([St80]) and we obtain:

d

dt
X(xt) = DZi �Xjxt

(where xt = exp tZi:x0 and DZi is the jacobian matrix of Zi) with the initial
condition: X(u(0)) = X(x0) = 0 (recall that X 2 G). Using the theorem of
existence and unicity of the Cauchy problem, we obtain: Xjexp tZi:x0 = 0. But
then Zijexp tZi:x0 = (ai+X)jexp tZi:x0 = aijexp tZ:x0. So: exp tZi:x0 = exp tai:x0.
That means: Xjexp tai:x0 = 0, and jtj < �Zi = �X+ai = �ai = ". So: GjN":x0

= 0

Q.E.D. 2

We can also give a new proof of Theorem 6 from [St74]:

THEOREM 4.7 Let L be a smooth F(M )-module of vector �elds and L the
distribution generated. Let x0 2 M be a �xed point. Then L is punctually
integrable at x0 if and only if for every X 2 L there exist " > 0, a �nite set
fX1; : : : ; Xpg � L and continuous functions �ij : (�"; ") ! R (1 � i; j � p)

such that:
(a) The vectors X1jx0; : : : ; Xpjx0 span L(x0).

(b) For every t 2 (�"; ") and 1 � j � p, [X;Xi](xt) =
P

p

j=1 �ij(t)Xj(xt)

where xt = exp tX : x0
(c) The vectors Xi(xt) span L(xt).
Remark Here, " depends of X but there exists the point (c) that is a very
strong condition.
Proof

First we split the distribution: L = L(�1)�G. LetX = a� 2 L(�1). We apply
Lemma(4:5) and obtain a set fa1; : : : ; ak; Yk+1; : : : ; Ypg � L where fa1; : : : ; akg
are the vector �elds give by (1) and Y1; : : : ; Yp 2 G.

13



Using (b) from hypotesis we obtain the system (see also relations (2)):

[X;Yi](xt) =

pX
j=k+1

�ijYj jxt

Using again formula borrowed from 3:2 ([St80]) we obtain the di�erential
system:

d

dt
Yi(xt) =

pX
j=k+1

�ijYj jxt ; k + 1 � i � p

with initial conditions: Yi(x0) = 0 ; k+1 � i � p. So: Yi(xt) = 0; for all �" <

t < ". That means the dimension of L is constant on the integral curve of a�.
For every � we obtain an "(�) > 0 such that :

dimL(exp ta�:x0) = k ; for all jtj < "(�)

By a compactness argument we obtain an " > 0 such that "(�) � " > 0 for all
j�j = 1. Then we take F" and N":x0

as in x3 and the proof is complete.

Q.E.D. 2

In the case when the module is involutive, the punctual integrability is

solved by the following result:

PROPOSITION 4.8 If L is an involutive F(M )-module of smooth vector
�elds then L is punctually integrable at x0 2M if and only if GjN":x0

= 0.
Proof

For all u; v 2 L(�1) we have [u; v] 2 G (from involutivity and relations (2)).
So: [u; v]jexp tv:x0 = 0; jtj < ". Applying Corollary(4:3) we obtain the statement.

Q.E.D. 2

5 Local results

We can give local versions of Proposition(4:1) and Corollary(4:3) under the

condition that the hypotesis hold for all x0 2 M . But the following three

theorems are remarkable.

First Nagano's result ([Na66]) whose proof is immediate if we use Theorem

(4:4)

THEOREM 5.1 Let L be an analytic involutive F(M )-module of vector �elds.
Then the associated distribution L is locally integrable. 2

An equivalent statement is the case when L is an analytic R-Lie algebra of

vector �elds (see[Na66]).

The following theorem is due to Hermann (Theorem 2:2 in [Hen62]) but with a

proof invoking invariant distributions). Here we have two proofs (proof of

Theorem(5:2) and Corollary(5:5)).
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THEOREM 5.2 Let L be an involutive and �nitely-generated F(M )-module
of C1 vector �elds. Then the associated distribution L is locally integrable.
Proof

We apply Proposition(4:8) and it remains to prove that GjN":x0
= 0, for all

x0 2 M . Let x0 2 M , fa1; : : : ; ak; ak+1; : : : ; apg � L a set of generators for
L, where fa1; : : : ; akg are of the form (1) and ak+1; : : : ; ap 2 G. We have to
prove that: aijexp ta�:x0 = 0, for all k + 1 � i � p; a� 2 F" and �1 < t < 1.
Let ai =

P
n

j=k+1 aij
@

@xj
and fij(t) = aij(exp ta�:x0). We have fij(0) = 0. By

using the formula from (3:2) ([St80]), we obtain:

La�aijexp ta�:x0 =
P

n

j=k+1
_fij(t)

@

@xj
+Da�jexp ta�:x0 � aijexp ta�:x0

=
P

n

j=k+1(
_fij(t) +

P
n

s=k+1 �ijsfis)
@

@xj

On the other hand:

La�aijexp ta�:x0 =

pX
j=k+1

gijaj =

nX
s=k+1

pX
j=k+1

gijfjs
@

@xs

We obtain the system of di�erential equations:

_fij(t) =

pX
s=k+1

gisfsj �

nX
s=k+1

�ijsfis ; k + 1 � i � p; k+ 1 � j � n

By the theorem of existence and unicity of solution of Cauchy problem, we
obtain:

fij(t) � 0 �! aijexp ta�:x0 = 0 Q:E:D: 2

COROLLARY 5.3 If L is a F(M )-module of C1 vector �elds and x0 2 M

such that:
1) L1Ljx0 = Ljx0 ;
2) L1L is �nitely-generated;
then the distribution L generated by L is punctually integrable at x0
Proof

Since L1L is �nitely-generated module, it is integrable at x0. Let Nx0
denote

an integral manifold of L1L passing through x0. Applying the rank theorem we
obtain that there exists a neighborhood U of x0 such that:
dimL(x) � dimL(x0) = k, for all x 2 U . But L � L1L so:

k � dimL(x) = dimLjx � dimL1Ljx = dimTxNx0
= dimTx0Nx0

= dimL(x0) = k

=) dimL(x) = k; for all x 2 U \Nx0

Since L(x) � L1Ljx = TxNx0
we obtain: L(x) = TxNx0

, for all x 2 U \Nx0
.

Therefore Nx0
\ U is also an integral manifold of L. Q.E.D. 2
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Let Fx0
(M ) denote the ring of germs of C1 functions in x0. A normal form

of �nitely-generated involutive module is given by the Cerveau's theorem (this

theorem is the Theorem 1:1 from [Ce79], but here we give a new proof):

THEOREM 5.4 If L is an involutive �nitely-generated Fx0
(M )-module of

germs of vector �elds in x0 2M , then there exists a coordinate system (y1; : : : ; yn)

such that a system of generators for L is given by:

ai =
@

@yi
; 1 � i � k = dimLjx0

bi =

nX
j=k+1

gij
@

@yj
; k + 1 � i � p; p 2N

where: gij = gij(y
k+1; : : : ; yn) and gij(y

k+1
0 ; : : : ; yn0 ) = 0; k + 1 � i � p;

k + 1 � j � n, (g�0 )1���n are the new coordinates of x0.

COROLLARY 5.5 The distribution L generated by the module L as above, is
integrable at x0, an integral manifold being given by: yk+1 = yk+10 ; : : : ; yn = yn0 .
2

Note that by means of Theorem(5:4) we have obtained a new proof of Theorem(5:2).

Proof of Theorem

The case k=0 is obvious.
The case k=n: There exists a neighborhood U where the generated distribution
has constant dimension equal with n. Then the proof is obvious.
Let 1 � k � n and let fa1; : : : ; ak; ak+1; : : : ; apg be a set of generators like in
the proof of Theorem(5:2).
1. We will apply the 
ow-box theorem.
Let y1 = y1(x); z2 = z2(x); : : : ; zn = zn(x) be a coordinate system such that:
a1 =

@

@y1
. The other vector �elds will be modi�ed too:

a0i = a0i1
@

@y1
+

nX
j=2

a0ij
@

@zj
; 2 � i � p ; a0ij = a0ij(y1; z)

We consider the set of the generators of the form:

a1; bi = a0i � a0i1 � a1 =

nX
j=2

a0ij
@

@zj
; 2 � i � p

2. We will prove that we can �nd a set of generators:

a1; ai =

nX
j=2

aij
@

@zj
; 2 � i � p
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such that aij = aij(z) = aij(z2; : : : ; zn).

We have: [a1; bi] =
P

n

j=2

@a
0

ij

@y1
� @

@zj
2 L. So:

[a1; bi] =

pX
s=2

fisbs =

nX
j=2

(

pX
s=2

fisa
0
sj)

@

@zj
=)

@a0ij

@y1
=

pX
s=2

fija
0
sj

Explicitely, the system can be written in the following way:

@

@y1

2
64
a022 a

0
23 : : :a

0
2n

...
...

a0p2 a
0
p3 : : :a

0
pn

3
75 =

2
64

f22 � � � f2p
...

...
fp2 � � � fpp

3
75 �
2
64

a022 a
0
23 : : :a

0
2n

...
...

a0p2 a
0
p3 : : :a

0
pn

3
75

Each row is composed by the elements of the vector �elds bi. The solution of
the di�erential system is expressed by:

2
64

a022 � � � a02n
...

...
a0p2 � � � a0pn

3
75
�������� (y1;z)

= F �

2
64
a022 � � � a02n
...

...
a0p2 � � � a0pn

3
75
�������� (0;z)

;

F = exp

Z
y
1

0

2
64
f22 � � � f2p
...

...
fp2 � � � fpp

3
75
�������� (t;z)

dt

Let H = F�1 = (hij)2�i;j�p , because F is invertible. We rede�ne :

ai =

pX
j=2

hijbj =

nX
j=2

a0ij(0; z)
@

@zj
�

nX
j=2

aij(z)
@

@zj

So: fa1; aij2 � i � pg is a set of generators.
3. We rename the coordinates z with x (so: x2 = z2; : : : ; xn = zn) and
we apply the construction from x3 for L0 = spanFx0 (x2;:::;xn)faij2 � i � pg

( Fx0
(x2; : : : ; xn) being the ring of C1 germs of functions in the variables

(x2; : : : ; xn)). The dimension of L0jx0 is k � 1 (like vector subspace in Tx0M).
Now we apply again the described algorithm beginning with y2 = y2(x); z3 =

z3(x); : : : ; zn = zn(x). After a k-th application of the algorithm, we obtain the
statement. Q.E.D. 2

6 Conclusions

When we have a di�erentiable distribution we can distinguish three types of

analysis:
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1) Global integrability

2) Local integrability

3) Punctual integrability

The global study supposes the search of the maximal integral manifolds.

An important result (in C1 case) is given by the Theorem 4:1 from [Su73] due

to Sussmann. In the analytic case, Nagano's theorem solves the problem (see

in [Na66]). The connection between global and local integrability is given by

Theorem 4:2 due also to Sussmann (about the proof see the remark from x2).

In this paper we have not been interested in global study (the analysis of the

foliations with singularities or of the strati�cations) but in the other two points.

In the local study the results can be stated using germs of functions, vector

�elds, manifolds etc. . We have three interesting results: Nagano's theorem

(Theorem (5:1)) in the analytic case, Hermann's theorem (Theorem (5:2)) in

the smooth case (C1) and Theorem (5:4) that gives a complete characterization

of �nitely-generated, involutive module (also in C1 case).

The punctual study brings out many results: the criterion given by Corollary

(4:3), Theorem (4:6) (both in the C1 case) and the Theorem (4:4) (in the

analytic case). About the last one we have the following remark:

We consider that the initial object is the analytic module: Ob=L. To this

object we associate a module of vector �elds: DOb=L (again the initial object).

We carry on the iterative sequence:

Lk+1
def
= Lk + spanF(M )LDObL

k; for k � 0; L0 = Ob

(LDObL
k def
= fLXY = [X;Y ]jX 2 DOb; Y 2 Lkg)

Then L1 = L1L (by notation from Theorem (4:4)) and the theorem requires

that: L1jx0 = L(x0) for integrability.

The same tehnique can be applied for the study of the codistributions or of

the systems of k-forms too.
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