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ABSTRACT

We propose a Bayesian single channel speech enhance-
ment algorithm to exploit speech sparseness in the indepen-
dent component analysis (ICA) domain. While recent lit-
erature considers the idea of denoising in the ICA domain,
it relies on the unrealistic assumption of uncorelatedness of
noise components in the ICA domain. Here we drop this lim-
iting assumption and address the general case. The approach
consists of two elements: (1) a mazimum a posteriori (MAP)
estimator for speech coefficients in the ICA domain, further
used to estimate enhanced speech in the time domain, and
(2) ICA domain transformation of data, learned from speech
training data and then used in step (1). An implementation
of the method shows considerable noise reduction capability
in denoising speech keywords such as car navigation com-
mands. Evaluation is based on objective measures of signal-
to-noise ratio and distortion in enhanced signals versus the
real-world speech and noise mixtures from car, street, office,
industrial environments.

1. INTRODUCTION

Speech data admits sparse representations. Recent litera-
ture exploits this assumption informally by considering that
speech features have Laplacian priors, or furthermore by us-
ing independent component analysis (ICA) to derive features
for speech processing [1, 2, 3]. How can the sparseness as-
sumption be exploited in the design of algorithms for speech
enhacement?

Speech enhancement (SE) aims at suppressing noise and
improving the perceptual quality and intelligibility of speech
in speech-based human-machine interfaces [4]. Due to the
random nature of noise and the inherent complexities of
speech, the problem of reconstructing the clean voice from
noisy signal has been challenging researchers over the past
three decades. Todate, single channel techniques for noise
reduction are widely used due to their simplicity and ease
of implementation but offer little perspective for further
progress. A variety of theoretical and relatively effective
techniques have attempted to capitalize on specific charac-
teristics or constraints with varying degrees of success. Re-
cent literature addresses these approaches [4], such as spec-
tral subtraction [5], model based SE [6], noise masking [7]
etc.

On the other side, ICA is a relatively new technique pro-
posed to solve the problem of blind source separation [8] but
also recently applied to speech enhancement [9, 10]. ICA is a
statistical technique for revealing hidden factors underlying
sets of signals. In this model, data variables are assumed
to be mixtures of some unknown latent variables with un-
known mixing. The latent variables are assumed nongaus-
sian and jointly independent. Comparing with some com-
monly used transformations, such as discrete Fourier trans-
form, discrete cosine transform, and wavelet transform, ICA
is a data-driven transformation adapted to the structure of
clean speech data. In ICA domain, the speech signal is pro-
cessed uniformly in both amplitude and phase. SE algo-
rithms using ICA technique generally envolve a thresholding

operation, therefore the technique has the potential of lim-
ited musical noise.

Here, we develop a Bayesian single channel SE estimator
in the ICA domain. We derive the mazimum a posteriori es-
timator in the general case of possibly correlated ICA domain
noise components. In contrast, previous work [9, 10] unreal-
istically assumes uncorrelated noise components in the ICA
domain. Next we elaborate the algorithm for Bayesian single
channel SE in the ICA domain. Section 3 demonstrates the
noise reduction capability of the proposed algorithm in a se-
lection of real-world noisy data. Finally, Section 4 concludes
the work and highlights future possible extensions.

2. BAYESIAN SPEECH ENHANCEMENT
APPROACH

2.1 ICA Model for Speech Enhancement

Consider a time domain, additive-noise corrupted speech sig-
nal received at the microphone, x(m) = s(m) + n(m), where
m is the discrete time index, s(m) is the clean speech signal
and n(m) is an additive noise.

The first step in ICA-based algorithms is to segment the
received signals z(m) with a time-domain window and form
segments as columns of a matrix:

X =S+N, (1)

where matrices X, S and N have size M x K, M is the speech
frame size (in samples) and K is the number of frames.
Since speech signals are characterized by higher order
statistics [11], without loss of generality, we may assume that
clean speech signal is the linear mixture of some independent
components. ICA transforms a set of observed segments s =

[s1,82,---,5sm]7, each representing a column of the matrix

S introduced above, into a new representation ¢ = [¢1, ¢,
T

o]

¢c=W-:s (2)

where the components ¢;,1 < i < M of ¢ are jointly statis-
tically independent, and W is an M x M invertible matrix,
generally called demixing matrix. Finding the demixing ma-
trix is the subject of the next section. By applying W from
the left side to a column of each matrix in (1), we have:

Yy=Wx=Ws+Wn=¢+v (3)

where x and n are columns of matrices X and N, respec-
tively, v and v are the corrupted speech and noise segments
in the ICA domain corresponding to x and n. All the above
variables, x, n, v and v, are M X 1 vectors.

Let ¢ denote the estimate of ¢ in ICA domain when noise
is present. By applying the inverse transformation to ¢, we
obtain the enhanced speech segment vector, z, as

z=W'.¢ (4)

Our task is therefore to estimate ¢ given 4. A maximum a
posteriori algorithm is developed next.



2.2 MAP Estimator in ICA Domain

If noise n was Gaussian, v = Wn is also Gaussian. On the
other hand, if noise n is not Gaussian, v has a distribution
closer to a Gaussian than the distribution of each component
of n, according to the Central Limit Theorem. Therefore, we
assume that v has a Gaussian distribution.

The posterior p.d.f. of ¢ can be expressed via the Bayes
rule:

p(vls) - p(s) (5)

pshy) = =725

In this study, we assume that each component of the ICA
transformed speech data ¢ has Laplacian distribution, that
is, p(<i) = 53 exp (— 5
constants [2]. Taking into account that the components of ¢
are independent, we obtain the prior p.d.f. of ¢ in equation
5

), where \;, 1 < i < M are positive

p(s) = f[ % exp (Ji—') (6)

Furthermore, since v has Gaussian distribution,

M

p(rls) = (2m) ¥ - det”* (Rw)

(v — TRy <>} L

N | =

exp {,

where the notation det(A) is used for the determinant of a
matrix A, Ry is the covariance matrix of noise v in ICA
domain:

RU = WRnWT7 (8)
where Ry, is the covariance matrix of the time-domain noise
n.

For a uniform cost function, the MAP estimate of ¢ given
~ is the value of ¢ that maximizes p(s|vy):

<= arggmw[p(Cl'r)] = arggww[P(’Yk) P (9)
By using the probability density functions (6) and (7),

we have
|si]
i |

(10)

~det™2 (Ry) is a constant.

p(vls) - p(s) = C - exp {—%(7 —)"Ry (v —¢) - Z
where C = (Hgl i) . (27r)*%

The maximization problem in (9) is equivalent to the
following minimization problem:

M
. 1 B :
¢ = argmin | 5(y - )Ry (v =)+ %] (11)
i=1 7"

The derivative of (11) with respect to ¢ leads to

0=Ry'(y—¢)— diag (i) - sign(s) (12)

i=1,---M i

where sign(s) is a M x 1 vector and diag(5-) is an M x M

diagonal matrix with the ith diagonal element )\i

2.3 Approximate Estimator

There is no closed-form solution for (12). When M is larger
than 20, exhaustive numerical search requires 2™ sign com-
binations, which is impractical in computational complexity.
Iterative search approaches, such as Jacobi or Gauss-Seidel
types of iteration (see chapter 10.1 in [12]), are not practi-
cal due to both computational complexity and convergence
issues. Daubechies et al proposed an iterative thresholding
algorithm for the minimization problem (11) [13]. In this
paper, we follow a different approach by applying a compu-
tationally efficient approximation to the MAP estimate of
S.

When the input signal-to-noise ratio is moderate to high,
the noise v has little effect on ~, therefore,

il = lvi —vil = ||, 1<i< M. (13)

where 7; and v; are the ith element of v and v, respectively.
Substituting (13) into sign(s) = diag (ﬁ) ¢ and the
1,---,M v

result into (12), we have

_ 1 . 1
0=Ry,'(y—¢)— diag ()\_> ~1dzag (m) s (14)

1, M s M

Now it is very easy to find the maximum a posteriori
estimate of ¢ as the root of (14):

1 —1
s=|Ry - dia — | +1I - 15
{ Y (Ai : |%'|) } 7 (15)

where I is an M x M identity matrix.

Once we obtain the estimate of ¢, substituting it into
equation (4) gives the time-domain enhanced speech signals.
Finally, the enhanced waveform is obtained by reshaping the
enhanced speech signals from matrix to vector form. What
remains to be obtained are the demixing matrix W for ICA
transform, parameters \;,i = 1,--- , M required in the prob-
ability density function of the ICA transformed speech data
¢, and noise covariance matrix Ra required in obtaining Ry .
The first two will be learned from a large ensemble of clean
speech training frames, whereas R, can be estimated from
noisy data in the absence of speech by using a voice activity
detector (VAD). Figure 1 presents the block diagram of the
resulting single channel SE approach.

Training Speech | Estimate W and
A using ICA

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, TraningPart
Enhancement Part
Speech Analysis | x ICA MAPestimate | & | Reconstruction |z | Synthesis Enhanced
(Reshaping) Transform of ¢ (W™" - 3) (Reshaping) Speech

Rn

Voice Activity
Detection

Figure 1: Block diagram of the ICA-based Bayesian single
channel speech enhancement system.

2.4 Learning W and Estimating \;

Several practical methods for estimating the ICA basis are
presently used [14]. In our study, a robust and efficient prin-
ciple based on maxima of nongaussianity is employed to es-
timate the ICA model. Nongaussianity is measured by ne-
gentropy, a robust and in some sense optimal estimator the
nongaussianity. We apply a new nonquadratic function to
approximately measure the nongaussianity, defined by

G(&) = —(lg| + e +1 (16)



This is more robust than those defined in [14] and yields less
dependece between the ICA components.

After obtaining the demixing matrix W, we estimate
parameters \; required in equation (6) from speech train-
ing data. They are approximations of the densities of inde-
pendent components transformed from the test speech data.
Several experiments demonstrate that these approximations
model well the ICA transformed speech [15].

Parameters \; are estimated using the maximum likeli-
hood (ML) technique. For K observations of training speech
frames, the likelihood function of the i-th independent com-
ponent is

e =] grew{ S8 an)

7

where k is the index of observation, & = w? s“"*™ is one of

the independent components in vector & = Ws(!7%") with
demixing matrix W and reshaped training speech matrix
(train)
s .

Taking the derivative of the natural logarithm of (17)
with respect to \; leads to

dlnpEN) 1 [, '
o % (kZ_l € (k)| — K)\Z) ) (18)

Setting the result of (18) to zero forms the likelihood
equation. The ML estimate of \; is then:

1 K
Ai =25 kgl |§:(K)I- (19)

3. EXPERIMENTAL RESULTS

We analyze the noise reduction capability of the proposed
algorithm on real-world noisy data. The scenario of interest
is that of speech enhancement with respect to given speech
“keywords,” (e.g. navigation commands in a car) indepen-
dent of the actual speaker considered for testing.

We use eight different noise types: car, cafeteria, office,
industrial, radio, street, tv and vacuum cleaner. Each noise
type is superimposed with speech and scaled so that the
global input SNR of the corrupted waveform ranges from -
5 dB to 20 dB. For both training and testing, speech data
from the TIMIT database or mixture of speech and noise
data sampled at 16 kHz is windowed with a Hamming win-
dow in frames of size 50 samples (3.1msec) with 50% overlap
between successive segments.

For learning the ICA model we use speech sentences from
four different speakers. The demixing matrices W for each
speaker are learned from two sentences with total length of
about six seconds, by means of the FastICA algorithm [16],
augmented with the nongaussianity function given by equa-
tion (16). The stopping criterion value of the iterative Fas-
tICA code is 0.0001, while the initial point for W is identity.

For each noise type, eight experiments are carried out
(see Table 1) where clean speech representing the keywords
is used to train for W and noisy speech from a different
speaker is used to test the denoising capability of the sys-
tem. ’F1’, ’F2’, M1’ and 'M2’ respresent two female and
male speakers, respectively. 'SA1’ and 'SA2’ represent two
different TIMIT sentences with the desired keywords. There-
fore, in all experiments the training data is uncorrelated to
the testing data.

The noise correlation Ry, required in (8) for computing
Ry in (15) is obtained from the covariance of reshaped noise
matrix N, which is obtained using an AMR VAD component
[17].

Test Cases 1 | 2 | 3 | 4
Train Data F1-SA1 + F1-SA2

Test Data | F2-SA1 | F2-SA2 | M1-SA1 [ MI-SA1
Test Cases 5 | 6 | 7 | 8
Train Data M1-SA1 + M1-SA2

Test Data | FI-SAL | FI-SA1 | M2-SA1 | M2-SA1

Table 1: Train and test data used in experiments.

Figures 2-3 present three objective speech quality criteria
(global SNR, segmental SNR, and Itakura distance [4]) used
to evaluate the performance of the proposed algorithm. Each
row in the two figures represents results for one criterion.
Figure 2 plots the measures for the enhanced speech. Figure
3 plots the difference between the enhanced speech and the
input measures.

The first row presents the average global SNR. The al-
gorithm yields high improvement in car, street and vacuum
cleaner noise environments. For example, at -5 dB input
global SNR, the SNR improvement is about 11.4 dB, 8 dB
and 4.4 dB for these three noise types. The enhancement is
about 1 dB on speech corrupted by cafeteria, industrial and
radio noises. The algorithm provides little improvement in
office and tv environments.

The second row illustrates segmental SNR results (see
[4], equation 9.7, with SNR thresholds of -20 dB and +20
dB for the lower and upper bounds). The plot confirms
our previous observation. Since segmental SNR is better
correlated with speech intelligibility than the global SNR,
we order the performance of the algorithm for different noise
types based on this criterion. From highest improvement to
lowest improvement, the order is car, street, vacuum cleaner,
cafeteria, radio, industrial, tv, and office.

The third row shows the Itakura distance measure ([4],
equation 5.191). This is a distortion measure, with a low
value being better. The algorithm shows a reduction in dis-
tortion, naturally smaller for higher input SNR. The method
reduces distortion by more than 50% in most environments.

Overall, the algorithm is promising in reducing real-
world noise although its capability varies for different noises.
Among the noise types studied, the algorithm provides the
best overall performance for reducing car, street and home
noises. With respect to computational load, one of the most
time-consuming tasks of the algorithm is the learning of the
demixing matrix W, which can be computed offline only
once.

4. CONCLUSIONS

This paper addresses the use of the speech sparseness as-
sumption in the design of algorithms for speech enhacement.
We propose a Bayesian single channel SE algorithm in the
ICA domain. Speech frames are decoupled into independent
components by a demixing matrix obtained by applying ICA
to a large ensemble of clean speech training frames. The
transformation facilitates the application of a maximum a
posteriori criterion, whose solution can rely on sparseness
assumptions. While recent literature on ICA SE relies on
the unrealistic assumption of uncorelatedness of noise com-
ponents in the ICA domain, we address the general case.
Simulation results show that the proposed enhancement ap-
proach is able to reduce several types of real-world noises
significantly with respect to objective quality measure crite-
ria.

Present work is focused on a comparison with state-of-
the-art mono noise reduction approaches, and ICA SE when
training and testing are done on speech from same person
with no limits on the vocabulary. For future work we suggest
the optimization of parameters (criterion 10) using alternate
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Figure 2: Objective quality measures: (1) Avg. SNR; (2)
SegSNR; (3) Itakura; Grey bars represent various types of
noises. X axis: -5, 0, 5, 10, 15, 20 dB input SNR.

algorithms such as the one in [13], and online implementa-
tions where Ry is updated online.
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