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ABSTRACT

We present a real-time version of the DUET algorithm for
the blind separation of any number of sources using only
two mixtures. The method applies when sources are W-
disjoint orthogonal, that is, when the supports of the win-
dowed Fourier transform of any two signals in the mixture
are disjoint sets, an assumption which is justified in the Ap-
pendix. The online algorithm is a Maximum Likelihood
(ML) based gradient search method that is used to track the
mixing parameters. The estimates of the mixing parameters
are then used to partition the time-frequency representation
of the mixtures to recover the original sources. The tech-
nique is valid even in the case when the number of sources
is larger than the number of mixtures.

The method was tested on mixtures generated from dif-
ferent voices and noises recorded from varying angles in
both anechoic and echoic rooms. In total, over 1500 mix-
tures were tested. The average SNR gain of the demixing
was 15 dB for anechoic room mixtures and 5 dB for echoic
office mixtures. The algorithm runs 5 times faster than real
time on a 750MHz laptop computer. Sample sound files can
be found here:

http://www.princeton.edu/˜srickard/bss.html

1. INTRODUCTION

In [1] a blind source separation technique was introduced
that allows the separation of an arbitrary number of sources
from just two mixtures provided the time-frequency repre-
sentations of sources do not overlap. The key observation
in the technique is that, for mixtures of such sources, each
time-frequency point depends on at most one source and its
associated mixing parameters. In anechoic environments, it
is possible to extract the estimates of the mixing parame-
ters from the ratio of the time-frequency representations of
the mixtures. These estimates cluster around the true mix-
ing parameters and, identifying the clusters, one can par-
tition the time-frequency representation of the mixtures to
produce the time-frequency representations of the original
sources.

The original DUET algorithm involved creating a two-
dimensional (weighted) histogram of the relative amplitude
and delay estimates, finding the peaks in the histogram, and
then associating each time-frequency point in the mixture
with one peak. The original implementation of the method
was offline and passed through the data twice; one time to
create the histogram and a second time to demix. In this pa-
per, we present an online version of the DUET algorithm
which avoids the need for the creation of the histogram,
which in turn avoids the computational load of updating the
histogram and the tricky issue of finding and tracking peaks.
The online DUET advantages are,

� online (5 times faster than real time),

� 15 dB average separation for anechoic mixtures,

� 5 dB average separation for echoic mixtures, and

� can demix > 2 sources from 2 mixtures.

In Section 2 we define the time delay mixing model, ex-
plain the concept of W-disjoint orthogonality, and describe
the mixing parameter tracking procedure. In Section 3 we
describe the demixing method used for each algorithm. Sec-
tion 4 describes the mixing tests and gives detailed demix-
ing results. Justification for the W-disjoint orthogonality as-
sumption can be found in Appendix A, and Appendix B
contains the ML objective function derivation.

2. MIXING PARAMETER ESTIMATION

2.1. Source mixing

Consider measurements of a pair of sensors where only the
direct path is present. In this case, without loss of generality,
we can absorb the attenuation and delay parameters of the
first mixture, x1(t), into the definition of the sources. The
two mixtures can thus be expressed as,

x1(t) =
NX
j=1

sj(t); (1)

x2(t) =
NX
j=1

ajsj(t � �j); (2)
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where N is the number of sources, �j is the arrival delay
between the sensors resulting from the angle of arrival, and
aj is a relative attenuation factor corresponding to the ratio
of the attenuations of the paths between sources and sensors.
We use � to denote the maximal possible delay between
sensors, and thus, j�j j � �; 8j.

2.2. Source Assumptions

We call two functions s1(t) and s2(t) W-disjoint orthogo-
nal if, for a given windowing function W (t), the supports
of the windowed Fourier transforms of s1(t) and s2(t) are
disjoint. The windowed Fourier transform of sj(t) is de-
fined,

F
W (sj (�))(!; � ) =

Z
1

�1

W (t� � )sj(t)e
�i!t

dt; (3)

which we will refer to as Sj(!; � ) where appropriate. The
W-disjoint orthogonalityassumption can be stated concisely,

S1(!; � )S2(!; � ) = 0; 8!; �: (4)

In Appendix A, we introduce the notion of approximate W-
disjoint orthogonality. When W (t) � 1, we use the follow-
ing property of the Fourier transform,

F
W (sj(� � �))(!; � ) = e

�i!�
F
W (sj(�))(!; � ): (5)

We will assume that (5) holds for all �, j�j � �, even when
W (t) has finite support[2].

2.3. Amplitude-Delay Estimation

Using the above assumptions, we can write the model from
(1) and (2) for the case with two array elements as,

�
X1(!; �)
X2(!; �)

�
=

�
1 : : : 1

a1e
�i!�1 : : : aNe

�i!�N

�264
S1(!; �)

...
SN (!; �)

3
75

(6)

For W-disjoint orthogonal sources, we note that at most one
of the N sources will be non-zero for a given (!; � ), thus,�

X1(!; � )
X2(!; � )

�
=

�
1

aje
�i!�j

�
Sj(!; � ); for some j.

(7)

The original DUET algorithm estimated the mixing param-
eters by analyzing the ratio of X1(!; � ) and X2(!; � ). In
light of (7), it is clear that mixing parameter estimates can
be obtained via,

(â(!; �); �̂(!; �)) =

�����X2(!; �)

X1(!; �)

���� ; 1! Im

�
ln

�
X1(!; �)

X2(!; �)

���
:

(8)

The original DUET algorithm constructed a 2-D histogram
of amplitude-delay estimates and looked at the number and
location of the peaks in the histogram to determine the num-
ber of sources and their mixing parameters. See [1, 3] for
details.

2.4. ML Mixing Parameter Gradient Search

For the online algorithm, we take a different approach. First,
note that,

jX1(!; � )aje
�i!�j �X2(!; � )j

2 = 0; (9)

if source j is the active source at time-frequency (!; � ).
Moreover, defining,

�(aj ; �j; !; � )
:
=

1

1 + a2j
jX1(!; � )aje

�i!�j �X2(!; � )j
2
;

(10)

we can see that,X
!

min(�(a1; �1; !; � ); : : : ; �(aN ; �N ; !; � )) = 0; (11)

because at least one � term will be zero at each frequency.
In Appendix B, it is shown that the maximum likelihood
estimates of the mixing parameters satisfy,

min
a1;�1;::: ;aN ;�N

X
!

min(�1; : : : ; �N ); (12)

where we have used �j as shorthand for �(aj ; �j; !; � ). We
perform gradient descent with (12) as the objective function
to learn the mixing parameters. In order to avoid the discon-
tinuous nature of the minimum function, we approximate it
smoothly as follows,

min(�1; �2) =
�1 + �2 � j�1 � �2j

2
(13)

�
�1 + �2 � �(�1 � �2)

2
(14)

=
�1

�
ln(e���1 + e

���2 ); (15)

where,

�(x) =

Z x

0

1� e��t

1 + e��t
dt = x+

2

�
ln(1 + e

��): (16)

Generalizing (15), the smooth ML objective function is,

J(� ) = min
a1 ;�1;::: ;aN ;�N

X
!

�
1

�
ln(e���1 + � � �+ e

���N );

(17)
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which has partials,

@J(� )

@�j
=
X
!

e���jP
k e
���k

�2!aj
1 + a2j

ImfX1(!; � )X2(!; � )e
�i!�jg;

(18)

and,

@J(�)

@aj
=

P
!

e
���j

P
k e
���k

2

(1+a2
j
)2
�

(((a2j � 1)RefX1(!; �)X2(!; �)e
�i!�j

g

+aj(jX1(!; �)j
2 + jX2(!; �)j

2)): (19)

We assume we know the number of sources we are search-
ing for and initialize an amplitude and delay estimate pair to
random values for each source. The estimates (aj [k]; �j[k])
for the current time �k = k�� (where �� is the time sep-
arating adjacent time windows) are updated based on the
previous estimate and the current gradient as follows,

aj[k] = aj [k � 1]� ��j [k]
@J(�k)

@aj
; (20)

�j [k] = �j [k � 1]� ��j[k]
@J(�k)

@�j
; (21)

where � is a learning rate constant and �j [k] is a time and
mixing parameter dependent learning rate for time index k
for estimate j. In practice, we have found it helpful to adjust
the learning rate depending on the amount of mixture energy
recently explained by the current estimate. We define,

qj[k] =
X
!

e���(aj ;�j ;!;�k)P
l e
���(al ;�l;!;�k)

jX1(!; �k)j jX2(!; �k)j;

(22)

and update the parameter dependent learning rate as fol-
lows,

�j [k] =
qj[k]Pk

m=0 

k�mqj[m]

; (23)

where 
 is a forgetting factor.

3. DEMIXING

In order to demix the jth source, we construct a time-frequency
mask based on the ML parameter estimator (see (33) in Ap-
pendix B),


j(!; �) =

�
1 �(aj ; �j; !; �) � �(am; �m; !; �) 8m 6= j

0 otherwise
(24)

The estimate for the time-frequency representation of the
jth source is,

Ŝj(!; � ) = 
j(!; � )X1(!; � ): (25)

We then reconstruct the source using the appropriate dual
window function[4]. In this way, we demix all the sources
by partitioning the time-frequency representation of one of
the mixtures. Note that because the method does not invert
the mixing matrix, it can demix all sources even when the
number of sources is greater than the number of mixtures
(N > M ).

4. TESTS AND SUMMARY

We tested the method on mixtures created in both an ane-
choic room and an echoic office environment. The algo-
rithm used parameters � = 0:02; 
 = :95; � = 10 and a
Hamming window of size 512 samples (with adjacent win-
dows separated by 128 samples) in all the tests. For all tests,
the method ran more than 5 times faster than real time.

For the anechoic test, the setup is pictured in Figure 1.
Separate recordings at 16kHz were made of six speech files
(4 female, 2 male) taken from the TIMIT database played
from a loudspeaker placed at the X marks in the figure. Pair-
wise mixtures were then created from all possible voice/angle
combinations, excluding same voice and same angle com-
binations, yielding a total of 630 mixtures (630 = 6� 5 �
7� 6=2).
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100o

160o

10o
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2
 

Fig. 1. Experimental setup. Microphones are separated by
�1.75 cm centered along the 180o to 0o line. The X’s show
the source locations used in the anechoic tests. The O’s
show the locations of the sources in the echoic tests.

The SNR gains of the demixtures were calculated as fol-
lows. Denote the contribution of source j on microphone k
as Sjk(!; � ). Thus we have,

X1(!; � ) = S11(!; � ) + S21(!; � ) (26)

X2(!; � ) = S12(!; � ) + S22(!; � ) (27)

As we do not know the permutation of the demixing, we
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calculate the SNR gain conservatively,

SNR1=max

�
10 log

k
1S11k
2

k
1S21k
2
; 10 log

k
2S12k
2

k
2S22k
2

�
�

max

�
10 log

kS11k
2

kS21k
2
; 10 log

kS12k
2

kS22k
2

�

SNR2=�min

�
10 log

k
1S11k
2

k
1S21k
2
; 10 log

k
2S12k
2

k
2S22k
2

�
+

min

�
10 log

kS11k
2

kS21k
2
; 10 log

kS12k
2

kS22k
2

�

In order to give the method time to learn the mixing param-
eters, the SNR results do not include the first half second of
data.

Figure 2 shows the average SNR gain results for each
angle difference. For example, the 60 degree difference re-
sults average all the 10-70, 40-100, 70-130, 100-160, and
130-190 results. Each bar shows the maximum SNR gain,
one standard deviation above the mean, the mean (which
is labeled), one standard deviation below the mean, and the
minimum SNR gain over all the tests (both SNR1 and SNR2

are included in the averages). The separation results im-
prove as the angle difference increases. Figure 3 details
the 30 degree difference results by angle comparison, av-
eraging 30 tests per angle comparison. The performance is
a function of the delay. That is, the worst performance is
achieved for the smallest delay (corresponding to the 160-
190 mixtures), the second worst performance is achieved
for the second smallest delay (corresponding to the 10-40
mixtures), and so forth.
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Fig. 2. Comparison of overall separation SNR gain by angle
difference. Anechoic data.

Recordings were also made in an echoic office with re-
verberation time of �500 ms, that is, the impulse response
of the room fell to -60 dB after 500 ms. For the echoic tests,
the sources were placed at 0, 90, 120, 150, and 180 degrees
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Fig. 3. Overall separation SNR gain by 30 degree angle
pairing. Anechoic data.

(see the O’s in Figure 1). Separation results for pairwise
mixtures of voices (4 female, 4 male) are shown in Figure 5.
Separation results for pairwise mixtures of voices (4 female,
4 male) and noises (line printer, copy machine, and vacuum
cleaner) are shown in Figure 4. The results are consider-
ably worse in the echoic case, which is not surprising as the
method assumes anechoic mixing. However, the method
does achieve 5 dB SNR gain on average and is real-time.
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Fig. 4. Comparison of overall separation SNR gain by angle
difference. Echoic office data. Voice vs. Noise.

Summary results for all three testing groups (anechoic,
echoic voice vs. voice, and echoic voice vs. noise) are
shown in the table. We have presented a real-time version
of the DUET algorithm which uses gradient descent to learn
the anechoic mixing parameters and then demixes by parti-
tioning the time-frequency representations of the mixtures.
We have also introduced a measure of W-disjoint orthogo-
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Fig. 5. Comparison of overall separation SNR gain by angle
difference. Echoic office data. Two Voices.

AVV EVV EVN

number of tests 630 560 480
mean SNR gain (dB) 15.31 5.09 4.41
std SNR gain (dB) 5.69 3.34 2.87

max SNR gain (dB) 25.65 15.18 14.61
min SNR gain (dB) -0.21 -0.42 -0.50

Table 1. Results Summary. AVV = Anechoic Voice vs.
Voice. EVV = Echoic Voice vs. Voice. EVN = Echoic
Voice vs. Noise

nality and provided empirical evidence for the approximate
W-disjoint orthogonality of speech signals.

A. W-DISJOINT ORTHOGONALITY OF SPEECH

Clearly, the W-disjoint orthogonality assumption is not ex-
actly satisfied for our signals of interest. We introduce here
a measure of W-disjoint orthogonality for a group sources
and show that speech signals are indeed nearly W-disjoint
orthogonal to each other. Consider the time-frequency mask,

�12
x (!; � ) =

�
1 20 log(jS1(!; � )j=jS2(!; � )j) > x

0 otherwise
(28)

and the resulting energy ratio,

r(x) = k�12
x (!; � )S1(!; � )k

2
=kS1(!; � )k

2
; (29)

which measures the percentage of energy of source 1 for
time-frequency points where it dominates source 2 by x dB.
We propose r(x) as a measure of W-disjoint orthogonal-
ity. For example, Figure 6 shows r(x) averaged for pairs
of sources used in the demixing tests. We can see from the

graph that r(3) > :9 for all three, and thus say that the sig-
nals used in the tests were 90% W-disjoint orthogonal at 3
dB. If we can correctly map time-frequency points with 3
dB or more single source dominance to the correct corre-
sponding output partition, we can recover the 90% of the
energy of the original sources. The figure also demonstrates
the W-disjoint orthogonality of six speech signals taken as
a group and the fact that independent Gaussian white noise
processes are less than 50%W-disjoint orthogonal at all lev-
els.
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Fig. 6. W-Disjoint Orthogonality. The signals used in the
tests were 90%W-disjoint orthogonal at 3 dB and more than
80%W-disjoint orthogonal at 10 dB. Comparing one source
to the sum of five others, we still have more than 75% W-
disjoint orthogonality at 3 dB. Independent Gaussian white
noise processes are less than 50% W-disjoint orthogonal at
all levels.

B. ML ESTIMATION FOR DUET MODEL

Assume a mixing model of type (1)-(2) to which we add
measurement noise:

X1(!; �) =
NX
j=1

qj(!; �)Sj(!; �) + �1(!; �) (30)

X2(!; �) =
NX
j=1

aje
�i!�j qj(!; �)Sj(!; �) + �2(!; �) (31)

The ideal model (1)-(2) is obtained in the limit �1; �2 !
0. In practice, we make the computations assuming the
existence of such a noise, and then we pass to the limit.
We assume the noise and source signals are Gaussian dis-
tributed and independent from one another, with zero mean
and known variances:�

�1(!; � )
�2(!; � )

�
� N (0; �2I2)
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Sj(!; � ) � N (0; �j(!))

The Bernoulli random variables qj(!; � )’s are NOT in-
dependent. To accommodate the W-disjoint orthogonality
assumption, we require that for each (!; � ) at most one of
the qj(!; � )’s can be unity, and all others must be zero. Thus
the N -tuple (q1(!; � ); : : : ; qN (!; � )) takes values only in
the set

Q = f(0; 0; : : : ; 0); (1; 0; : : : ; 0); : : : ; (0; 0; : : : ; 1)g

of cardinality N + 1. We assume uniform priors for these
R.V.’s.

The short-time stationarity implies different frequencies
are decorrelated (and hence independent) from one another.
We use this property in constructing the likelihood. The
likelihoodof parameters (a1; �1; : : : ; aN ; �N ) given the data
(X1(!; � ); X2(!; � )) and spectral powers �2, �j(!) at a
given � , is given by conditioning with respect to qj(!; � )’s
by:

L(a1; �1; : : : ; aN ; �N ; �)

:= p(X1(�);X2(�)ja1; �1; : : : ; aN ; �N ; �; �2; �j)

=
Y
!

NX
j=0

exp f�Mg

�2 det(�2I2 + �j(!)�j(!))
p(qj(!; �) = 1) (32)

where:

M =
h
X1(!; �) X2(!; �)

i
(�2I2 + �j(!)�j(!))

�1

�
X1(!; �)
X2(!; �)

�

and

�j =

�
1

aje
�i!�j

� �
1 aje

i!�j
�
=

�
1 aje

i!�j

aje
�i!�j a2j

�

and we have defined q0(!; � ) = 1�
PN

k=1 qk(!; � ), �0(!) =
0, and �0(!) = I2 for notational simplicity in (32) in deal-
ing with the case when no source is active at a given (!; � ).

Next the Matrix Inversion Lemma (or an explicit com-
putation) gives:

�M = �
1

�2
1

�2 + �j(!)(1 + a2j )
�

(�j(!)jaje
�i!�jX1(!; �)�X2(!; �)j

2 +

�
2(jX1(!; �)j

2 + jX2(!; �)j
2))

and

det(�2I2 + �j(!)�j(!)) = �
2(�2 + �j(!)(1 + a

2
j ))

Now we pass to the limit � ! 0. The dominant terms from
the previous two equations are:

�
1

�2

jaje
�i!�jX1(!; � )�X2(!; � )j2

1 + a2j

and

�
2
�j(!)(1 + a

2
j)

Of the N + 1 terms in each sum of (32), only one term is
dominant, namely the one of the largest exponent. Assume
� : ! 7! f0; 1; : : : ; Ng is the selection map defined by:

�(!) = k ; if �(ak; �k; !; � ) � �(aj ; �j; !; � ) 8j 6= k

(33)

where:

�(a0; �0; !; � ) = jX1(!; � )j
2 + jX2(!; � )j

2

and for k 2 f1; 2; : : : ; Ng:

�(ak; �k; !; � ) =
jaje

�i!�jX1(!; � )�X2(!; � )j2

1 + a2j

Then the likelihood becomes:

L(a1; �1; : : : ; aN ; �N ; � ) =

C

�2M

NY
k=0

Y
!2��1(k)

tk exp

�
�
�(ak ; �k; !; � )

�2

�
(34)

with M , the number of frequencies and:

tk =

(
1
�2

k = 0
1

�k(!)(1+a
2

k
)

k 2 f1; 2; : : : ; Ng

The dominant term in log-likelihood remains the exponent.
Thus:

logL � �
1

�2

NX
k=0

X
!2��1 (k)

�(ak; �k; !; � ) (35)

and maximizing the log-likelihood is equivalent to the fol-
lowing (which is (12)):

min
a1;�1;::: ;aN ;�N

X
!

min(�(a1; �1; !; � ); � � � ; �(aN ; �N ; !; � ))
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