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Abstract.

The purpose of this paper is to study the motion of a spinless axisymmentric rigid body in a New-
tonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian
orbit. In this case the system can be reduced to a Hamiltonian system with configuration space
a two-dimensional sphere. We prove that the restricted planar motion is analytical nonintegrable
and we find horseshoes due to the eccentricity of the orbit. In the case Is/I1 > 4/3, we prove that
the system on the sphere is also analytical nonintegrable.
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1. Introduction

The purpose of this paper is to study the integrability of a Hamiltonian dynamical
system associated to the motion of a rigid body in a central gravitational field. We
prove that the spinless axisymmetric rigid body, which is completely integrable
in an uniform field (the Lagrange case), is analytical nonintegrable in a central
gravitational field and a chaotic motion of the internal rotation occurs.

In the restricted three-body problem there have been published many papers,
starting with Poincaré 1890 (Poincaré, 1899) to the more recently textbooks such
as (Szebehely, 1967) or (Marchal, 1990). On the other hand, the chaotic motion of
a rigid body (namely the existence of horseshoes and Arnold diffusion) has been
studied for some mechanical systems as in (Holmes et al., 1983) or (Gray et al.,
1992).

The rigid body problem in celestial mechanics appeared with the paper by
Duboshin in 1958 ((Duboshin, 1958)). Meantime there have been published many
papers following two directions: in one direction the complete interaction between
the motion of the centers of mass and the attitude motion (i.e. the motion around
the center of mass) has been considered and the studies have concerned, primary,
the existence and stability analysis of special solutions (see for instance (Eremenko,
1983), (Cid et al., 1985) or (Wang et al., 1992)); in another direction, the motion
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2 Radu Balan

of the CM has been decoupled from the attitude motion and usually just the
first correction in the attitude motion has been kept (see for instance the study
of (Beletskii, 1966) or the papers of (Teofilatto et al., 1992) or (Celletti et al.,
1992)).

Our study follows the second direction and the CM is supposed to move on
an unperturbed Keplerian orbit. We also suppose to have an axisymmetric rigid
body without spinning. This will simplify enough the equation of motions so that
we will be able to handle these equations to prove the chaotic behaviour of the
solution.

2. The Statement of the Problem

Suppose we have a rigid body m in a central gravitational field (i.e. of the form
—1/r) whose center of attraction (O) is supposed to be a point-like (or homoge-
neous spherical) mass M.

To describe the rigid body we use two coordinate systems whose origins are
at the center of attraction: one fixed called the fixed system (&, 7, () and another
corresponding to the principal axes of the body (i.e. in which the tensor of internal
momenta diagonalizes), called the body system with coordinates (z,y,z) - see
fig.1. The transition from a coordinate system to another is given by a 3 x 3
matrix from SO(3) denoted A so that 22 + 3% + 22 = €2 +n? + (2 = r2. Thus the
configuration space of the body is K = R? x SO(3). We denote by G the constant
of attraction.

The potential energy is given by the MacCallagh’s formula (see (Goldstein,
1980)) and the kinetic energy is obtained via Koenig’s theorem. By adding these
two energies we get the Hamiltonian H, which is a function defined on the cotan-
gent boundle to the manifold K, H : T*K — R given by:

p +p +p2 2 2 2
H ===+ 2}1 + 2;2 + ot 213 —Gim 1 GB(5 N + Gl + 5 13)— (1)

—(L + I + I3)] + O(G4)

The phase space will be T*K parametrized by (&,7,(, 4; pg,pn,pc,ll,lg,ld) (see
(Holmes et al., 1983)) where (pe, py, pC) are the components in the fixed system of
the CM 11near momentum (pg = mé, Py = ma, pc = m¢) and (Iy,1lz,13) are the
components in the body system of the internal angular momentum (i.e. the rigid
body angular momentum with respect to the CM).

Now we make our assumptions:

A1. The attitude motion does not influence the motion of the CM;

A2. The higher order terms in the Hamiltonian are negligible;

A3. The body is axisymmetric: [y = Iy # I3 ;

AA4. The body is without spinning: I3 =0
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HORSESHOES AND NONITEGRABILITY IN THE RIGID BODY MOTION 3

Fig. 1. The fixed and rigid body frames.

The first assumption says that the state space of the attitude motion is SO(3)
and the motion of the CM is given by an unperturbed Keplerian orbit that can be
parametrized be:

& = rcosv

n = rsinv (2)
¢=20
and:
1 1
o= ;(l—kacosv) (3)
r?y = C (4)
GMp = C? (5)

where: v is the true anomaly (is the planar angle measured between the position
vector and the apocenter vector), p is the parameter of the orbit, & the eccentricity
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4 Radu Balan

and C' the constant of areas. We shall consider only the cases 0 < ¢ < 1, namely
the circular and elliptic orbits. Then, from (4) and (5) we see that we can invert
the dependency v = v(t) into ¢t = ¢(v) and:

d C d
e _+“a 6
dt r2dv (6)

The second assumption tells us that we can neglect the term O(T%) in the
Hamiltonian. Even more, since the terms containing only r give no contribution
to the equation of the attitude motion, we can cancel them from the Hamiltonian.
Thus, after the first two assumptions, the equivalent Hamiltonian for the attitude
motion is given by:

2

l2 l2 12 M 2 2
1, b b M, Y+ (7)
T T

HQ(A;llal%lfS;t):Q_Il E+2—I3+ 53 (r_2

where (z,y, z) are connected with (£,7,¢) via A(t).
Using the third assumption, the Hamiltonian turns into:

3GM

- 13+ 13 N 3 3GM
o 2r3

H Bt
2T o T2 2b

(I — I3)2% +

L (8)

Since it is invariant under the rotation around the z-axis, it follows that I3 is a
constant of motion. Our study concerns the case I3 = 0, i.e. the spinless rigid
body. Because of this symmetry we can reduce the system to the quotient space
SO(3)/SO(2) ~ S? and we get a Hamiltonian system on T*S? with configuration
space a 2-dimensional sphere. To do this, we use the Euler’s angles (¢, 6, V) and
the Euler parametrization of SO(3) - see fig.2. Then, the reduced Hamiltonian
defined on T*S? x R takes the form:

1 —cos2(® —v)
2

2 2
j&) Do 3GM )
Hred(q)a 0; pa, po; t) = 72[1811120 2—11 - W(Il — [3)811129

(9)

and the problem is to study the (analytic) integrability of this Hamiltonian sys-
tem.

We mention that the system has two singular points on the sphere, namely
0 = 0 and 6 = 7 (the north and south poles), and this is due to the Euler’s
parametrization of the SO(3).
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Fig. 2. The Euler’s angles.

3. The Analysis of the Hamiltonian System on the Sphere

As we have seen before, our problem can be reduced on T*5? x R with the Hamil-
tonian (9). The canonical equations can be written now as:

(i) _ OH _ _ps
K 6P<1> I1sin26
0 = O0H __ po

Opg __ § 1
po = — % = 3GL(T) — I3)sin?Osin 2(P — v) (10)

; OH cosf | 3GM : 1—cos2(®—v
Dg =~ = pf{zsm39 + 55 (I1 — I3) sin 2972( )

Now we prefer to change the time variable to v using (6) and (3). Even more, we
make a change of variable: ¢ = 2(® — v). Then (10) is brought into the following

form:
de _ 2r2 ps _9
dv CI1 sin20
do

dv — C[1p0 (11)
dgf = 3261%4(11 ]3)82'7129 sin ¢

2 2

dpg _ r? pe-cosf 3GM B . 1—cosg
dv — CIi sin30 + 2C (II 13)811120 5
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There are two zeros of the vector field given by:
™ CIl
27 72

™ CIl
_P]_:(O7 0) y P2:(7T,§,?.’0) (12)
where P = (¢,0,pa, pg) is the parametrization of T*S2.
On the general case, when the CM is moving on an elliptic orbit, we have the
following result:

LEMMA 1. The following manifold:
Miny = {0 = ,p = 0} C T°S? (13)

is an invariant manifold for (11). Even more, My, is diffeomorphic equivalent
with T*S'. O

This fact comes from a very simple checking of the second and fourth equations
of (11). On the other hand, the above manifold is invariant in both circular and
elliptic motions of the CM so that this is an important information about the flow.
Also we can see that P, Py € M;n,. The motion restricted to M;y, represents the
planar motion case of the rigid body.

Now we are able to define the unperturbed and perturbed systems.

The unperturbed system is given by (11) when the CM has a circular motion.
The perturbed system is (11) when the CM has an elliptic motion. Thus, the
eccentricity € plays the role of a perturbation parameter. Using (3), the system
(11) turns into:

x’ = f(x)+€g(xava€) (14)

where 7" = (0,0, pg,pg) € T*S? is the state vector and f, g are vector fields given
by:

2> po_ _ 9
CI sigLQH

p
T) = o1, Po . 5
e %(h — I3)sin?@sin ¢ (15)

2 2
b~ pe-cos®  3GM in 99 L=cos¢
CI; sin36 + 2pC (Il I3) sin 260 5

and:
__ 2p? pg cos v(2+e cos v)
CTi sin26(1+4e cosv)?
p® pp cos v(2+e cosv)
— B PoCOSUVIZTECOSY)
g(iL‘,’U,é‘) — I CIi  (1+ecosw) (16)

S (I — I3)sin20 cos v sin
2 2 2 . _
p? pe~ cos b cosv(2+e cosv) 3GM (Il _ 13) sin 20 COS’UI c2osg0

T CL sin36(1+-¢ cos v)? + 2pC

Now we analyze the unperturbed system. Consider that the CM is moving on
a circular orbit given by r = p. Firstly we change the variables as follows:

x1=2(P—v) z2=20
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1"2 7“2

p1 = 2011p<1> P2 = C'—Ilpa

and then (11) is brought into the following form (note that GMp = C? conform

(5)):

dv, _ _4p1 9

ddv sinzy

ary _

o 1;21 I3 02 (17)
ap1 _ o hi— : :

dv 4 211 SIN~Zx9 S I'1

dpy __ 4pycoswa | 3Ly 1—cos @y

o = " sindas +5 7, sin 2r9=—=

which is Hamiltonian with:

[ . _ 217% P% 311 —13 3.,2 1—cosxq
I?(Ila-IQaplapQ) ~ sinzs + 2 T 271, S~ T2 2 - 2p1
H:T*S? - R

(18)

The zeros P;, P» given by (12) become relative equilibria for the system. These
are, in the new variables:

T 1 T 1

le(oagaiao) Q2:(7Ta§a§70)

The differential of the vector field (11) (i.e. of the right-hand side) has the form:

0 _ 8picosaa -4 0
sin T2 Sin2w2
0 0 01
Df|(w1,w2,p1,p2) | 3LI3gin20, cos 2y 3818 §in 270 sin 0 0 (19)
4 I 2 Lan 2 '
%%& sin 2z sin 1 * % 0
where: 9 2 9
e ];1 _ p'10405 z2 43 1 3 COSQ.Z‘Qﬂ
sin“zo SmM~T2 h ?
At @7 it becomes:
0 0 40
0 0 01
Df(Q1) = 8Ll 0 20)
0 —-100
while at Q2 we get:
0 0 01
Df(Qq) = 3L 0 00 (21)
1
0 -1-38Fk o0
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The characteristic polynomials are:

PQu(s) = (52 + 1)(s? — 3102 2
PQu(s) = (87 + 352 (s> + 1 + 3070)

Now we see that depending on the value of a = 311;113 we have different types of

equilibria:

- for a > 0, @1 is center-saddle and )5 is center;

-for —1 <a <0, Qq is center and @5 is center-saddle;

- for a < —1, Q1 is center and @5 is saddle;

We turn now to the restricted system on the invariant manifold given in Lemma
1. We shall prove that for any value of a # 0 we have two homclinic orbits to a
saddle point and these connections will be preserved under the perturbation. Then
we shall return to the full system on 7*S? (17) and we shall prove that the stable
and unstable manifolds to the saddle point (@2, when a < —1) are candidates for a
hyperbolic structure and consequently for a ”global” chaotic motion and this will
give us the analytic nonintegrability of the Hamiltonian system.

Now let us consider the restriction of (11) to the invariant manifold M;,, given

in Lemma 1. We set 0 = 5 and py = 0 and we obtain:

d _ 3GM :
? = S (h—I3)sing (23)

_ 2
a = CnPe 2
equivalent to the following second order differential equation:

d*p GMr I, — I3 2dr do

i =Z22(9 24
Sty rdv( +dv) (24)

dv? c? I

This system is still a Hamiltonian system obtained from (9) by setting 6 = 5 and

po = 0. We rewrite (24) as a system of 2 first differential equations using as state
variables: if [y < I3 y1 = pelse y1 = ¢+ 7 and ys = %f. We get:

dyi
iy — GMr I I3 2d (25)
% = —30—27"|1I—13|smy1+;£(2+y2)

We use the decomposition given in (14) using (3) and (5). We get:

dﬂ =
1})2 v I —1I3| I1—1I3| cos v sinv (26)
v T 73‘ I ‘Slnyl +8(3| I |SlIly1 1+ecosv +2(2+y2) 1+acosv)

We can denote 2 = 3|%3| > (0 and we see that the unperturbed system corre-

sponds to ‘i}—ygl + O2%siny; = 0 which is a pendulum-like equation. We know that
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HORSESHOES AND NONITEGRABILITY IN THE RIGID BODY MOTION 9

this equation yields two homoclinic connections at y; = 7, y2 = 0. The homoclinic
connections are given by:

(v) = *2arctan(sinh())

+2Q sech(Qw) (27)

<
No—o
—~

<
N2

I

where + stands for the upper homoclinic connections (in yp,y2 plane) and —
corresponds to the lower branch of the homoclinic orbits.

Now we are interested to see if these homoclinic connections are preserved under
the perturbation. The answer is given by the following result:

LEMMA 2. For any Q2 > 0 the system (26) has infinitely many transversal homo-
clinic orbits for any e € (0,1) excepting, at most, for a finite number of values.
O

This Lemma can be proved by using the Melnikov’s function and Smale-Birkhoff
Theorem; we refer the reader to (Teofilatto et al., 1992) and (Burov, 1987) (conform
to (Teofilatto et al., 1992)).

Now we can return to (17) which describes the unperturbed system on 752,
We consider only the case a < —1, or equivalently I3/1; > 4/3. The unperturbed
system has at ()2 a saddle point and then two invariant 2-dimensional manifolds
pass through @Q)2, the stable and unstable manifolds. From the above discussion we
know there exist two homoclinic connections. Then the intersection of the stable
and unstable manifolds is non empty and even more, it contains at least two 1-
dimensional curves. In order to obtain transversal intersection of these manifolds
(for the perturbed system), we need to prove that the intersection is precisely of
dimension 1 and this is offered by the following Lemma;

LEMMA 3. For the unperturbed system (17) (i.e. e = 0) with Is/I; > 4/3 consider
a point ¢° on the homoclinic connections (27) away from Q. Let us denote by
WU the stable/unstable manifolds passing through Q2. Then ¢° € W N W and
dim(TpW? + T wW") = 3 for all values of Q excepting for at most 1 value. O

The proof is based on two steps: firstly we find the first correction to the stable
and unstable manifold around the relative equilibrium @Q»; then we solve asymp-
totically the first variational system that transports the tangent vectors along the
homoclinic orbits. The critical value of €2 is found to be €2, = 1.70557 and this hap-
pens only for the upper branch of the homoclinic orbits. The details are presented
in section 5.

4. Statement of the Main Results

In this section we present the conclusion of the Lemmas 2 and 3 from the previous
section.
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As we have said, Lemma 2 has been proved in some other papers (see (Teofilatto
et al., 1992) and (Burov, 1987)). We give here just a briefly interpretation of the
symbolic dynamics associated to the chaotic motion that occurs because of the
existence of transversal homoclinic points. This idea is taken from a lecture given
by Professor P.Holmes at Princeton University.

THEOREM 4. For any Q > 0 and almost any € € (0,1) (except, at most, for a
finite number of values) the planar attitude motion of the rigid body (i.e. the motion
restricted to My, ) has a chaotic behaviour in the following sense: for any sequence
of integers s = (Sk)peg, 5= € Z there exists a sequence of increasing numbers
(tk)rez: te < thg1, te € R and a trajectory of (23) such that : ¢(ty) = 2msy, for
any k. O

This form of the chaotic motion means that the rigid body can rotate for an
arbitrary number of times in a sense, then stop and rotate in the opposite sense
for another arbitrary number of times and so on. The only problem is to find the
initial condition. The initial condition is found by using the horseshoe associated
to the transversal homoclinic points. This standard construction is presented in
many papers; we refer the reader, for instance, to (Moser, 1973),(Guckenheimer et
al., 1993) or (Xia, 1992).

Lemma 3 proves that, in the unperturbed case, the intersection between stable
and unstable manifolds contains only the homoclinic orbit (27) and this is includ-
ed in the invariant manifold M;,, given in Lemma 1. Then, for almost any € > 0
the intesection between stable and unstable manifolds of the perturbed system
will contain at most some 1-dimensional curves included in M;,,. But, as we have
proved in Lemma 2, the homoclinic orbit will break transversally under the per-
turbation into an infinite set of homoclinic points. Thus the stable and unstable
manifolds in the 4-dimensional phase space will contain only these points and then
they will intersect transversally.

This transversality gives us the analytic nonintegrability of the system (we refer
the reader to (Kozlov, 1983) for an extensive survey on nonintegrability of Hamil-
tonian systems). Here we shall state a result about non-existence of 2 analytic,
independent first integrals.

Suppose we have a periodic and analytic Hamiltonian H,. : R x R — R
dependent analytic on a small parameter ¢ > 0 (H.(x,p,t + T) = H(z,p,1)).
Consider the Hamiltonian system:

i =

5 (28)
5 — _OH.
P =~

and associate to it the Poincaré return map:
Ptgo (x1,p1) = Ptag(l'lapl) = (w2, p2)

where 2, p2 is the solution of (28) at top + 7" when at to (x,p) = (x1,p1)-
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HORSESHOES AND NONITEGRABILITY IN THE RIGID BODY MOTION 11

A function F? : R?" x R — R periodic in time (F¢(z,p,t +T) = F¢(x,p,t))
and depending on € as a formal power series:

Fe(a,p,t) =Y &' F'(z,p,t)
i>0

is said to be an analytic first integral if:

1) F': R* x R — R are analytic ;

2) FE(PtEO(:mp)/tO) = F6($7pat0)7 for any (xap) € R* and o € [O’T]

A set of n analytic first integrals FT,...,F¢ : R*™ x R — R is said to be
independent if the level set:

Mc(tO) - {(Iap) €eR" | F]f(l',p,t()) =Ck 1< k <n }

does not include any manifold of dimension higher than n (the set M.(ty) is an
analytic set and, because of Lojaciewicz’s result, that we shall state and use in a
moment, it can be written as local finite union of analytic manifolds). Now we can
state our nonintegrability result:

THEOREM 5. Consider a spinless, axisymmetric rigid body lying in a central grav-
itational field, whose attitude motion dynamics is given by (11). If Is/1y > 4/3 then
there do not exist 2 analytic, independent first integrals, and then the system is
analytical nonintegrable. O

We shall give a straightforward proof of this result (as well as for any system where
we have a transversal intersection of the stable and unstable manifolds) based on
the A-Lemma and Lojaciewicz’s Structure Theorem for Real Analytic Manifolds.
Another proof can be done using the (Kozlov, 1983) paper, by noting that the
union of stable and unstable manifolds W7 U W is a key set, in the terminology of
the aforementioned paper. We recall now the two results; from the Lojaciewicz’s
Structure Theorem we present only the result that we are using.

A-Lemma (see (Palis, 1969)) Let f be a C! diffeomorphism of R™ with a
hyperbolic fixed point p having s and u dimensional stable and unstable man-
ifolds (s +u = n), and let D be a u-dimensional disk in W*(p). Let A be a
u-dimensional disk meeting W?*(p) transversely at some point ¢. Then {J,,~ f™(A)
contains u-dimensional disks arbitrarily close to D. O B

Lojaciewicz’s Structure Theorem for Real Analytic Manifolds (see
(Krantz et al., 1992) for the complete statement, pp.154) Let ®(x1,...,x,) be a
real nontrivial analytic function in a neighborhood of the origin. Then there exist
numbers d; > 0,7 = 1,...,n so that the set:

7 ={x € R"| |z;] < 6;,Vj and ¢(z) =0}

has a decomposition:
Z=v"1tu...uv?
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12 Radu Balan

The set V' is either empty or consists of the origin alone. For 1 < k < n — 1 we
may write V* as a finite, disjoint union of k-dimensional submanifolds (in the full
statement, an explicit description of these manifolds is given). O

Now we prove Theorem 5. Suppose there are 2 analytic, independent first inte-
grals, say Ff and F§. Suppose we have fixed ¢y and denote by Py the Poincaré
map. Then, on stable manifold they must be constant. The same thing happens
on the unstable manifold. Because the stable and unstable manifolds intersect the
values of FT, respectively F5, must be the same on these manifolds, that is:

FEWY = Ff (W) =c F5(WY) = (W) =c

Now, pick a point sg € W* and consider ¢ a transversal intersection point between
W# and W, different from the fixed point of P (such a point exists because of
Lemmas 2 and 3). Let A be a 2-dimensional disk in W* containing ¢ as in A-
Lemma. Then, for any neighborhood of sy there exists an integer n > 0 such that
(P; )" (A) intersects nonempty the neighborhood. Now we apply the Lojaciewicz’s
Theorem to:

D(a) = (FE(x + s0) — e1)? + (F5( + 50) — €)?

Denote by
Zs=1{w e TS| ||z <6, o) =0}

which is the intersection between the level set Z = {x € T*S?|®(x) = 0} and the
ball Bs(sg) = {x € T*S?| || x — 50 ||< 6}. Then W¥ N Bs(sg) and W* N Bs(sq) are
both included in Zs. Particularly we are interested in the inclusion W* N Bs(so) C
Zs. Now we have a decomposition of Zs into a union of manifolds of dimension 0
(the point sp), 1 and 2 (dimensions higher than 2 are forbidden by the condition
that Ff and F¥ are independent). Now, if we look to the union of manifolds of
dimension 2 we see that here must lie an infinite sequence of submanifolds of the
form (Pf))"(A)N Bs(so), for some n. Then we conclude that Zs is not a local finite
union of manifolds and this proves the contradiction. So, our assumption of the
existence of 2 analytic, independent first integrals is false.

5. Proof of Lemma 3.3

The situation is now the following: we have the unperturbed system given by (17)
and we are in the case when a = 311[—*113 < —1. This means that Q)5 is a saddle point
and then it is a hyperbolic equilibrium in 7%5? for (17). We know from the Stable
Manifold Theorem (see (Kelley, 1967)) that two invariant 2-dimensional manifolds
pass through @5 tangent to, respectivelly, the stable space and unstable space of
the linearized system (21). Each of them contains the homoclinic connections (27)
so that their intersection, except for @2, is not empty. We want to prove that,
along of these homoclinic orbits there are three independent vectors tangent to
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HORSESHOES AND NONITEGRABILITY IN THE RIGID BODY MOTION 13

the union of the manifolds (i.e. two of them to a manifold and the third vector
to the other manifold). We choose one of the three independent vectors to be
the tangent vector to the homoclinic orbits at that point (¢%). This is tangent
to both invariant manifolds. We shall prove that taking two other vectors to the
unstable, respectively, stable manifolds near (Do, they are transported by the flow
through the homoclinic orbit forward, respectively, backward at the same point
into two independent vectors. For, we need two facts: firstly we have to know the
first correction of the tangent spaces to the stable/unstable manifolds near Q2 and
secondly, we have to find an asymptotic approximation for the transports along the
homoclinic orbits of a tangent vector (i.e. an asymptotic expansion of the solution
of the first variational equation).

To simplify the calculus we translate the equilibrium point Q2 into the origin
by changing the variables as follows:

T 1
glle_'”,52:332__353:]71—_,54:]?2
2 2
Then, the system (17) becomes:

&' = 12 o

&' = EZS2§2
&' = i92COS2§2 sin & (29)
& = —74(53;%32;1“52 + 102 sin(2§2)%
whose Hamiltonian is:
H(&1,69.63.80) = H&G +m &+ 2,6+ 5,8) = 0

2 1 2
% 8 9 14 1020826, 8L
and the equilibrium point is now the origin (£1,&2,&3,&4) = (0,0,0,0).

We compute now the first correction to the tangent spaces to the invariant
manifolds. For, we use a very nice result about these manifolds, proved in (Schaft,
1991) or see also (Kozlov, 1983). The result says that both the stable and unstable
manifolds are Lagrange submanifolds (see (Abraham et al., 1978) for details on
Lagrange submanifolds ). Then, there exist two analytic scalar functions V% :
D CR? =R, (£,8) — V5U&, &) defined on a neighborhood of the origin that
satisfy the Hamilton-Jacobi equation:

H(gh 527 vvs,u) = H(O) (31)
and the graphs of the gradient of these functions are exactly the local stable

and , respectively, unstable manifolds of (29), providing that these two manifolds
can be parametrized by using the first two coordinates & and & (this is the
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14 Radu Balan

disconjugacy condition of the Hamiltonian system with respect to the stable and
unstable solutions of (31)). We shall use the equation (31) to find the first correction
to the quadratic terms of V** (i.e. the third order terms).

Firstly we check the disconjugacy. For we recall Df(Q2) given in (21). We
know from (22) that the spectrum of the linearized system is given by Spec =
{Q,-Q,v/Q2 — 1, —/Q2 — 1}. The corresponding eigenvectors are:

- the unstable space:

2
4
Ao=vV2 -1, vl =(0,1,0,/Q2—1)

- the stable space:

M=, vl =(1,0,-,0)

Q
A3 =—Q ng:(l,O,—Z,O)
M=-—V22-1, vl =(01,0-vV02-1)

Now it is obvious that the projections of both E* and E*, the unstable and
stable spaces into the 2-dimensional space spanned by el = (1,0,0,0) and e =
(0,1,0,0), are of dimensions 2. Either from the geometric theory of the Algebraic
Riccati Equations (see (Shayman, 1983) for details) or by straightforward calculus
we check that the quadratic terms in V%% are given by:

VSS,QU — gTXS,ug
where 1 = (&1, &) and:

S *% 0 u % 0
X7 = 0 —vVOQ2—-1] "~ X = 0 V21 (32)

Now, if we keep up to the third term in V** we obtain:

VZ3(61,62) = %§TXS§ + third_order_terms =
= 6,2 YB162 4 1643 1 boti 260 + b316a? + balo
and analogously for VZ3(€1,&2). We have now to introduce in (31) and identify

b1, bo,b3,bs by expanding up to the third order. The expansion of H up to the
third order has the form:

02—-1 1 02 -1 1
Hcg(61,62,83,84) = 5 592512 i €92 + 2632 + 5542 + 26573
and the solutions for V§3 and V§‘3 are:
Q 1 1 Q
V&, &) = =62+ V2 — 162 — - —— 16,2
(61 62) 851 9 52 2Q i 2m£162
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HORSESHOES AND NONITEGRABILITY IN THE RIGID BODY MOTION 15

Vi) = a2 VI 16?6

204202 -1
Now, the invariant manifolds are given by:
oVws gy
(61762) — (51’52’8—517 662 )

and the approximating tangent vectors to these manifolds, computed on the homo-
clinic orbits (where £, = 0) are given by:
- for the unstable manifold:

o1 0&3
9 - 0 (33)
X a6 (Ve -1 Q+2\/QQ—1§1)8§4
- for the stable manifold:
-9 929
X3 =3 1 4083 (34)
X4:i_( 92_1_¢51)i
aEs Q+2v02 1> 9€y

and these hold only for |£1] + |€2] small enough. Now it is straightforward to see
that X7 and X3 are tangent to the homoclinic orbits at the origin. Thus, what we
have to do is to prove that Xs is not transported along the homoclinic orbits into
Xy.

It is known that a tangent vector is transported along a curve via the first
variational system which is a linear time-varying system of the form:

2 = Df|<p(v)z (35)

For our system (17), the differential of the vector field along the homoclinic orbits
has the form (recall z3 = § and p2 = 0):

Df|(x1(v),%,P1(U)’0) = —%QQ cos T 0 00
0 —4p} + Q=R 0 0

We see that, if 27 = (21, 29, 23, 24) then (35) decomposes into two 2-dimensional
systems:
Z] = 4z3

z3 = —}192 COS 1 21 (36)

and:
ZQ - Z4

ZA’L — (_4p% + QQ l—cgs T )22 (37)
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16 Radu Balan

The initial condition for the forward transport is given by Xo: z; = 0, 20 = 1,
23 =0,24 = VQ? — l—mfl and then only (37) is the system to be analyzed
(actually (36) gives the transport of the tangent vector to the homoclinic orbits
along the homoclinic orbits and the solution is obvious 21 = z/(v), 23 = p}(v)).
We rewrite (37) as a second-order differential equation:

COoS I'1

1
20 4 (4p? — Q2 5 )22 =0

We use the explicit form (27) of the homoclinic orbits (recall now I; < I3 and then
vy =), p = % + iyg) and we get:

28 4+ h(v)ze =0  where h(v) = 1 4+ 2Qsech(Qv) + Q*(1 — 2tanh?(Qv))  (38)
Now we change the variable v — u = tanh(). Then (38) becomes:
02

2 d? 22 Q_2 dzo

1—u?)2= 22 1 —u?)=2 =
4( u®) T2 2u( u)du + k(u)zg =0 (39)
with: ) ) .
1—u 1—6u”+u
k(u) =1+ 20Q 0? 4
(u) 14+ u? + (1 4+ u2)? (40)

and the interval of analysis is (—1,1). The initial condition, which is given by the
tangent vector to the unstable manifold, corresponds to u — —1. Let’s consider
u = —1 4 ¢ and try to evaluate z4 up to order €. Firstly, we have to find &;. We
have:

& = x1 — m = (F2arctan(sinh(Qv)) — m)mod 27

If we consider tanh% = —1 + ¢ and expand &; we get:

€1 = £2e 4+ O(e?)

Now, we need % We know that % = 24, then:
dzo  dvdzy 2 1
du  dudv  Q1-u2?
and using the initial condition for z4, at u = —1 + € we get:
A A Uil € S TNCTS (41)
- Q e Q+2/02-1
Now we analyze the asymptotic solution of (39) near to up = —1. Firstly we see

that both ug = —1 and uw; = 1 are regular singular points (see (Bender, 1978) for
a general tratement of asymptotic approximations). We look for an asymptotic of
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the form zo ~ (1 + u)® (near up). Plugging into (39) and setting u = —1 we get
for o the equation:

02 -1

202 = k(1) = a=doy/k(-1)=+ Q

Q

The Frobenius solution of the equation has then the form: zo = (1+u)®P(u) where

P(u) is a polynomial in u. We keep only the first two terms from P(u) and we
get:

29 ~ (1 + U)a(Co + C’lu) (42)

We compute Cjy and C by requiring the initial condition (41). We obtain:

2 o Ci u=—14e @ n Ch +0() (43)
—_— = ~ — e EE—— E
29 1+u  Cyp+ Chu € Co—C1
By comparing (43) with (41) we get that o = ¥ 95_1 and:
Cy 2
K=—= 44
Co $Q¥2+2\/Q2—1 (44)
Then, at u = 0 we get:
dzs
o —at K (45)
22

Similarly we can compute the transport of X, backward in time, from v =1 —¢
to u = 0. We get:

dza

du— o K (46)
22

with the same expressions for o and K as above.
Thus, the condition that at v = 0 to have three independent vectors is that
(45) and (46) do not coincide, that is:

a+K#—-a—-K (47)

If the above condition is fulfilled, then the tangent vector Xs is everywhere inde-
pendent of X4 and this proves the Lemma.
For the lower branch, the condition (47) takes the form:

02 -1 2
+ #0
Q Q+2+2V/0%2 -1

which is always true for 2 > 1. For the upper branch the condition (47) turns
into:

(48)

1 2 20
Q Q-2+2/02 1

(49)
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18 Radu Balan

which has a root at €2 ~ 1.70557. To completely solve the problem for the upper
branch, one must go to higher order approximations for V%% in (31) and z;(u) in
(42), but, for genericity, this result is enough.

6. Conclusions

In this paper we have obtained a analytic nonintegrability result of a Hamiltonian
system. The problem was to study the rotation motion of a rigid body in a central
gravitational field. To obtain the result, four assumptions were made.

The first assumption concerns the motion of the center of mass of the rigid
body and it is supposed to be undisturbed by the rotation motion. For instance
this is true if the ratio between the dimension of the rigid body and the distance
up to the center of attraction is much less than 1.

The second assumption is less critical but is made in order to avoid messy cal-
culus. Under this assumption we neglect the higher-order terms in the interaction
Hamiltonian.

The third assumption, namely the axisymmetry of the rigid body, is made
in order to progress in description. The condition I3/I; > 4/3 is essential for
the hyperbolicity of P and for the transversal intersection of the stable/unstable
manifolds of the perturbed system.

The fourth assumption, i.e. to consider a spinless top, is a technical one. Assum-
ing a spinless top we are able to find homoclinic orbits and then to construct the
horseshoes.

Under these assumptions we have proved that our problem gives rise to a time-
varying Hamiltonian system on a two-dimensional sphere. The eccentricity of the
orbit of the CM plays the role of a perturbation parameter. The unperturbed
system (i.e. corresponding to a circular orbit of the CM) has a hyperbolic saddle
point whose stable and unstable manifolds intersect only along the homoclinic
connexions. The perturbation preserves the homoclinic connections, yielding to
transversal homoclinic orbits. Then the stable and unstable manifolds intersect
transversaly in 7*52. This is immediately connected with some chaotic behaviour
of the flow and, especially, with analytic nonintegrability of the system.
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