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ABSTRACT

The ratio of the short time Fourier transform (STFT)
coe�cients of signals received at two sensors can factor out
the role of the power spectrum of emitting sources, under
an assumption called disjoint orthogonality. Thus, it can
reveal parameters speci�c to the mixing scenario and serve
as a basis for channel estimation techniques.

In this paper we analyze and extend a source separation
method based on the use of STFT ratios of two sensor in-
puts, called DUET. We generalize the problem formulation
in DUET, and prove that considerably weaker assumptions
about the classes of input signals are su�cient to apply the
derived techniques. The analysis centers on the notion of
ratio-estimator and a novel stochastic model that enabled
us to derive the maximum likelihood ratio-estimator.

Derived techniques can be e�ectively applied to source
separation, source localization, signal enhancement, and
noise reduction when using a twin microphone system, both
in echoic environments and degenerate situations.1

1. INTRODUCTION

Miniaturized sensors and increased computational power
and memory storage in today's digital signal processors
make it possible to implement and apply advanced DSP
techniques to problems of source separation and noise re-
duction for small electronic devices (e.g. speech recogni-
tion front ends, personal digital assistants with voice in-
put, mobile phones, smart alarms etc.). Such devices can
take advantage of two or more microphone arrays, and are
aimed at improving the directionality of the signal input
system, or simply of source separation, while not a�ecting
the quality of the sound (particularly if the sound of in-
terest is speech). In recent years, this domain has been the
focus, at the low end of applications, for Blind Source Sepa-
ration (BSS) and Independent Component Analysis (ICA)
techniques [4, 8, 12, 2]. Traditionally though, array pro-
cessing and beamforming signal processing techniques were
concerned with the formation of steered beams for an array
of sensors in sonar and radar systems [5, 11].

In this paper we analyze and extend a source separa-
tion method based on the idea of interpreting STFT ratios
of two sensor inputs, which has been recently proposed in
[3] under the name DUET (Degenerate Unmixing and Esti-
mation Technique). We start with the problem formulation
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in DUET (see Section 2), and prove that weaker assump-
tions about the classes of input signals combined with an
optimal statistical interpretation of the data are su�cient
to solve the same problem.

Rather than learn �lters to demix data according to
some statistical criterion [10], our analysis centers on the
idea of estimating ratios of two transfer functions H1i=H2i

(see Section 3), and using these estimates to further infer a
parameterized model and demix sources. The mixing model
we assume is the following:

x1(t) = h11 ? s1(t) + � � �+ h1N ? sN (t)
x2(t) = h21 ? s1(t) + � � �+ h2N ? sN (t)

(1)

where s1; : : : ; sN are N sources of interest, x1; x2 are the
sensor measurements and h11; : : : ; h2N are the 2N channel
formal impulse responses. By formal we mean that frac-
tional delays [6] are allowed.

Besides statistical independence of the sources, we make
two other basic assumptions:

� Sources are stationary on a short-time horizon, but
their frequency content has jumps over long-time pe-
riods;

� For a given time window, signals may have frequency
gaps, but in the long term they cover all the frequency
bands (ergodicity or persistence hypothesis);

These qualitative properties will form the basis of a
mathematical model for a class of signals of interest. Re-
garding the channel description, we do not make any as-
sumption at this time. However further into our analysis
we apply our technique to both anechoic and echoic mix-
ing models. Although most of this paper is concerned with
the two microphone case, we also present extensions of the
techniques introduced to the multi-sensor case.

The layout of this document is as follows. Next section
brie
y reviews elements of interest about beamforming and
degenerate demixing. Section 3 describes the principles of
our statistical approach, a formalization of the estimation
problem, and its consequences. Section 4 presents an ex-
perimental validation of our approach, and is followed by
conclusions and ideas for future work.

2. BACKGROUND

The basic principle for singling out a source by beamforming
can be used in adaptive algorithms for demixing real-world



anechoic and echoic signals [9, 3]. Of particular interest here
is the technique for estimating mixing model parameters
in [3], which was applied for degenerate mixtures (more
sources than two and two microphones). We brie
y review
these principles below.

2.1. Beamforming

Beamforming is the problem of processing signals imping-
ing on an array of sensors in order to maximize reception
from a given direction. The sonar and radar applications
of beamforming principles led directly to an early study of
the topic and a rich literature [5, 11]. The array response or
direction vector can be easily determined for a �nite speed
of propagation c of a planar wave in a real environment and
an equidistant linear array of sensors, spaced by distance d.
One source emitting from direction angle �i is delayed at
the next adjacent sensor by �i = d

c
cos �i. Assuming the

source is very far compared to d the e�ect induced in a
K-array is:

X(!) = S(!) �
�
1 e�j!�i ::: e�j!(K�1)�i

�
(2)

where X, S are the Discrete Fourier Transform of the mea-
surements and signal, respectively. The DFTs can be re-
placed by short-time Fourier transforms, de�ned as follows.
For a source signal s(t), t = 0; : : : ; L�1, and a �xed window
w, t = 0; : : : ;M � 1 (M < L):

S(!; k) =

M+kX

l=k

e�
2�j
M

!w(l� kb)s(l); k = 0;1; : : : ; B = b

L

M
c

(3)

where b (the time step) is usually a fraction of M , the win-
dow size. The ratio b

M
represents the redundancy of this

representation. If w � 1 and b = L = M , one recovers the
usual de�nition of the DFT (Discrete Fourier Transform).
In [1] we analyzed the in
uence of the window w on the
formal manipulations of delays. In essence, we proved that
the windowing e�ect is negligible. As a result, we �x the
window w to a particular form (for instance the Hanning
window).

A linear combination of the measurements at the sen-
sors de�nes a spatial �lter that improves the reception of
a narrow band source. Adaptive techniques can discover
and focus on one source at a time. This formulation of the
problem resulted in a successful BSS approach to real-world
broadband (audio) signals using only two closely spaced mi-
crophones [9].

Frequency domain approaches to beamforming problem
equally allow the recovery of a source of interest from in-
put mixtures. Although such approaches are considered to
be computationally intensive, the challenging part is the si-
multaneous learning of demixing parameters at all frequen-
cies. There is a strong analogy between our approach and
frequency domain beamforming in the principle and archi-
tecture for signal processing. However the way in which
parameters are learnt is radically di�erent.

2.2. STFT ratios for two channel systems

[3] introduced the DUET technique for blind separation of
an arbitrary number of sources from two mixtures of the

sources, and claimed that it works under particular as-
sumptions about the sources. In general, the BSS liter-
ature makes use of either the statistical independence
assumption or the statistical orthogonality assumption.
In contrast, DUET introduced an assumption called dis-

joint orthogonality. By de�nition, N sources s1; s2; :::; sN
are disjointly orthogonal i�:

Si(!) � Sj(!) = 0;8!; and 8i 6= j (4)

where these are the DFT transforms of the signals. This
means that at most one source has a nonzero Fourier com-
ponent for any frequency !. In practice �nite windows of
data are used, hence the analogous property for windowed
Fourier transforms and a �xed windowing function w(t),
called w-disjoint orthogonality, is:

Si(!; �) � Sj(!; �) = 0;8!; � and 8i 6= j (5)

Under the disjoint orthogonality assumption, it is obvi-
ous that at most one of the N sources, let it be si, will be
non-zero for a given frequency !. In the anechoic model,
in the same way as in beamforming theory for plane waves
impinging on two sensors, a source emitting from direction
angle �i will be delayed at the second sensor by �i =

d
c
cos �i,

and will be possibly attenuated by factor ai. Therefore:

X1(!) = Si(!)

X2(!) = Si(!) � ai � e
�j!�i (6)

The ith source's parameters ai and �i can be obtained as
follows from these relations:

ai =
���X2(!)

X1(!)

��� ; �i =
1
!
Im(ln

X1(!)

X2(!)
) (7)

The ratio X1(!)

X2(!)
is an STFT ratio and the parameters

derived from it is what we call ratio-estimates. In the-
ory, DUET can determine all ratio-estimates (parameters
ai and �i in this case) by detecting N peaks of clusters
in an amplitude-delay histogram de�ned by the equations
above. Then it can obtain estimates of the sources from one
mixture only by selecting the corresponding frequencies and
transforming back to the time domain.

In practice, the frequencies corresponding to one cluster

i do not result exactly in the same �i. To account for noise
and estimation errors, DUET uses an averaging estimate:

�̂i =
1

j
ij

X
!2
i

1

!
Im(ln

X1(!)

X2(!)
) (8)

Even so, DUET can demix surprisingly well a mixture of �ve
speech sources, but estimated sources have serious artifacts.
Artifacts increase as the number of sources increases. The
disjoint orthogonality assumption may be too strong a con-
dition, which is not satis�ed in reality. For one thing, dis-
joint orthogonality implies statistical orthogonality. Many
successful BSS approaches rely, in the N �N case, simply
on statistical orthogonality [7]. Is the disjoint orthogonality
assumption really necessary? The assumption becomes un-
realistic especially when more than two sources are mixed
together.



We show that the disjoint orthogonality assumption is
not necessary when applying ratio-estimates of the form
given in Equation 7. Mixing model parameters can be esti-
mated using statistical techniques under much broader con-
ditions, which we de�ne next.

3. STATISTICAL APPROACH

We generalize ratio-estimates, formally introduce the class
of signals for which statistical properties of ratio-estimates
are relevant, and derive an optimal ratio-estimator. We
claim that ratio-estimates facilitate solutions to the types
of BSS applications mentioned.

3.1. Stochastic Model for Signals of Interest

Let us consider again the convolutive mixing model (1).
The transfer functions to the second microphone can be
included in the source de�nitions. After rede�nition:

x1(t) = r11 ? s1(t) + � � �+ r2N ? sN (t)
x2(t) = s1(t) + � � �+ sN (t)

(9)

In the frequency domain, the above equations become:

X1(!; k) = R11(!)S1(!; k) + � � �+ R1N (!)SN (!; k)
X2(!; k) = S1(!; k) + � � � + (!)SN (!; k)

(10)

where S1; : : : ; SN ;X1;X2 are the source and measurement
short-time Fourier transforms. Because windowing e�ects
are negligible [1], the unknown R coe�cients are the same as
in the case of the regular Fourier transform, for all practical
purposes. R plays the role of a ratio of transfer functions.
Our problem is to estimate R.

Rather than simplify the expressions above using the
disjoint orthogonality assumption introduced in the previ-
ous section, we interpret them from a statistical perspec-
tive. In general, sources can use simultaneously the same
frequency !0. However, many frequencies are available so
that there must be cases when sources do not use !0 over a
short period of time. A statistical analysis of the STFT ra-

tio X1(!)

X2(!)
should separate the situation when one and only

one source uses a particular frequency from the case when
none or all use !0. The former case enables us to reliably es-
timate the parameters of the source propagation model from
data, and therefore separate sources in the end. Indeed for

those cases when only one source emits at !0,
X1(!0)

X2(!0)
re-

duces to one of R1i(!0) for some i. At this point a model
of source propagation can be used, and its parameters can
be estimated or the statistical properties of the ratio can be
directly used.

Our question then is: Is it possible at all to estimate R
values reliably given that noise is present and the disjoint
orthogonality assumption does not necessarily hold?

At this point we recall the qualitative statistical as-
sumptions made in Section 1. Sources should be indepen-
dent, stationary over short-time periods but with discontin-
uous spectral content over long-time intervals, and be er-
godic (or persistent). Now, we can make these hypotheses
more precise. We construct a stochastic model that satis-
�es all these requirements and naturally relaxes the strong

w-disjoint orthogonality assumption used in the DUET al-
gorithm.

We recast short-term stationarity into an assumption
of independence of the short-time frequency components.
Thus, for every �xed k, S(!1; k) is independent of S(!2; k)
for !1 6= !2. Note that this would be formally true if sam-
ples were jointly Gaussian. Next, we model the discontin-
uous behavior of the spectral power as a product of two
random variables: a continuous (or quasi-continuous, i.e.
a discretized continuous) random variable, denoted by G,
and a Bernoulli random variable V with probability p of
being 1 and (1� p) of being 0. This is the crucial assump-
tion of our model. In Section 4 we present experimental
evidence to support our stochastic model. The intuition
behind it comes from the time-frequency representation of
the speech. In the time-frequency (TF) plane, speech forms
various ridge patterns. Consider that for a �xed frequency,
one sees a nonzero spectral power on that frequency channel
for a given time-frame. The energy pulse may go on into
the next time frame, branch into adjacent frequency bands,
or simply disappear. Such a behavior suggests modeling
the TF components S(!; k) as a product of two random
variables (RV):

S(!; k) = V
!;k

G
!;k (11)

where V is a Bernoulli RV or switching process and G is
a continous RV. For the purpose of this paper we consider
that the spectral components are independent for di�erent
time frame indices. Thus, in fact, we assume S(!1; k1) is
independent of S(!2; k2) for every (!1; k1) 6= (!2; k2). For
speech signals this hypothesis can be relaxed to accommo-
date, for instance, a hidden Markov model. Finally the
ergodicity (or persistence) hypothesis allows us to assume
that for every frequency !, V (!) is of non-vanishing vari-
ance. This assumption is by no means essential to our al-
gorithms, and in fact in several applications we tune the
frequency set on a particular signal of interest. However we
make this hypothesis to avoid degenerate cases. We sum-
marize our stochastic model below:

Signal Class. The class of signals of interest is formed
by those stochastic signals whose short-time Fourier trans-
form is factorized as a product of a discrete Bernoulli RV
and a continuous (or quasi-continuous) RV as in (11).

3.2. The Optimal ML Ratio-Estimator

The main goal here is to de�ne an optimal estimator for R
using the stochastic model introduced before. Consider the
two-source case for which the mixing model (10) turns into:

X1(!; k) = R1(!)V
!;k
1 G

!;k
1 +R2(!)V

!;k
2 G

!;k
2

X2(!; k) = V
!;k
1 G

!;k
1 + V

!;k
2 G

!;k
2 ; k = 1; : : : ; B

(12)

For the remainder of this subsection we �x a frequency !
and we omit writing it. For this model we make the follow-
ing assumptions: (1) V1; V2 are Bernoulli random variables
with probabilities of success p1; p2, respectively; (2) G1, G2

are discrete random variables, uniformly distributed over a
su�ciently large set of equispaced points (say K1;K2 ); (3)
V k
1 ; V

k
2 ;G

k
1 ;G

k
2 are i.i.d. copies of the random variables Vi,

Gi .
Our problem is to estimate R1 and R2 based on B block

data measurements X1(1); : : : ; X1(B) andX2(1); : : : ;X2(B).



We compute the maximum likelihood estimator forR1;R2

by conditioning with respect to V k
1 ; V

k
2 . At every block k:

Pr(X1(k);X2(k)jR1;R2) =
X

a;b2f0;1g

Pr(X1(k); X2(k)jR1; R2; V
k
1 = a; V k

2 = b)PrV1 (a)PrV2(b)

Thus for the likelihood we obtain:

Pr(X1;X2jR1;R2) =

BY
k=1

[(1 � p1)(1� p2) � Pr(X1(k) = 0;X2(k) = 0) +

+ p1(1 � p2) � Pr(X1(k) = R1G
k
1 ;X2(k) = G

k
1 jR1) +

+ (1� p1)p2 � Pr(X1(k) = R2G
k
2 ;X2(k) = G

k
2 jR2) +

+p1p2�Pr(X1(k) = R1G
k
1+R2G

k
2 ;X2(k) = G

k
1+G

k
2 jR1;R2)]

where X1, X2 are B-vectors of complex numbers. Note that
the middle term probabilities can be written as:

Pr(X1(k) = R1G
k
1 ;X2(k) = G

k
1 jR1) =

= �(X1(k) = R1X2(k)) � PG1
(X2(k))

Pr(X1(k) = R2G
k
2 ;X2(k) = G

k
2 jR2) =

= �(X1(k) = R2X2(k)) � PG2
(X2(k))

where �() is the Kronecker symbol. Note that X1;X2 can
take values only on a discrete lattice. The lattice structure
has the following consequences:
Lemma 1. For nonzero R1 6= R2, the following implica-
tions hold true for the events (a),(b), and (c) de�ned below:

(a) X1(k) = 0&X2(k) = 0
) X1(k) = R1X2(k)&X1(k) = R2X2(k)

(b) (X1(k) 6= 0 or X2(k) 6= 0)&X1(k) = R1X2(k)
) X1(k) 6= R2X2(k)

(c) (X1(k) 6= 0 or X2(k) 6= 0)&X1(k) = R2X2(k)
) X1(k) 6= R1X2(k)

Lemma 2. Events (a),(b), and (c) are mutually exclusive.
Lemma 3. The set f1; : : : ;Bg can be disjointly partitioned
into four sets T1; T2; T3; T4 as determined by events (a),(b),
and (c).

T1 = fi 2 f1; : : : ;Bgj(a) is trueg
T2 = fi 2 f1; : : : ;Bgj(b) is trueg
T3 = fi 2 f1; : : : ;Bgj(c) is trueg
T4 = fi 2 f1; : : : ;Bgj(a) and (b) and (c) are falseg

Now, we can prove our main result:
Theorem. For uniformly distributed Gi the likelihood
Pr(X1;X2jR1;R2) has the form:

Pr(X1;X2jR1;R2) =

[(1� p1)(1 � p2) +
p1(1� p2)

K1

+
p2(1� p1)

K2

+
p1p2

K1K2

]jT1 j

�[
p1(1 � p2)

K1

+
p1p2

K1K2

]jT2j�[
p2(1� p1)

K2

+
p1p2

K1K2

]jT3j�[
p1p2

K1K2

]jT4j

= [
p1p2

K1K2

]B � [1 + E1]
jT1 j

� [1 +E2]
jT2j

� [1 +E3]
jT3j

where jTlj denotes the cardinality of the set Tl.
Proof. In the expression of Pr(X1;X2jR1;R2), the prod-

uct
QB

k=1
is split into four sub-products according to which

one of the four sets T (Corrolary 2) i belongs.
Note that E1; E2; E3 and jT1j do not depend on R1;R2,

but rather on the prior information. Also p1; p2;K1; K2 de-
pend on the actual measurements while jT2j; jT3j are the
only quantities that depend on R1;R2. Thus, maximiz-
ing the likelihood turns into maximizing simultaneously jT2j
and jT3j, or equivalently, maximizing the number of times
events (b) and (c) are true. Therefore the components of

the optimal R-estimator, cR1;cR2 are the solutions of:

(cR1;cR2) = argmaxR k X1 �RX2 k0 (13)

where the 0-norm means the number of \hits" (i.e. number
of cases when X1 �RX2 = 0). For more than two sources,
the additional R's satisfy the same relation, with argmax
interpreted as selecting local maxima. The number of local
maxima correspond to the number of sources present.

3.3. Implementation of the optimal R-estimator

R-estimates can be obtained by �nding the complex R val-
ues for every ! and chaining the values together across all
frequencies into R1(!);R2(!); :::;Rn(!), after appropriate
permutations. Below we discuss how: (1) R's are obtained
for a particular frequency !; (2) n is determined from the
data at various frequencies; (3) R-estimates are assembled
together.

First we address the estimation of R's. Equation 13 can
be directly implemented using a histogramming method, as
given by the following formula:

Nopt(R;!) = jfk ; jX1(!; k)� RX2(!; k)j < �gj (14)

The optimal estimator is obtained as:

R̂opt(!) = argmaxR Nopt(R; !)

where argmax has the same local maxima interpretation as
before.

An approximation of Equation 14 (and therefore sub-
optimal formula) is obtained further by making explicit the

ratio
X1(!;k)

X2(!;k)
:

N
0(R;!) = jfk ; j

X1(!; k)

X2(!; k)
�Rj < �gj (15)

and the R-estimate is constructed similarly to the optimal
case, as:

R̂
0(!) = argmaxR N

0(R;!)

Note the suboptimal equation above is asymptotically
optimal when � ! 0. Parameter � corresponds to the bin

size used in the computation of histograms X1(!;k)

X2(!;k)
for every

!. The determination of local optima naturally corresponds
to the highest peaks in the histograms.

Secondly, we return to the question of assessing the
number of sources n. Our solution is to select histograms
(and, therefore, frequencies) with high con�dence peaks.
Con�dence depends on the height and mass of the peak



areas. A reference frequency !ref is �nally obtained, de-
�ned as follows: (1) It belongs to a range given by prior
knowledge about the type of signals, for instance, 500Hz
to 4kHz in the case of voice signals; (2) The minimum dis-
tance between acceptable peaks found is the largest among
all frequencies considered. The number of peaks for !ref
gives n.

Thirdly, we discuss the way histogram peaks (i.e. R-
values) are associated together across all frequencies. For
every frequency !, we consider n histogram peaks and label
them R1;2;:::;n (!) = fR1(!); :::;Rn(!)g. The question is to
�nd a permutation � of the set 1; 2; :::;n such that sources
for R�(!) are in the same order as in R1;2;:::;n (!ref ). The
optimum permutation �opt(!) is given by:

�opt(!) = argmax�
Pn

j=1
jfk ; j

X1(!;k)

X2(!;k)
�R�(j)(!)j < � and

j
X1(!ref ;k)

X2(!ref ;k)
�Rj(!ref)j < �gj

(16)

Real signals, particularly voice signals can be approx-
imately modeled using our model. Although the discrete-
ness assumption regarding the sources is not valid, for real
speech signals the two estimators de�ned above gave simi-
lar results. In conclusion, the suboptimal histogram based
estimator is a good estimator for real speech signals, even
in the degenerate case of three sources.

3.4. Modeling echoic environments

Imposing a signal mixing model (such as far �eld and echoic)
helps the estimation problem. Here we show how this is
done when modeling the environment as an echoic environ-
ment of order one (i.e. using only the �rst indirect path).

We assume that only one source is present, and the
distance d between sensors is very small (e.g. microphones
are close). Microphone proximity implies that the delays
we deal with are fractional. The direct path delays are
less than one sample. In the far-�eld approximation, the
transfer functions will have the following form:

H11(w) = K(1 + a1e
�i�1w + : : :+ ane

�i�nw) (17)

H21(w) = e�i�w(1 + a1e
�i(�1+�1)w + : : :+ ane

�i(�n+�n)w)

where j� j; j�1j; : : : ; j�nj < 1, a1; : : : ; an < 1 are the echo
attenuations, and �1; : : : ; �n are the echo arrival times.

For n = 1 we have an echoic approximation of order
one. The model has �ve parameters in this case: K, � , �1,
�1 and a1. Estimation of parameters enables us to demix
signals by complex matrix inversion and computation with
fractional delays in the two by two problem. It turns out
that parameters can be estimated reliably by identi�cation
based on SDFT ratios as discussed.

The main steps of the procedure are:

1. Compute SDFT ratios R(!; k);

2. Estimate R̂(!; k) for each histogram peak;

3. Determine permutation for assembling R-estimates
together

4. Identify parameters of the environment model for R's
above

5. Recompute R-estimates based on the model

6. Recover independent signals by signal demixing(see
next subsection).

Anechoic estimates can be obtained as a particular case
of the echoic results, when the echoic model is simpli�ed
with a1 = 0. FIR models for H11 and H21 can also be
used.

3.5. Signal Demixing

In the case of two sources, source estimates are obtained
using the adjunct of the inverse of the estimated mixing
matrix.

The direct method for signal estimation based on R-
estimates in the general case of n sources consists of:

1. Partitioning of the complex plane by a Voronoi tes-
selation on the set of points R1;2;:::;n

2. Spectral weighting of mixtures in the frequency do-
main, with the characteristic function of each Voronoi
set

3. Inversion of STFT signals obtained by spectral weigth-
ting.

.
A generalization of the algebraic approach in the de-

generate case of more sources than sensors is Wiener �lter-
ing, as described below. It requires additional information
about the variances of the sources, or a separate estimation
process with this goal.

Let us consider the case n = 3. Assuming that the
variances vi, i = 1; 2; 3, are determined, then an estimate
of source i is:

Ŝi = ~H1iX1 + ~H2iX2

where:

~H1i = (v1 + v2 + v3)( �R1v1�1i + �R2v2�2i + �R3v3�3i)�
�( �R1v1 + �R2v2 + �R3v3)(v1�1i + v2�2i + v3�3i)

~H2i = �(R1v1 + R2v2 +R3v3)( �R1v1�1i + �R2v2�2i + �R3v3�3i)+
(R1

�R1v1 +R2
�R2v2 + R3

�R3v3)(v1�1i + v2�2i + v3�3i)

(18)

and �ij is the Kronecker symbol.

3.6. Generalization of Estimation Approach for More

Microphones

The analysis of the case of more sources and two micro-
phones is similar. The ratio histograms will exhibit more lo-
cal maxima, one peak for each source. Thus the R-estimation
problems reduces to �nding the peaks of a histogram. The
problem becomes more challenging if more sensors are used.
Under the deterministic w-disjoint orthogonality no accept-
able answer has been found. The obvious solution there
would be to pair the microphones and then to somehow av-
erage the estimates. Using our stochastic model, a similar
computation can be done for the likelihood function. For
the three-sensors case, the mixing model is:
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Assuming the Bernoulli RVs V1; V2; V3 have probabilities
p1; p2; p3 ! 1 close to one, we obtain:

P (X1;X2;X3jR) = const � (1 + E1)
jT1 j(1 + E2)

jT2j(1 + E3)
jT3j

where

Ta = fk; jXk
3 �

Xk
1 (R2c �R2b)

R1bR2c �R1cR2b

�

Xk
2 (R1b �R1c)

R1bR2c � R1cR2b

j < �g

with (a; b; c) a circular permutation of (1; 2; 3). De�ning

A1
a = R2c�R2b

R1bR2c�R1cR2b
and A2

a = R1b�R1c

R1bR2c�R1cR2b
and notic-

ing that fR1a;R2a;a = 1; 2; 3g is bijectively mapped onto
fA1

a;A
2
a;a = 1; 2; 3g except for some singularities, it fol-

lows we can �st estimate A's parameters and then recover
R's. Thus, the optimal estimator is given by the �rst three
optimizers of:

(Â1a; Â
2
a) = argmaxA1

a;A
2
a
jfk; jXk

3 � A1aX
k
1 � A2aX

k
2 j < �gj

If each A is discretized into k bins, the total computationalt
cost would be 5Bk2. Alternatively, inspired by the ratio
estimator in the two-sensor case, a suboptimal estimator
can be derived as follows: the sets T1; T2; T3 above are the
sets when only one source is zero on the particular frequency
!. The probability of this to happen is about p2(1�p) much
bigger that p(1 � p)2 the probability of two sources to be
zero. Thus the ratios histogram would have smaller peaks
and these peaks would be more di�cult to detect. Instead,
let us consider the histograms of X1�z1X3

X2�z2X3

for several values

z1; z2. In general these histograms would exhibit a number
of peaks of small amplitude, unless z1 and z2 are exactly
R1a;R2a for some a. In this case, the contribution of source
a is canceled and the ratios histogram would exhibit two
big peaks (of amplitude of order p(1 � p)). These peaks

should be at R1b�R1a

R2b�R2a
, respectively R1c�R1a

R2c�R2a
, with (a; b; c) a

permutation of (1; 2; 3). This estimator requires the same
5Bk2 operations, as the optimal estimator. Further analysis
will be done to check the accuracy of this estimator.

4. NUMERICAL RESULTS

We propose a number of tests to show that our model cap-
tures well real data.

First we checked our stochastic model (11). For this
we took about 18.6 seconds of voice (with natural pauses)
at a sampling frequency of F = 8000Hz and computed the
STFT coe�cients over windows of length M = 64. Figure 1
plots the histograms of their real parts when the number of
bins is 100. Note the peaks around zero. This is consistent
with the superposition formula Pr = (1 � p)P1 + p � �()
which would represent the p.d.f. of a product V G between
a Bernoulli and a continuous random variable.

Next we plot the histograms (14) and (15) of the ra-
tio X1=X2 for three sources of type (11) where V 's are
Bernoulli(p) and G's are uniformly distributed on [�2; 2].
For R1 = �0:5, R2 = 0:5, R3 = �0:1 and p = 0:85, we
obtained the histograms drawn in Figure 2. Even though
p is close to 1, the peaks can be very well estimated (the
smaller the probability p, the higher the peaks).

Finally we examine an echoic environment with one echo
as in (16) for two three second TIMIT voices. A source's
true complex ratio is drawn with solid line in Figure 3. Us-
ing the ratio histogram estimator we obtained the estimates
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Figure 1: The STFT coe�cients histograms for two fre-
quencies (! = 0 left and ! = 15�=32 right).
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Figure 2: The optimal (dotted line) and DUET (solid line)
histograms for a degenerate case (three sources).



drawn with dotted lines in the same �gure. For each fre-
quency we estimated the 2 peaks in the histogram, and then
we decided how to assign the values based on a continuity
property. With the exception of a few frequencies, the es-
timates are close to the ideal curves. The ratio-estimates
obtained from these peaks (i.e. the estimated mixing model
parameters) were very close to the true values.
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Figure 3: The real (left) and imaginary (right) parts of the
estimated ratios (the DUET estimates are the dotted lines).

5. CONCLUSIONS

In this paper we de�ned and analyzed novel signal pro-
cessing techniques that can be e�ectively used for source
separation, signal enhancement, and noise reduction when
using a twin microphone system. First, we de�ned the class
of stochastic signals for which ratio-estimates can be com-
puted from histograms. This class �ts real-world signals of
interest such as voice signals. The main theoretical result
was the computation, in closed form, of the optimal estima-
tor for this class of signals. Finally we extended the optimal
estimator and the DUET suboptimal estimator to the case
of more than two channels.

Future work will present variations of the ratio-estimate
based algorithms for di�erent environments and problems.
Our optimal estimator can be further analyzed to derive
identi�cation resolution bounds, and bounds on the number
of sources in order to be able to separate sources using ratio-
estimate techniques.
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