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(57) ABSTRACT

Computer vision systems and methods for optimized com-
puter vision using deep neural networks and Lipschitz
analysis are provided. The system receives signals or data
related to visual 1magery, such as data from a camera, and

teed-forwards the signals/data through the multiple layers of
a convolutional neural network (CNN). At one or more
layers of the CNN, the system determines at least one Bessel
bound of that layer. The system then determines a Lipschitz
bound based on the one or more Bessel bounds. The system
then applies the Lipschitz bound to the signals. Once the
Lipschitz bound 1s applied, the system can feed-forward the
signals to other processes of the layer or to a further layer.
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SYSTEMS AND METHODS FOR OPTIMIZED
COMPUTER VISION USING DEEP NEURAL
NETWORKS AND LITPSCHITZ ANALYSIS

RELATED APPLICATIONS

The present application claims the prionty of U.S. Pro-
visional Application Ser. No. 62/685,460 filed on Jun. 15,
2018, the entire disclosure of which 1s expressly incorpo-
rated by reference.

BACKGROUND

Technical Field

The present disclosure relates generally to the field of
computer vision technology. More specifically, the present
disclosure relates to computer vision systems and methods
for optimized computer vision using deep neural networks
and Lipschitz analysis.

Related Art

Convolutional neural network (“CNNs™") are widely used
in machine learning and are an eflective tool in various
image processing tasks, such as classification of objects. In
particular, CNNs can be used as feature extractors to extract
different details from images to identily objects in the
images. As a feature extractor, CNNs are stable with respect
to small variations in the input data, and therefore, perform
well 1n a variety of classification, detection and segmenta-
tion problems. As such, similar features are expected when
inputs are from the same class.

The stability to deformation of certain CNNs can be
attributed to sets of filters that form semi-discrete frames
which have an upper bound equal to one. This deformation
stability 1s a consequence of the Lipschitz property of the
CNN or of the feature extractor. As such, the upper bound
can be referred to as a Lipschitz bound.

However, current CNNs can be fooled by changing a
small number of pixels, thus leading to an incorrect classi-
fication. This can be the result of an 1nstability of the CNN
due to a large Lipschitz bound or a lack of one. Therefore,
there 1s a need for computer vision systems and methods
which can determine the Lipschitz bound for diflerent types
of CNNs, thereby improving the ability of computer vision
systems to tolerate variations in mput data. These and other
needs are addressed by the computer vision systems and
methods of the present disclosure.

SUMMARY

The present disclosure relates to computer vision systems
and methods for optimized computer vision using deep
neural networks and Lipschitz analysis. A neural network,
such as a CNN, 1s a multiple layer network with learnable
weilghts and biases that can be used for, among other things,
analyzing visual imagery. The system of the present disclo-
sure receirves signals or data related to the visual imagery,
such as data from a camera, and feed-forwards the signals/
data through the multiple layers of the CNN. At one or more
layers of the CNN, the system determines at least one Bessel
bound of that layer. The system then determines a Lipschitz
bound based on the one or more Bessel bounds. The system
then applies the Lipschitz bound to the signals. Once the
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2

Lipschitz bound 1s applied, the system can feed-forward the
signals to other processes of the layer or to a further layer.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the mvention will be apparent
from the following Detailed Description of the Invention,
taken 1n connection with the accompanying drawings, in
which:

FIG. 1 1s a block diagram illustrating a structure of a layer
of a convolution neural network;

FIG. 2 1s a block diagram illustrating three types of
merging operations of the present disclosure;

FIG. 3 1s a block diagram illustrating a multiple layer
convolutional neural network;

FIGS. 4A-4B are block diagrams illustrating a pooling
filter;

FIGS. 5A-5B are block diagrams illustrating a multiple
layer convolutional neural network;

FIG. 6 1s a flowchart 1llustrating processing steps carried
out by the computer vision system of the present disclosure;

FIG. 7 1s a diagram 1illustrating a convolutional neural
network with multiple layers, 1n accordance with the present
disclosure; and

FIG. 8 1s a diagram illustrating hardware and software

component capable of mmplementing the system of the
present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to computer vision systems
and methods for optimized computer vision using deep
neural networks and Lipschitz analysis as described 1n detail
below 1n connection with FIGS. 1-8.

By way of background and before describing the systems
and methods of the present disclose 1n detail, the structure
and properties of convolutional neural networks (“CNNs”)
will be discussed first. It should be noted that the CNNs
discussed below relate to a generic CNN. However, those
skilled 1n the art would understand that the method and
exemplary embodiments 1n this disclosure can pertain to any
CNN, including but not limited to, scattering CNNs, fully
connected CNNs, sparsely connected CNNs, eftc.

A CNN can contain multiple layers, where each layer can
consist of different or similar features. FIG. 1 illustrates a
layer 100 of a CNN. The layer 100 of FIG. 1 includes an
input node 102, a convolution filter 104, a dilation operation
106, a detection operation 108, a merge filter 110, an output
node 112, a pooling filter 114 and output generation 116. It
should be understood that although the nodes, filters and the
operations will be discussed 1n the singular context, any
layer of the CNN can contain any number of nodes, filters
and operations.

The mput node 102 can process one or more signal(s)
and/or data, such as 1mage data (e.g., pixels) or audio data.
The 1mnput node 102 can be derived from an output node of
a previous layer of the CNN or, when a layer of the CNN 1s
a first layer, the mput node 102 can be an mitial mnput or
signal. For example, a camera can be positioned to record
traflic patterns 1n a particular area. The data from the camera
can be fed into the CNN, where each image can be converted
into an mmput node 102 that 1s fed 1nto a first layer of the
CNN. The first layer can then apply 1ts filters and operations
to the mput signal of the mput node 102 and produce an
output node 112, which can then be fed 1nto a second layer

of the CNN.
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The convolution filter 104 1s a filter that can apply a
convolution operation to the signal from the input node 102.
For example, the operation can apply one or more convo-
lution filters to different sections of the input signal. The
result of the operation produces an output signal that 1s
ted-forward to a next filter or process in the next layer of the
CNN, or the result can be transformed into an output node.
It should be noted that the input signal can be described with
the symbol (*y”) and the convolution filter 104 can be
described with the symbol (“g”) throughout the figures and
description of the present disclosure.

The dilation operation 106 1s an operation that can dilate
an element of the output signal and/or data by a predeter-
mined factor. For example, 1f the signal and/or data 1s

represented 1n a 3x3 matrix, the dilation operation can dilate
the 3x3 matrix into a 7x7 matrix. It should be noted that the
dilation operation 106 can be described with the symbol
(‘) D) throughout the figures and description of the present
disclosure.

The detection operation 108 1s a nonlinear operation(s)
that 1s applied pointwise to the output signal from the
convolution filter 104. For example, the nonlinear operation
can be a Lipschitz constant, a rectified linear unit (“Rel.U”),
a sigmoid, etc. The application of the nonlinear operation
can 1mprove the robustness of the CNN by preventing
instability. Specifically, the nonlinear operation can prevent
a value(s) from the 1input signals from uncontrollably
increasing and becoming unmanageable when the values are
processed through, for example, the merge filter 110 and the
pooling filter 114. It should be noted that the detection
operation 108 can be described with the symbol (“0”).

To optimize the performance of computer vision systems
which rely on CNNs, the present disclosure determines an
optimal Lipschitz bound for the CNN. This determination
can occur during the detection operation 108. By determin-
ing the optimal Lipschitz bound, they can be a significant
reduction 1n 1dentification errors, which would enable the
CNN to conduct a more accurate analysis. Thus, the methods
and embodiments discussed herein produce a significant
improvement 1n the functioning of computer vision systems.
Processes for determining the optimal Lipschitz bound are
discussed 1n more detail below.

The merge filter 110 15 a filter that merges two or more
outputs from the detection operation 108 by a pointwise
operation to produce a single output. FIG. 2 shows three
examples of possible merging operations. The first example
1s sum merging 202, which can, for example, take 1nput
signals v, v,, y, from a filter (e.g., the convolution filter),
apply a nonlinearity function o,, o,, 0,, respectively (e.g.,
a Lipschitz bound), and produce a sum. The output of the
sum merging 202 can be defined by the following formula,
where k 1s a total number of inputs:

F o

. LI ]
= :Zj=lk0j( Hi)

The second example 1s p-norm aggregation 204, which
can, for example, take mput signals vy,, v,, vy, from a filter,
apply a nonlinearity tunction o,, o,, 0., respectively, and
apply a poimtwise p-norm aggregation. The output of the
p-norm aggregation 204 can be defined by the formula:

k y1/p

2= ) Iyl

=T A
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The third example 1s pointwise multiplication merging
206, which can, for example, take nput signals v,, v,, v,
from a filter, apply a nonlinearity function o,, o,, O,
respectively, and apply a pointwise multiplication. The
output of the pointwise multiplication merging 206 can be
defined by the formula:

& _ F (L4
< =1 "o ¥7)

It should be noted that the merge filter 110 of FIG. 1 can
be described with the symbol (“@”) for sum merging 202
and with the symbol (“®”) for pointwise multiplication
merging 206 throughout the figures and description of the
present disclosure. It should turther be noted that the output
value “z” can be used to determine the Lipschitz bound.

The output node 112 of FIG. 1 can be a node that includes
one or more output signals produced 1n a layer of the CNN.
As noted above, the output node 112 can transition nto an
input node for a further layer. For example, as seen 1n FIG.
3, mput node 102a can feed another layer 302. Within the
layer 302, one or more filters and/or operations can be
applied to the mput signals of the mput nodes 102a to
generate output signals. The output signals can exit the layer
302 as output nodes 112a, and/or are generated by output
generation process 116a. The output nodes 1124 can enter
layer 304 as input nodes 1026 and the mput signals from
input nodes 1026 can be subjected to one or more filters
and/or operations. It should be understood by those skilled
in the art that the layer 302 and the layer 304 can contain the
same or different filters and/or operations. The above
described functions can repeat until layer M 306 is reached.

Returning to FIG. 1, the pooling filter 114 1s a filter that
can lower the dimensionality or bandwidth of the nput
signals for output generation 116. A first example of the
pooling filter 114 1s “max” pooling, which 1s shown 1n FIG.
4A. Max pooling 1s an operation that includes taking the
maximal element among the elements 1n a sub-region.
Translation and dilation can be used to separate elements 1n
a sub-region to distinct channels and an L™ aggregation
process selects the largest element.

A second example of the pooling filter 114 1s average
pooling, which 1s shown 1n FIG. 4B. Average pooling 1s an
operation of determining an average value among the ele-
ments 1 a sub-region. The values of three elements are
combined and divided by the number of elements to deter-
mine an average pooling value.

It should be understood that the structure of the layer in
FIG. 1 1s only exemplary. Those skilled in the art would
understand that any combination of the filters and operations
discussed 1n FIG. 1 can be included 1n any layer of the CNN
and the filters and operations can be 1n different positions
along the tlow of the layer. For example, FIGS. 5A and 5B
are different layers within a scattering CNN. In particular,
FIG. 5A shows a scattering CNN 52 with pointwise
p-norms. FIG. 5B shows a scattering CNN 54 with multi-
plication. It should be understood that a scattering CNN 1s
only one type of CNN and, as discussed above, other CNNs
can be used (e.g., fully connected CNNs, sparsely connected
CNNes, efc.)

It should further be noted that the merging operations of
the merge filter 110 and the pooling operations of the
pooling filter 114 aggregate input signals from the input
nodes 102 filters and/or signals. As noted discussed above,
a nonlinear operation, such as an operation which 1imposes
a Lipschitz bound, can prevent the values from the put
signals from uncontrollably increasing and becoming
unmanageable when the values are processed through the
merge filter 110 and the pooling filter 114. Additionally, a
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Lipschitz bound can be imposed on a signal, atter which the
signal can proceed to a next layer.

FIG. 6 1s a flowchart illustrating processing steps 600,
according to the present disclosure, for determining an
optimal Lipschitz bound of a layer in the CNN. As noted
above, by determinming the optimal Lipschitz bounds for the
CNN, the system of the present disclosure greatly improves
the functionality of computer vision systems.

In step 602, a first layer of the CNN receives a first input
node. The first input node mcludes a first input signal. For
example, the mput signal can be a matrix representative of
an 1mage. In step 604, the input signal can pass through a
first filter. The first filter can be the convolution filter 104.
The convolution filter 104 applies the convolution operation
to the 1nput signal. The result of the operation produces an
output signal that i1s fed-forward to the detection operation
108.

In step 606, the detection operation 108 receives the
output signal and determine at least one type of Bessel
bound for the first layer. Two set of formulas for determining,
the different types of Bessel bounds will be discussed. The
first set of Bessel bound formulas, seen below, can be used
to determine three types of Bessel bounds 1t the first layer
does not contain the merge filter 110:

(w)

SUP a2
B
P a2
R )
where:

B, (V=1 type of Bessel bound for an m-th layer with
no merge filter;

B, (#=2"? type of Bessel bound an for m-th layer with
no merge filter;

B, =3 type of Bessel bound an for m-th layer with

no merge filter;
for each m,iﬁ “(w) stands for n” -by-n, matrix that
contains the Fourier transform THB:H(’”) of ijﬂ(f”)m;
for 1=n=n_, 1=n®<n” & (w) stands for the n® -by-
n_diagonal matrix that has the Fournier transform at
J)mjﬂ of (?)m at o for 1ts (n, n) entry; and
A™ is the n” ,-by-n”,, diagonal matrix with (det D,, ,”)™"">
as its (n”, n°) entry.
The second set of Bessel bound formulas, seen below, can
be used to determine three types of Bessel bounds 11 the first
layer contains the merge filter 110.

B _ B
" < 1 <, e
g _ TR o
" <n<n,
3 _ T po
m | <5< L1
<n=<n,
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6

where:
B, (V=1%" type of Bessel bound for an m-th layer with
a merge {ilter;
B (*)=2"“type of Bessel bound an for m-th layer with

a merge {lilter;
B, =3 type of Bessel bound an for m-th layer with
a merge lilter;

It should be understood by those skilled 1n the art that the
amount and type of Bessel bounds determined in 606, as
well as the formulas for determining each type of Bessel
bound, can be diflerent depending on the filters and opera-
tions 1n a layer (e.g., the first layer). Thus, the two sets of
formulas used 1n this disclosure to determine three types of
Bessel bounds based on whether the first layer contains the
merge filter 110 1s only exemplary.

In step 608, the detection operation 108 can determine the
Lipschitz bound for the first layer. The Lipschitz bound can
be determined based on the type of the Bessel bound(s)
determined in step 606. Bessel bounds B, "), B ) and
B_©’ can be determined in step 606 and, in step 608, the
Lipschitz bound can be determined by the following first
Lipschitz calculation:

s.l. yo =1

Un+zZm < By, 1, lsm=M-1
Um+BPy, 1, l<m<M-1
Y+ B Y, L <m< M -1

Yms Zm = U, Tor all m

As discussed above, the value “z” relates to the output
value of the merge operation used by the merge filter 110.
The Lipschitz bound can also be determined 1n step 608
by the following second Lipschitz calculation using only

Bessel bound B, V.

M
]_[ max{l, B},
m=1

Additionally, the Lipschitz bound can also be determined
in step 608 by the following third Lipschitz calculation using

only B_® and B, .

M

m—1
B + E BY || B
mo =1

m=2

In step 610, the determined Lipschitz bound 1s applied to
the output signal. It should be understood that 1n step 608,
the first Lipschitz calculation, the second Lipschitz calcula-
tion and the third Lipschitz calculation can produce different
Lipschitz bound values. As such, 1n step 610, the Lipschitz
bound value that i1s closest to optimality can be selected.
Alternatively, a different Lipschitz bound value can be
selected based on a predetermined parameter. In step 612,
the output signal 1s fed-forward to the next process or filter
in the first layer or to a next layer. For a first example, the
output signal can be fed-forward to a merge filter 110 or a
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pooling filter 114. Alternatively, the output signal can be
ted-forward to a next layer of the CNN.

FI1G. 7 illustrates a CNN with multiple (four) layers 700.
Using the steps described in FIG. 6, the following Fourier
formula will produce the Bessel bounds shown below 1n
Table 1.

The function on the Fourier domain supported on (-1,1)
1s defined as:

Aeo* + 4o + 1
42 + 4w

Flw) = ﬂKP{ ]X(l,uz)(iﬂ) +

e — 4w + 1
42 — 4w

X-12.12)(w) + exp{ ]){ (1/2.){w).

The Fourier transforms of the filters to be C™ gate
function are defined as:

$, (W) = F(w)
gL iw=Fl+2j-1/2)+Flw-2j+1/2)

ji=1,2,3,4.

4e* + 12w+ 9
A2 + 12w + 8

Do () = 6KP( ]X(z,?,;z) () +

Ae® — 12w+ 9
A2 — 12¢0 + 8

X=3/232)(w) + ﬂxp( ]}( (3/2.2)( (W)

g () = Flw+2)) + Flw - 2)
j=1,2,3.
Zr4(w)=Flo+2)+ Flw-2)
gr5(w) = Flw+3) + F(w-3)

. A4 + 200w + 25
3(w) = exXp| 75— ——7 [Y(s-smlw) +

4w* — 20w + 25
X(-5/2.5/2)(@) + @XP| === | X(5/23) ().

TABLE 1
IT1
1 2 3 4
Bm(lj 26_U3 i 1/3 9 1
B, (D 1 1 2 0

Applying the first Lipschitz calculation to the determined
Bessel bounds in Table 1 produces a Lipschitz bound of
2.866. Applying the second Lipschitz calculation to the
determined Bessel bounds 1n Table 1 produces a Lipschitz
bound of 4.102. Applying the third Lipschitz calculation to
the determined Bessel bounds in Table 1 produces a Lip-
schitz bound of 5. As such, the Lipschitz bound value of

2.866, as determined by the first Lipschitz calculation, is the

closest to optimality. Thus, for example, the Lipschitz bound
value of 2.866 can be selected 1 step 610 of FIG. 6 and

applied to the output signal.

FIG. 8 1s a diagram showing a hardware and software
components of a computer system 802 on which the system
of the present disclosure can be implemented. The computer
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8

system 802 can include a storage device 804, computer
vision software code 806, a network interface 808, a com-
munications bus 810, a central processing unit (CPU) (mi-
croprocessor) 812, a random access memory (RAM) 814,
and one or more mput devices 816, such as a keyboard,
mouse, etc. The server 802 could also include a display (e.g.,

liquad crystal display (LCD), cathode ray tube (CRT), etc.).
The storage device 804 could comprise any suitable, com-
puter-readable storage medium such as disk, non-volatile
memory (e.g., read-only memory (ROM), eraseable pro-
grammable ROM (EPROM), electrically-eraseable pro-
grammable ROM (EEPROM), flash memory, field-pro-

grammable gate array (FPGA), etc.). The computer system
802 could be a networked computer system, a personal
computer, a server, a smart phone, tablet computer etc. It 1s
noted that the server 802 need not be a networked server, and
indeed, could be a stand-alone computer system.

The functionality provided by the present disclosure could
be provided by computer vision software code 806, which
could be embodied as computer-readable program code
stored on the storage device 804 and executed by the CPU
812 using any suitable, high or low level computing lan-
guage, such as Python, Java, C, C++, C #, NET, MATLAB,
etc. The network interface 808 could include an Ethernet
network interface device, a wireless network interface
device, or any other suitable device which permits the server
802 to communicate via the network. The CPU 812 could
include any suitable single-core or multiple-core micropro-
cessor ol any suitable architecture that 1s capable of 1imple-
menting and running the computer vision soitware code 806
(e.g., Intel processor). The random access memory 814
could include any suitable, high-speed, random access
memory typical of most modern computers, such as
dynamic RAM (DRAM), etc.

Having thus described the system and method 1n detail, it
1s to be understood that the foregoing description i1s not
intended to limit the spirit or scope thereof. It will be
understood that the embodiments of the present disclosure
described herein are merely exemplary and that a person
skilled 1n the art can make any variations and modification
without departing from the spirit and scope of the disclosure.
All such vanations and modifications, including those dis-
cussed above, are intended to be included within the scope
of the disclosure. What is intended to be protected by Letters
Patent 1s set forth in the following claims.

What 1s claimed 1s:
1. A computer vision system, comprising:
at least one computer system; and
computer vision system code executed by the at least one
computer system, the computer vision system code
causing the computer system to:
receive, at a first layer of a convolution neural network
executing on the computer system, a first input node
wherein the first input node comprises a first input
signal;
generate a first output signal by passing the first input
signal through a first filter;
determine at least one first Bessel bound for the first
layer;
determine a first Lipschitz bound based on the at least
one first Bessel bound; and
apply the first Lipschitz bound to the first output signal.
2. The computer vision system of claim 1, wherein the
computer vision system code further causes the computer
system to:
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transform the first output signal 1nto an output node;

teed-forward the output node to a second layer of the

convolution neural network, wherein the output node
becomes a second input node, the second input node
comprising a second input signal;

generate a second output signal by passing the second

input signal through a second filter;

determine at least one second Bessel bound for the second

layer;

determine a second Lipschitz bound based on the at least

one first Bessel bound and the at least one second
Bessel bound; and

apply the second Lipschitz bound to the output signal.

3. The computer vision system of claim 1, wherein the
first filter can be one of a convolution filter, a merge filter or
a pooling filter.

4. The computer vision system of claim 1, wherein the at
least one first Bessel bound 1s determined based on whether
the first layer comprises a merge filter.

5. The computer vision system of claim 1, wherein the at
least one first Bessel bound comprises three Bessel bounds.

6. The computer vision system of claim 5, wherein each
of the three Bessel bounds are determined by a different
formula.

7. The computer vision system of claim 6, wherein the
first Lipschitz bound is determined by using a value from at
least one of the three Bessel bounds.

8. A method, comprising,

receiving, at a first layer of a convolution neural network

executing on a computer system, a first input node
wherein the first mput node comprises a first 1nput
signal;

generating a first output signal by passing the first input

signal through a first filter;

determining at least one first Bessel bound for the first

layer;

determining a first Lipschitz bound based on the at least

one first Bessel bound; and

applying the first Lipschitz bound to the first output

signal.

9. The method of claim 8, turther comprising;:

transforming the first output signal into an output node;

teed-forwarding the output node to a second layer of the
convolution neural network, wherein the output node
becomes a second input node, the second i1nput node
comprising a second input signal;

generating a second output signal by passing the second

input signal through a second filter;

determining at least one second Bessel bound for the

second layer;

determining a second Lipschitz bound based on the at

least one first Bessel bound and the at least one second
Bessel bound; and
applying the second Lipschitz bound to the output signal.

10. The method of claim 8, wherein the first filter can be
one of a convolution filter, a merge filter or a pooling filter.
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11. The method of claim 8, wherein the at least one first
Bessel bound 1s determined based on whether the first layer
comprises a merge filter.

12. The method of claim 8, wherein the at least one first
Bessel bound comprises three Bessel bounds.

13. The method of claim 12, wherein each of the three
Bessel bounds are determined by a different formula.

14. The method of claim 13, wherein the first Lipschitz
bound 1s determined by using a value from at least one of the
three Bessel bounds.

15. A non-transitory, computer-readable medium having
computer readable instructions stored thereon which, when
executed by a processor, cause the processor to perform the
steps comprising,

recerving, at a first layer of a convolution neural network,

a first input node wherein the first input node comprises
a first mput signal;

generating a first output signal by passing the first input

signal through a first filter;

determining at least one first Bessel bound for the first

layer;

determiming a first Lipschitz bound based on the at least

one first Bessel bound; and

applying the first Lipschitz bound to the first output

signal.

16. The computer-readable medium of claim 15, further
comprising computer-readable instructions for causing the
processor to perform the steps of:

transforming the first output signal into an output node;

teed-forward the output node to a second layer of the

convolution neural network, wherein the output node
becomes a second mput node, the second input node
comprising a second mput signal;

generating a second output signal by passing the second

input signal through a second filter;

determiming at least one second Bessel bound for the

second layer;

determiming a second Lipschitz bound based on the at

least one first Bessel bound and the at least one second
Bessel bound; and

applying the second Lipschitz bound to the output signal.

17. The computer-readable medium of claim 15, wherein
the first filter can be one of a convolution filter, a merge filter
or a pooling filter.

18. The computer-readable medium of claim 15, wherein
the at least one first Bessel bound 1s determined based on
whether the first layer comprises a merge filter.

19. The computer-readable medium of claim 15, wherein:

the at least one first Bessel bound comprises three Bessel

bounds; and

cach of the three Bessel bounds are determined by a

different formula.

20. The computer-readable medium of claim 19, wherein
the first Lipschitz bound 1s determined by using a value from
at least one of the three Bessel bounds.

G ex x = e
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