	Intro	Coorbit Representation	Injectivity	Stability
_				<u> </u>

Analysis of Invariants and Invariant Representations

Radu Balan, Efstratios Tsoukanis

Department of Mathematics and Norbert Wiener Center for Harmonic Analysis and Applications University of Maryland, College Park, MD

March 23, 2023

AMS Special Session on Geometry and Symmetry in Data Science

Intro	Coorbit Representation	Injectivity	Stability

2 G-Invariant Coorbit Representations

Injectivity

()

Intro	Coorbit Representation	Injectivity	Stability
Table of C	Contents		

2 G-Invariant Coorbit Representations

3 Injectivity

4 Stability

()

3 🕨 🖌 3 🕨

æ

Intro	
00000	

Injectivity

Motivation

Certain phenomena and systems enjoy invariance to group actions.

In physics: the celebrated Noether theorem asserts that a conservation law exists for any symmetry (i.e., group invariance) of the Hamiltonian.

In data science, certain systems exhibit intrinsic invariance to group actions: in graph deep learning, graph level regression and classification must be invariant to node labeling. Specifically, this means: if (W, X) is a data graph, where $W \in Sym(\mathbb{R}^n)$ and $X \in \mathbb{R}^{n \times d}$, then for any $n \times n$ permutation matrix P, the regression/classification function f, $(W, X) \mapsto f(W, X)$ must satisfy $f(PWP^T, PX) = f(W, X)$.

Intro	Coorbit Representation	Injectivity	Stability
00000	0000		00000

Problem Formulation

Consider a group $G \subset O(d)$ acting on the Euclidean space $V = \mathbb{R}^d$.

General problem

Construct an embedding map $\Phi: V \to \mathbb{R}^m$

- Invariance: $\Phi(U_g x) = \phi(x) \ \forall g \in G, x \in V$
- 2 Injectivity: if $\Phi(x) = \Phi(y)$ then there exists $g \in G$ so that $y = U_g x$.

•
$$\Phi$$
 is bi-Lipschitz on $(\hat{V} = V/G, \mathbf{d})$, where $\mathbf{d}([x], [y]) = \inf_{u \in [x], v \in [y]} ||u - v||$.

Intro ○○○●○○	Coorbit Representation	Injectivity	Stability 00000
Approaches			

Over the past years, several constructions have been proposed:

- **1** Invariant Polynomials: Hilbert, Noether, ..., Cahill¹, Bandeira²
- **2** Kernels: replace monomials by other kernels, e.g. $e^{i\omega x}$, e^{-x^2} . $\sigma(\langle x, a \rangle)^3$
- **3** Sorting: extends the 1-D sorting, $x \mapsto \downarrow x^{4,5}$

1+2: sum pooling layer; 3: extension of max pooling layer in deep nets⁶, ⁷.

¹J. Cahill, A. Contreras, A.C. Hip, Complete Set of translation Invariant Measurements with Lipschitz Bounds, Appl. Comput. Harm. Anal. 49 (2020), 521-539.

²A. Bandeira, B. Blum-Smith, J. Kileel, J. Niles-Weed, A. Perry, A.S. Wein, Estimation under group actions: Recovering orbits from invariants, ACHA 66 (2023)

³D. Yarotsky, Universal approximations of invariant maps by neural networks, Constructive Approximation (2021)

⁴R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with Applications to Graph Deep Learning, arXiv:2203.07546

⁵J. Cahill, J.W. Iverson, D.G. Mixon, D. Packer, Group-invariant max filtering, arXiv:2205.14039.

⁶O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets, Proc ICLR 2016 ()

Intro ○○○○●○	Coorbit Representation	Injectivity	Stability
Existing F	Results		

Injectivity problem

()

Over the past 15 years or so, there have been works that recognized the difference between *generating polynomials* and *separating invariants*⁸ A seminal paper that resurfaces results on semi-algebraic sets is ⁹. The method goes back to earlier works in phase retrieval¹⁰. More recently, in the context of G-invariance, ¹¹, ¹², or permutation

invariance¹³

⁸Emilie Dufresne, Separating invariants and finite reflection groups, Advances in Mathematics 221 (2009), no. 6, 1979–1989.

⁹Dym Nadav, Steven J. Gortler. "Low dimensional invariant embeddings for universal geometric learning." arXiv preprint arXiv:2205.02956.

¹⁰R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, ACHA 20(2006)

¹¹D. G. Mixon, D. Packer, Max filtering with reflection groups, arXiv:2212.05104

 $^{12}\mathsf{R}.$ Balan, E. Tsoukanis, G-invariant representations using coorbits: Injectivity properties, arXiv:2310.16365

¹³On the equivalence between graph isomorphism testing and function approximation with GNNs 7 Chen S Villar I Chen I Bruna NeurIPS 2019

G-Invariant Representations

Lipschitz and Bi-Lipschitz properties

Earlier results obtain Lipschitz/bi-Lipschitz properties on compacts, or certain classes of functions.

Global L/bi-L are harder to establish and typically rule out polynomial based embeddings.

So far only sorting based embeddings showed such global properties $^{14}, ^{15}, _{16}$

¹⁴R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Bi-lipschitz properties, arXiv:2308.11784

¹⁵J. Cahill, J. W. Iverson, D. G. Mixon, Bilipschigz group invariants, arXiv:2305.17241 ¹⁶D. G. Mixon, Y. Qaddura, Injectivity, stability, and positive definiteness of max filtering, arXiv:2212.11156

Intro	Coorbit Representation	Injectivity	Stability
000000			00000
Table of (Contents		

2 G-Invariant Coorbit Representations

3 Injectivity

4 Stability

()

æ

3 🕨 🖌 3 🕨

Intro	Coorbit Representation	Injectivity	Stability
	0000		

Coorbit Representations

Let V be a d-dimensional Hilbert space and G a finite group of size N = |G| acting unitarily on V, $\{U_g, g \in G\}$. The quotient space $\hat{V} = V/G$ is the set of orbits $[x] = \{U_g x, g \in G\}$ induced by the group action, where for $x, y \in V, x \sim y$ iff $y = U_g x$ for some $g \in G$. (\hat{V}, \mathbf{d}) becomes a metric space with the natural distance

$$\mathbf{d}([x],[y]) = \min_{g \in G} \|x - U_g y\|$$

Fix a generator $w \in V$ (call it, window or template) and consider the nonlinear map induced by sorting its coorbit:

$$\phi_{w}: V \to \mathbb{R}^{N}$$
, $\phi_{w}(x) = \downarrow ((\langle x, U_{g}w \rangle)_{g \in G}).$

where $\downarrow (y) = (y_{\pi(i)})_{i \in [N]}$ is the non-increasing sorting operator: $y_{\pi(1)} \ge \cdots \ge y_{\pi(N)}$.

Intro 000000	Coorbit Representation ○○●○	Injectivity	Stability
Invariant Coor	bit Representations		

For a collection
$$\mathbf{w} = (w_1, \dots, w_p) \in V^p$$
 let

$$\Phi_{\mathbf{w}}: V \to \mathbb{R}^{N \times p} \quad , \quad \Phi_{\mathbf{w}}(x) = \left[\phi_{w_1}(x) | \cdots | \phi_{w_p}(x)\right].$$

For a subset $S \subset [N] \times [p]$ of cardinal m = |S|, let

$$\Phi_{\mathbf{w},S}: V
ightarrow l^2(S) \sim \mathbb{R}^m \;, \; \Phi_{\mathbf{w},S}(x) = (\Phi_{\mathbf{w}}(x))|_S$$

be the restriction of $\Phi_{\mathbf{w}}$ to S. For a linear operator $\mathcal{L}: l^2(S) \to \mathbb{R}^m$, let

$$\Psi_{\mathbf{w},S,\mathcal{L}}: V \to \mathbb{R}^m$$
, $\Psi_{\mathbf{w},\mathcal{L}}(x) = \mathcal{L}(\Phi_{\mathbf{w},S}(x))$

be the "projection" of $\Phi_{\mathbf{w},S}$ through \mathcal{L} into \mathbb{R}^m . **Problems:** Construct (\mathbf{w}, S) so that $\Phi_{\mathbf{w},S}$ is a bi-Lipschitz embedding of \widehat{V} . Construct $(\mathbf{w}, S, \mathcal{L})$ so that $\Psi_{\mathbf{w},S,\mathcal{L}}$ is bi-Lipschitz.

Intro	Coorbit Representation	Injectivity	Stability
000000	0000		00000

Invariant Coorbit Representations (2)

Special cases:

1. If $G = S_n$ and $V = \mathbb{R}^{n \times d}$ with action $(P, X) \mapsto PX$, then ¹⁷ introduced the embedding $\beta_A(X) = \downarrow (XA)$, for key $A \in \mathbb{R}^{d \times D}$ and sorting operator acting independently in each column.

Equivalent recasting: Let $w_1 = \delta_1 \cdot a_1^T, ..., w_D = \delta_1 \cdot a_D^T$, where $\delta_1 = (1, 0, ..., 0)^T$ and $A = [a_1| \cdots |a_D]$. Then note $\phi_{w_1}(X) = \downarrow (Xa_1) \otimes 1_{(n-1)!}$. Thus $\Phi_w(X) = \beta_A(X) \otimes 1_{(n-1)!}$. Thus $\beta_A(X) = \Phi_{w,S}(X)$ for an appropriate subset $S \subset [n!] \times [D]$ of size nD. 2. The max filter introduced in ¹⁸ for some template $w \in V$ is defined by $\langle \langle \cdot, w \rangle \rangle : V \to \mathbb{R}, \langle \langle x, w \rangle \rangle = \max_{g \in G} \langle x, U_g w \rangle$. Equivalent recasting: $\langle \langle x, w \rangle \rangle = \Phi_{w,S}(X)$, for $S = \{1\}$.

¹⁷R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with Applications to Graph Deep Learning, arXiv:2203.07546 (2022)

¹⁸J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max filtering, arXiv:2205.14039 (2022)

()

Intro	Coorbit Representation	Injectivity	Stability
000000		●○	00000
Table of Co	ontents		

2 G-Invariant Coorbit Representations

Injectivity

4 Stability

()

æ

3 🕨 🖌 3 🕨

Intro	Coorbit Representation	Injectivity	Stability
		0•	

Minimal embeddings

Setup: Let V be a d-dimensional Hilbert space and G a finite group of size N = |G| acting unitarily on V, $\{U_g, g \in G\}$. For a subset $S \subset [N] \times [p]$ of cardinal m = |S|, let

$$\Phi_{\mathbf{w},S}: V o l^2(S) \sim \mathbb{R}^m \ , \ \Phi_{\mathbf{w},S}(x) = (\Phi_{\mathbf{w}}(x))|_S$$

be the restriction of Φ_w to S.

A typical injectivity result asserts that for $p \ge p_{min}$ and a generic $\mathbf{w} \in V^p$, for any S of cardinal $m \ge m_{min}$ that satisfy certain shape conditions, the map $\Phi_{\mathbf{w},S}$ is injective on \hat{V} . (p_{min}, m_{min}) depend on specific rep. $\mathbf{v} \in \mathcal{O} \setminus \mathcal{O}$ () G-Invariant Representations

Intro	Coorbit Representation	Injectivity	Stability
000000		00	●○○○○
Table of Conte	onts		

2 G-Invariant Coorbit Representations

3 Injectivity

4 Stability

()

≣ । ह

Injectivity

Injectivity implies (bi-Lipschitz) Stability

Theorem

For fixed $\mathbf{w} \in V^p$ and $S \subset [N] \times [p]$, where |S| = m, suppose that the map $\Phi_{\mathbf{w},S} : V \to \mathbb{R}^m$, is injective on V/G. Then, $\exists 0 < a \le b < \infty$ such that $\forall (x, y) \in V, \ x \nsim y$

 $a d([x], [y]) \leq \|\Phi_{\boldsymbol{w}, \boldsymbol{S}}(x) - \Phi_{\boldsymbol{w}, \boldsymbol{S}}(y)\|_2 \leq b d([x], [y]).$

Injectivity

3

Injectivity implies (bi-Lipschitz) Stability

Theorem

For fixed $\mathbf{w} \in V^p$ and $S \subset [N] \times [p]$, where |S| = m, suppose that the map $\Phi_{\mathbf{w},S} : V \to \mathbb{R}^m$, is injective on V/G. Then, $\exists 0 < a \le b < \infty$ such that $\forall (x, y) \in V, \ x \nsim y$

$$\mathsf{ad}([x],[y]) \leq \|\Phi_{oldsymbol{w},\mathcal{S}}(x) - \Phi_{oldsymbol{w},\mathcal{S}}(y)\|_2 \leq b \, \mathsf{d}([x],[y]).$$

Corollary

For max filter bank $\Phi : \mathbb{R}^d/G \to \mathbb{R}^m$, injectivity implies stability.

Intro 000000	Coorbit Representation	Injectivity 00	Stability
Upper Lipsch	nitz bound		

Lemma

Let $w \in V^p$, $S \subset [N] \times [p]$ and

$$B = \max_{\substack{\sigma_1, \dots, \sigma_p \subset G \\ |\sigma_i| = m_i, \forall i}} \lambda_{max} \left(\sum_{i=1}^p \sum_{g \in \sigma_i} g. w_i w_i^T U_g^T \right)$$

where $S_i = \{j \in [N], (i, j) \in S\}$ and $m_i = |S_i|$. Then $\Phi_{w,S} : \hat{V} \to \mathbb{R}^m$ is Lipschitz with constant upper bounded by \sqrt{B} .

3

Intro 000000	Coorbit Representation	Injectivity 00	Stability ○○○●○

Lower Lipschitz bound

The proof of the main Theorem is by contradiction.

1. If lower Lipschitz constant vanishes, then it must vanish locally: there are $(x_n)_n, (y_n)_n$ such that

$$\lim_{n\to\infty}\frac{\|\Phi_{\mathbf{w},S}(x_n)-\Phi_{\mathbf{w},S}(y_n)\|^2}{\mathbf{d}([x_n],[y_n])^2}=0$$

and

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = z_1, \ \|x_n\| = 1, \ \|y_n\| \le 1, \ \|z_1\| = 1$$

and they are aligned with one another:

$$\|x_n - y_n\| = \min_{g \in G} \|x_n - U_g y_n\|$$
(1)

$$\|x_n - z_1\| = \min_{g \in G} \|x_n - U_g z_1\|$$
(2)

$$||y_n - z_1|| = \min_{g \in G} ||y_n - U_g z_1||$$
(3)

Intro	Coorbit Representation	Injectivity	Stability
000000		00	○○○○●
Lower Lipso	chitz bound		

2. We construct inductively $z_2, z_3, ..., z_d$ such that for all $1 \le k \le d-1$:

$$||z_{k+1}|| \ll ||z_k||, \ \dim(\text{span}(z_1, \dots, z_k)) = k$$

and the local lower Lipschitz constant vanishes in a convex set $\{\sum_{r=1}^{k} a_r z_r , |a_r - 1| < \epsilon\}.$ 3. For k = d this construction defines a non-empty open set $\{\sum_{r=1}^{k} a_r z_r , |a_r - 1| < \epsilon\}$ where the local lower Lipschitz constant vanishes.

4. Finally, we can construct $u, v \neq 0$, so that $x = u + \sum_{r=1}^{d} z_r$ and $y = v + \sum_{r=1}^{d} z_r$ satisfy $x \neq y$ and yet

$$\Phi_{\mathbf{w},S}(x) = \Phi_{\mathbf{w},S}(y).$$

This contradicts the injectivity hypothesis.

イロト 不得 トイヨト イヨト 二日