Radu Balan

University of Maryland
Department of Mathematics
Norbert Wiener Center for Harmonic Analysis and Applications
College Park, Maryland

rvbalan@umd.edu April 2, 2024

Working Group: **The Potential Value of Information and Data** Info-Metrics Institute, American University and Santa Fe Institute Santa Fe Institute, Santa Fe, New Mexico

Value of Information through an Applied Mathematician's Looking-Glass

Consider these quotes:

"The whole is greater than the sum of the parts." attributed to Aristotle (Metaphysics, Book VIII) $^{\rm 1}$

"The whole is greater than the part." Euclid (Elements, Book I) How to formalize mathematically?

 $^{^{1} \}text{https://se-scholar.com/se-blog/} 2017/6/23/\text{who-said-the-whole-is-greater-than-the-sum-of-the-parts}$

Value of Information through an Applied Mathematician's Looking-Glass

Consider these quotes:

"The whole is greater than the sum of the parts." attributed to Aristotle (Metaphysics, Book VIII) $^{\rm 1}$

"The whole is greater than the part." Euclid (Elements, Book I) How to formalize mathematically?

Recall the concept of measure:

A map $m: \mathcal{P}(\{1,2,\ldots,N\}) \to \mathbb{R}$ such that:

- **③** $m(A \cup B) = m(A) + m(B) m(A \cap B)$, for every $A, B \subset \{1, 2, ..., N\}$.

Immediate consequences:

If $A \cap B = \emptyset$ then $m(A \cup B) = m(A) + m(B)$ (additivity)

If $B \subset A$ then $m(B) \leq m(A)$ (monotonicity)

Value of Information as a Super-Additive Measure

Inspired by generalized concepts of measure such as *super-additive* and *sub-additive* measures, **Amos Golan** and R.B. define:

Definition

A value of information function is a map $v : \mathcal{P}(\{1, 2, ..., N\}) \to \mathbb{R}$ such that:

- (null value) $v(\emptyset) = 0$.
- (normalization) $v(\{1,2,\ldots,N\}) = 1$.
- (positivity) $v(A) \ge 0$, for all $A \subset \{1, 2, ..., N\}$.
- (super-additivity) $v(A \cup B) \ge v(A) + v(B) v(A \cap B)$, for all $A, B \subset \{1, 2, ..., N\}$.

Value of Information as a Super-Additive Measure

Inspired by generalized concepts of measure such as *super-additive* and *sub-additive* measures, **Amos Golan** and R.B. define:

Definition

A value of information function is a map $v : \mathcal{P}(\{1, 2, ..., N\}) \to \mathbb{R}$ such that:

- (null value) $v(\emptyset) = 0$.
- ② (normalization) $\nu(\{1,2,\ldots,N\})=1$.
- (positivity) $v(A) \ge 0$, for all $A \subset \{1, 2, ..., N\}$.
- (super-additivity) $v(A \cup B) \ge v(A) + v(B) v(A \cap B)$, for all $A, B \subset \{1, 2, ..., N\}$.

In particular:

- If $A \cap B = \emptyset$ then $v(A \cup B) \ge v(A) + v(B)$ ("the whole is greater than the sum of the parts")
- If $B \subset A$ then $v(B) \le v(A)$ ("the whole is greater than the part")

Open questions

The fundamental question we have: Is there an objective way of defining a value of information function?

In this context, we looked at geometric and analytic properties of the set of value of information functions, a.k.a. normalized super-additive measures:

$$S = \{v: \{1,2,\ldots,N\} \rightarrow [0,1], v(\emptyset) = 0, v(A \cup B) + v(A \cap B) \geq v(A) + v(B), \forall A,B\}$$

Remarks:

• This is a compact convex set in \mathbb{R}^{2^N} of dimension 2^N-2 . What are its extreme points? Is there a *distinguished extreme point* that can serve as "objective value of information"?

Are there natural properties that can be added to the definition to narrows down the list of value of information functions?

• Connections to Choquet potential theory, and the imprecise probability theory.