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High-Level Overview

In this series of lectures, we discuss a few harmonic analysis techniques
and problems applied to machine learning.
1. NN: Neural networks (NN) and their universal approximation property.
2. Lipschitz analysis: we provide rationals for studying Lipschitz properties
of NNs, and then we perform a Lipschitz analysis of these networks. We
focus on two aspects of this analysis: stochastic modelng of local vs.
global analysis, and a scattering network inspired Lipschitz analysis of
convolutive networks.
3. Invariance and Equivariance: We highlight the duality between
invariance and covariance/equivariance, with focus on G-invariant
representations.
4. Applications to data analysis and modeling: We present applications on
a variety of problems: classification and regression on graphs; generative
models for data sets; neural network based modeling of time-evolution of
dynamical systems; discrete optimizatons.
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Neural Networks: Architectures and Properties

Neural networks were introduced a long time ago ...
1 1925: Ising model – first Recurrent Neural Network (RNN)
2 1940s: Hebbian learning for neuroplasticity – weights are learned

dynamically
3 1958: Rosenblatt introduced the perceptron, a 1-layer NN
4 1965: Ivakhnenko and Lapa: Multi-Layer Perceptron (MLP)
5 1967: Amari studied stochastic gradient descent (SGD) for

training/learning
6 1980: Fukushima introduced the convolutional neural network (CNN)
7 1991-2: Schmidhuber introduced adversarial networks (precursors of

GANs - 2014 by Goodfellow), generative models, and the transformers
with linearized self-attention

Radu Balan (UMD) HA - ML Day 1 06/28-30/2023



Overview Day 1:Neural Networks Day 1: Lipschitz Analysis Day 2 Day 3

Network Architectures
Deep Neural Networks

Input layer: x = (x1, x2, · · · , xn)T

Output layer: y = (y1, y2, · · · , ym)T

Number of Layers: L
y = AL+1 · σ(AL · σ(AL−1 · · ·σ(A1 · x + b1) · · · ) + bL−1) + bL) + bL+1

The scalar activation function σ′ : R→ R acts entrywise.

Figure: A general Feed-Forward Network, or a Deep Neural Network (DNN)
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Network Architectures
Convolutive Neural Networks (CNN)

A Convolutive Neural Network is a Deep Neural Network with two
additional features:

1 Linear operators Ak are convolutive operators, and implemented as
convolutions

2 Activation functions are followed by downsampling and (optional)
pooling layers: either max-pooling or sum-pooling.

Figure: One layerr of a Convolutive Neural Network (picture curtesy of
robygarba@pixabay)
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Convolutive Neural Networks (CNN)
Alex Net

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers.
Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 .

Figure: From Krizhevsky et all 2012 : AlexNet: 5 convolutive layers + 3 dense
layers. Input size: 224x224x3 pixels. Output size: 1000.
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1. Universal Approximation

Universal Approximation Properties of Neural Netwoks
Conventional wisdom says that neural networks can approximate arbitrary
well any “reasonable” function f : Rn → Rm.
Earliest results showed that even one hidden layer networks approximate
target functions equally well. One hidden layer networks are called
perceptrons. The input-output characterization of a perceptron
Φ : Rn → R, is given by:

Φ(x) = aTσ(Wx + b) + b0 , x 7→ Φ(x) =
p∑

k=1
akσ(

n∑
j=1

Wk,jxj + bk) + b0.

Theorem (Cybenko 1989)
Assume σ : R→ R is a bounded continuous function that satisfies
limt→∞ σ(t) = 1 and limt→−∞ σ(t) = 0. Then the span of the set of
functions {σ(wT x + b) , w ∈ Rn , b ∈ R} is dense in C([0, 1]n).
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1. Universal Approximation

Proof of Cybenko’s Universal Approximation Theorem

Proof
The proof is by contradiction. Denote by K = [0, 1]n the compact unit
cube. Assume V = span{σ(wT x + b) , w ∈ Rn , b ∈ R} is not dense in
C(K ). Then its closure is a proper subspace of C(K ), and by Riesz
representation theorem, there exists a signed, finite Borel measure µ over
[0, 1]n so that∫

K
σ(wT x + b)dµ(x) = 0 , ∀w ∈ Rn∀b ∈ R.

We shall prove that σ ∈ L∞(R) satisfying σ(t) t→∞−→ 1 and σ(t) t→−∞−→ 0
implies µ = 0. For λ, b, θ ∈ R and w ∈ Rn, let

φλ(x) = σ(λ(wT x + b) + θ) = σ((λw)T x + (λb + θ))
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1. Universal Approximation

Proof of Cybenko’s Universal Approximation Theorem
(cont’ed)

Notice:

lim
λ→∞

φλ(x) =


1 if wT x + b > 0

σ(θ) if wT + b = 0
0 if wT x + b < 0

Let Πw ,b = {x , wT x + b = 0} denote a hyperplane, and
Hw ,b = {x , wT + b > 0} denote a half-space. Then by Lebesgue’s
dominated convergence theorem (even the simpler form, Lebesgue
bounded convergence theorem),

0 = lim
λ→∞

∫
K
φλ(x)dµ(x) = σ(θ)µ(Πw ,b) + µ(Hw ,b)

Since σ takes at least two distinct values, we obtain µ(Πw ,b) = 0 and
µ(Hw ,b) = 0, for all w ∈ Rn and b ∈ R.

Radu Balan (UMD) HA - ML Day 1 06/28-30/2023



Overview Day 1:Neural Networks Day 1: Lipschitz Analysis Day 2 Day 3

1. Universal Approximation

Proof of Cybenko’s Universal Approximation Theorem
(cont’ed)

Construct the linear functional h ∈  L∞(R) 7→ F (h) =
∫

K h(wT x)dµ(x). It
follows that, for any interval I ⊂ R (either open, closed, bounded or not),
F (1I) = 0, where 1I is the indicator function of I. Linear combinations of
indicator functions are weak dense in L∞(R). Hence F (h) = over  L∞(R).
In particular, for h(t) = cos(2πt) and h(t) = sin(2πt), and choosing
w = m ∈ Zn, it follows

0 =
∫

K
cos(2πmT x) + isin(2πmT x)dµ(x) =

∫
K

e2πi〈m,x〉dµ(x) = µ̂(m).

Thus all Fourier coefficients of µ are 0, from where we conclude µ = 0.
Contradiction!
Hence V = span{σ(wT x + b) , w ∈ Rn , b ∈ R} is dense in C(K ).
Q.E.D.
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1. Universal Approximation

Further Results
Remark
The compact set [0, 1]n can be replaced by any compact set K: scale and
translate to bring it inside [0, 1]n; then use Tietze extension theorem.

Remark
Recent results extend the density result to various other spaces, such as
Ck(K ), W k,p(K ), etc; they also extend to the case of certain unbounded
σ, e.g., the ReLU function, ReLU(x) = x1(0,∞).

Remark
Cybenko’s proof (or several subsequent results) is not constructive. Recent
results by other researchers (e.g., Petersen and Voigtlaender; Bolcskei,
Grohs, Kutyniok and Petersen) provide explicit architectures (number of
layers, number of hidden nodes) and even memory cost (i.e., quantized
weights) that achieves a preset approximation accuracy.
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2. Ridgelets

Harmonic Analysis Perspective - The Ridgelet Transform
Candes’ Results

Denote σa,u,b(x) = 1√
aσ( uT x−b

a ) and let dµ(a, u, b) = da
an+1 dudb denote a

normalized measure on M = R+ × Sn−1 × R.
Theorem (E. Candes, 1999)
Assume σ : R→ R satisfies the admissibility condition

∫∞
−∞ |σ̂(ω)|2/|ω|ndω <∞.

Then
1 For any f ∈ L1(Rn) so that f̂ ∈ L1(Rn),

f = cσ
∫

M
〈f , σa,u,b〉σa,u,bdµ(a, u, b) , ‖f ‖2

2 = cσ
∫

M
|〈f , σa,u,b〉|2dµ(a, u, b)

with absolute convergence of the integrals. The constant cσ is proportional
to the admissibility constant.

2 The map R : L2(Rn)→ L2(M; dµ), f 7→ R(f ) = 〈f , σa,u,b〉 is a multiple of
an isometry.
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2. Ridgelets

Frames of Ridglets

Theorem
3 Assume further that: (i) σ̂ has a 0 of order at least n/2 at origin; (ii)
σ̂ decays like 1/|ω|2+ε at ±∞; and (iii) For some a0 > 0,
inf1≤|ω|≤a0

∑
j≥0 |σ̂(a−j

0 ω)|2|a−j
0 ω|−(n−1) > 0. Let

j0 = j0(a0, n) = bloga0

(
π

2dπn/log(n)e

)
c − 1 be a certain integer

(defining the coarsest scale). Then there exists a b∗0 > 0 so that for
every b0 < b∗0 the set of functions σj,u,k(x) = aj/2

0 σ(aj
0〈u, x〉 − kb0)

indexed by Γ = ∪j≥j0({j} × Ej × Z) where Ej is an εj -net of the unit
sphere Sn−1 with εj = 1

2 aj−j0
0 defines a frame for L2([−1, 1]n).

Specifically, this means that there are 0 < A ≤ B <∞ so that for
every f ∈ L2([−1, 1]n),

A‖f ‖2
2 ≤

∑
(j,u,k)∈Γ

|〈f , σj,u,k〉|2 ≤ B‖f ‖2
2.
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1. Motivating Examples

Machine Learning
According to Wikipedia (attributed to Arthur Samuel 1959), ”Machine
Learning [...] gives computers the ability to learn without being explicitly
programmed.”
While it has been first coined in 1959, today’s machine learning, as a field,
evolved from and overlaps with a number of other fields: computational
statistics, mathematical optimizations, theory of linear and nonlinear
systems.

Types of problems (tasks) in machine learning:
1 Supervised Learning: The machine (computer) is given pairs of inputs

and desired outputs and is left to learn the general association rule.
2 Unsupervised Learning: The machine is given only input data, and is

left to discover structures (patterns) in data.
3 Reinforcement Learning: The machine operates in a dynamic

environment and had to adapt (learn) continuously as it navigates the
problem space (e.g. autonomous vehicle).
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1. Motivating Examples

Example 1: The AlexNet
The ImageNet Dataset

Dataset: ImageNet dataset. Currently: 14.2 mil.images; 21841 categories;
image-net.org
Task: Classify an input image, i.e. place it into one category.

Figure: The ”ostrich” category ”Struthio Camelus” 1393 pictures. From
image-net.org
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1. Motivating Examples

Example 1: The AlexNet
The Supervised Machine Learning

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers.
Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 [KSH12].
Trained on a subset of the ImageNet: Part of the ImageNet Large Scale
Visual Recognition Challenge 2010-2012: 1000 object classes and
1,431,167 images.

Figure: From Krizhevsky et all 2012: AlexNet: 5 convolutive layers + 3 dense
layers. Input size: 224x224x3 pixels. Output size: 1000.
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1. Motivating Examples

Example 1: The AlexNet
Adversarial Perturbations

The authors of [Szegedy’13] (Szegedy, Zaremba, Sutskever, Bruna, Erhan,
Goodfellow, Fergus, ’Intriguing properties ...’) found small variations of the
input, almost imperceptible, that produced completely different
classification decisions:

Figure: From Szegedy et all 2013: AlexNet: 6 different classes: original image,
difference, and adversarial example – all classified as ’ostrich’
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1. Motivating Examples

Example 1: The AlexNet
Lipschitz Analysis

Szegedy et all 2013 computed the Lipschitz constants of each layer.

Layer Size Sing.Val
Conv. 1 3× 11× 11× 96 20
Conv. 2 96× 5× 5× 256 10
Conv. 3 256× 3× 3× 384 7
Conv. 4 384× 3× 3× 384 7.3
Conv. 5 384× 3× 3× 256 11

Fully Conn.1 9216(43264)× 4096 3.12
Fully Conn.2 4096× 4096 4
Fully Conn.3 4096× 1000 4

Overall Lipschitz constant:

Lip ≤ 20 ∗ 10 ∗ 7 ∗ 7.3 ∗ 11 ∗ 3.12 ∗ 4 ∗ 4 = 5, 612, 006
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1. Motivating Examples

Example 2: Generative Adversarial Networks
The GAN Problem

Two systems are involved: a generator network producing synthetic data; a
discriminator network that has to decide if its input is synthetic data or
real-world (true) data:

Introduced by Goodfellow et al in
2014, GANs solve a minimax opti-
mization problem:

min
G

max
D

Ex∼Pr [log(D(x))] + Ex̃∼Pg [log(1− D(x̃))]

where Pr is the distribution of true data, Pg is the generator distribution,
and D : x 7→ D(x) ∈ [0, 1] is the discriminator map (1 for likely true data;
0 for likely synthetic data).
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1. Motivating Examples

Example 2: Generative Adversarial Networks
The Wasserstein Optimization Problem

In practice, the training algorithms do not behave well (”saddle point
effect”).
The Wasserstein GAN (Arjovsky et al 2017) replaces the Jensen-Shannon
divergence by the Wasserstein-1 distance:

min
G

max
D∈Lip(1)

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)]

where Lip(1) denotes the set of Lipschitz functions with constant 1,
enforced by weight clipping.

Gulrajani et al in 2017 proposed to incorporate the Lip(1) condition into
the optimization criterion using a soft Lagrange multiplier technique for
minimization of:

L = Ex̃∼Pg [D(x)]− Ex∼Pr [D(x)] + λEx̂∼Px̂

[
‖∇x̂ D(x̂)‖2 − 1)2

]
where x̂ is sampled uniformly between x ∼ Pr and x̃ ∼ Pg .
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1. Motivating Examples

Example 3: Uncertainty Propagation through DNN
This example is based on a recent project with Prof. Thomas Ernst, UMB,
School of Medicine, Baltimore.
The standard way of quantifying uncertainty is through the Cramer-Rao Lower
Bound (CRLB). Fisher Information Matrix I(z) and CRLB:

I(z) = E
[
(∇z log(p(x ; z))) (∇z log(p(x ; z)))T

]
, CRLB = (I(z))−1

Interpretation: Covariance of any unbiased estimator of z is lower bounded
CRLB. For AWGN with variance σ2,

CRLB = σ2 (JT
F JF

)−1
, JF =

[
∂Fk
∂zj

]
(j,k)∈[n]×[d]

∈ Rn×d

where JF denotes the Jacobian matrix of the forward model.
Goal: Determine CRLB and use it to measure the confidence in the reconstructed
image ẑ .
Challenge: The exact form of F is unknown! But we assume we know a
left-inverse (the DNN) G0. It turns out a good proxy is CRLB = σ2JG0 JT

G0
.
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1. Motivating Examples

Example 4: The Scattering Network
Topology

Example of Scattering Network; definition and properties: [Mallat’12]; this
example from [B.,Singh,Zou’17]:

Input: f ; Outputs: y = (yl ,k).
Radu Balan (UMD) HA - ML Day 1 06/28-30/2023
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1. Motivating Examples

Example 4: Scattering Network
Lipschitz Analysis

Remarks:
Outputs from each layer

Tree-like topology
Backpropagation/Chain rule:
Lipschitz bound 40.
Mallat’s result predicts Lip = 1.
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2. Problem Formulation

Problem Formulation
Nonlinear Maps

Consider a nonlinear function between two metric spaces,

F : (X , dX )→ (Y , dY ).
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2. Problem Formulation

Problem Formulation
Lipschitz analysis of nonlinear systems

F : (X , dX )→ (Y , dY )

F is called Lipschitz with constant C if for any f , f̃ ∈ X ,

dY (F(f ),F(f̃ )) ≤ C dX (f , f̃ )

The optimal (i.e. smallest) Lipschitz constant is denoted Lip(F). The
square C 2 is called Lipschitz bound (similar to the Bessel bound).

F is called bi-Lipschitz with constants C1,C2 > 0 if for any f , f̃ ∈ X ,

C1 dX (f , f̃ ) ≤ dY (F(f ),F(f̃ )) ≤ C2 dX (f , f̃ )

The square C 2
1 ,C 2

2 are called Lipschitz bounds (similar to frame bounds).
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2. Problem Formulation

Problem Formulation
Motivating Examples

Consider the typical neural network as a feature extractor component in a
classification system:

g = F(f ) = FM(...F1(f ; W1, ϕ1); ...; WM , ϕM)
Fm(f ; Wm, ϕm) = ϕm(Wmf )

Wm is a linear operator (matrix); ϕm is a Lip(1) scalar nonlinearity (e.g.
Rectified Linear Unit).
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2. Problem Formulation

Problem Formulation
Problem 1

Given a deep network:

Estimate the Lipschitz constant, or bound:

Lip = sup
f 6=f̃ ∈L2

‖y − ỹ‖2

‖f − f̃ ‖2
, Bound = sup

f 6=f̃ ∈L2

‖y − ỹ‖2
2

‖f − f̃ ‖2
2
.

Methods (Approaches):
1 Standard Method: Backpropagation, or chain-rule
2 New Method: Storage function based approach (dissipative systems)
3 Numerical Method: Simulations
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2. Problem Formulation

Problem Formulation
Problem 2

Given a deep network:

Estimate the stability of the output to specific variations of the input:
1 Invariance to deformations: f̃ (x) = f (x − τ(x)), for some smooth τ .
2 Covariance to such deformations f̃ (x) = f (x − τ(x)), for smooth τ

and bandlimited signals f ;
3 Tail bounds when f has a known statistical distribution (e.g. normal

with known spectral power)
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3. Deep Convolutional Neural Networks

ConvNet
Topology

A deep convolution network is composed of multiple layers:
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3. Deep Convolutional Neural Networks

ConvNet
One Layer

Each layer is composed of two or three sublayers: convolution,
downsampling, detection/pooling/merge.
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3. Deep Convolutional Neural Networks

ConvNet: Sublayers
Linear Filters: Convolution and Pooling-to-Output Sublayer

f (2) = g ∗ f (1) , g ∗ f (1)(x) =
∫

g(x − ξ)f (1)(ξ)dξ

where g ∈ B = {g ∈ S ′ , ĝ ∈ L∞(Rd )}.

(B, ∗) is a Banach algebra with norm ‖g‖B = ‖ĝ‖∞.
Notation: g for regular convolution filters, and Φ for pooling-to-output
filters.
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3. Deep Convolutional Neural Networks

ConvNet: Sublayers
Downsampling Sublayer

f (2)(x) = f (1)(Dx)

For f (1) ∈ L2(Rd ) and D = D0 · I, f (2) ∈ L2(Rd ) and

‖f (2)‖2
2 =

∫
Rd
|f (2)(x)|2dx = 1

|det(D)|

∫
Rd
|f (1)(x)|2dx = 1

Dd
0
‖f (1)‖2

2
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3. Deep Convolutional Neural Networks

ConvNet: Sublayers
Detection and Pooling Sublayer

We consider three types of detection/pooling/merge sublayers:
Type I, τ1: Componentwise Addition: z =

∑k
j=1 σj(yj)

Type II, τ2: p-norm aggregation: z =
(∑k

j=1 |σj(yj)|p
)1/p

Type III, τ3: Componentwise Multiplication: z =
∏k

j=1 σj(yj)

Assumptions: (1) σj are scalar Lipschitz functions with Lip(σj) ≤ 1; (2) If
σj is connected to a multiplication block then ‖σj‖∞ ≤ 1.
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3. Deep Convolutional Neural Networks

ConvNet: Sublayers
MaxPooling and AveragePooling

MaxPooling can be implemented as follows:

AveragePooling can be implemented as follows:
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3. Deep Convolutional Neural Networks

ConvNet: Sublayers
MaxPooling and AveragePooling

MaxPooling can be implemented as follows:

AveragePooling can be implemented as follows:
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3. Deep Convolutional Neural Networks

ConvNet: Sublayers
Long Short-Term Memory

Long Short-Term Memory (LSTM) networks
[Hochreiter,Schmidhuber.’97],[Greff et.al.’15].
By BiObserver - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43992484
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3. Deep Convolutional Neural Networks

ConvNet: Layer m
Components of the mth layer
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3. Deep Convolutional Neural Networks

ConvNet: Layer m
Topology coding of the mth layer

nm denotes the number of input nodes in the m-th layer:
Im = {Nm,1,Nm,2, · · · ,Nm,nm}.
Filters:

1 pooling filter: φm,n for node n, in layer m;
2 convolution filter: gm,n,k for input node n to output node k, in layer

m;
For node n: Gm,n = {gm,n;1, · · · gm,n;km,n}.
The set of all convolution filters in layer m: Gm = ∪nm

n=1Gm,n.

Om = {N ′m,1,N ′m,2, · · · ,N ′m,n′m} the set of output nodes of the m-th layer.
Note that n′m = nm+1 and there is a one-one correspondence between Om
and Im+1.
The output nodes automatically partitions Gm into n′m disjoint subsets
Gm = ∪n′m

n′=1G ′m,n′ , where G ′m,n′ is the set of filters merged into N ′m,n′ .
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3. Deep Convolutional Neural Networks

ConvNet: Layer m
Topology coding of the mth layer

nm denotes the number of input nodes in the m-th layer:
Im = {Nm,1,Nm,2, · · · ,Nm,nm}.
Filters:

1 pooling filter: φm,n for node n, in layer m;
2 convolution filter: gm,n,k for input node n to output node k, in layer

m;
For node n: Gm,n = {gm,n;1, · · · gm,n;km,n}.
The set of all convolution filters in layer m: Gm = ∪nm

n=1Gm,n.
Om = {N ′m,1,N ′m,2, · · · ,N ′m,n′m} the set of output nodes of the m-th layer.
Note that n′m = nm+1 and there is a one-one correspondence between Om
and Im+1.
The output nodes automatically partitions Gm into n′m disjoint subsets
Gm = ∪n′m

n′=1G ′m,n′ , where G ′m,n′ is the set of filters merged into N ′m,n′ .
Radu Balan (UMD) HA - ML Day 1 06/28-30/2023



Overview Day 1:Neural Networks Day 1: Lipschitz Analysis Day 2 Day 3

3. Deep Convolutional Neural Networks

ConvNet: Layer m
Topology coding of the mth layer

For each filter gm,n;k , we define an associated multiplier lm,n;k in the
following way: suppose gm,n;k ∈ G ′m,k , let K =

∣∣∣G ′m,k ∣∣∣ denote the
cardinality of G ′m,k . Then

lm,n;k =
{

K , if gm,n;k ∈ τ1 ∪ τ3

K max{0,2/p−1} , if gm,n;k ∈ τ2
(3.1)
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3. Deep Convolutional Neural Networks

ConvNet: Layer m
Topology coding of the mth layer
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3. Deep Convolutional Neural Networks

ConvNet: Layer m
Topology coding of the mth layer
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3. Deep Convolutional Neural Networks

ConvNet: Layer m
Topology coding of the mth layer
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4. Lipschitz Analysis

Semi-discrete Bessel Systems
A countable set of functions {gn , n ≥ 1} ⊂ L2(S) (where S is a LCA
group) is called a semi-discrete Bessel system in L2(S) if there is a
constant (called a Bessel bound) B ≥ 0 such that, for every f ∈ L2(S),∑

n≥1
‖f ∗ gn‖2

2 ≤ B‖f ‖2
2 , f ∗ gn(x) =

∫
S

f (x − y)gn(y)dy .

The Lipschitz constant of a linear operator equals its operator norm. For
nonlinear maps, the Lipschitz bound (square of its Lipschitz constant) is a
replacement for the Bessel bound (or, the upper frame bound).
Lemma
Assume {gn , n ≥ 1} is a semi-discrete Bessel system in L2(Rd ). Then its
optimal Bessel bound is given by

B = sup
ω∈Rn

∑
n≥1
|ĝn(ω)|2 =: ‖

∑
n≥1
|ĝn|2‖∞.
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4. Lipschitz Analysis

Layer Analysis
Bessel Bounds

In each layer m and for each input node n we define three types of Bessel
bounds (one for each type of the detection/pooling/merge sublayer):

1st type Bessel bound:

B(1)
m,n = ‖

∣∣∣φ̂m,n
∣∣∣2 +

∑
gm,n;k∈Gm,n

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖∞ (3.2)

2nd type Bessel bound:

B(2)
m,n = ‖

∑
gm,n;k∈Gm,n

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖∞ (3.3)

3rd type (or generating) bound:

B(3)
m,n = ‖φ̂m,n‖2

∞ . (3.4)
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4. Lipschitz Analysis

Layer Analysis
Bessel Bounds

Next we define the layer m Bessel bounds:

1st type Bessel bound B(1)
m = max

1≤n≤nm
B(1)

m,n (3.5)

2nd type Bessel bound B(2)
m = max

1≤n≤nm
B(2)

m,n (3.6)

3rd type (generating) Bessel bound B(3)
m = max

1≤n≤nm
B(3)

m,n. (3.7)

Remark. These bounds characterize Bessel bounds of the associated
semi-discrete Bessel systems.
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4. Lipschitz Analysis

Lipschitz Analysis
First Result

Theorem (1. BSZ’17)
Consider a Convolutional Neural Network F with M layers as described
before, with non-expansive Lipschitz activation functions, Lip(ϕm,n,n′) ≤ 1.
Additionally, those ϕm,n,n′ that aggregate into a multiplicative block
satisfy ‖ϕm,n,n′‖∞ ≤ 1. Let the m-th layer 1st type Bessel bound be

B(1)
m = max

1≤n≤nm
‖
∣∣∣φ̂m,n

∣∣∣2 +
km,n∑
k=1

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖∞.

Then the Lipschitz bound of the entire CNN is upper bounded by∏M
m=1 max(1,B(1)

m ). Specifically, for any f , f̃ ∈ L2(Rd ):

‖F(f )−F(f̃ )‖2
2 ≤

( M∏
m=1

max(1,B(1)
m )

)
‖f − f̃ ‖2

2,
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4. Lipschitz Analysis

Lipschitz Analysis
Second Result

Theorem (2. BSZ’20)
Consider a Convolutional Neural Network with M layers as described
before, where all scalar nonlinearities satisfy the same conditions as in the
previous result. For layer m, let B(1)

m , B(2)
m , and B(3)

m denote the three
Bessel bounds defined earlier. Denote by L the optimal solution of the
following linear program:

Γ = max
y1,...,yM ,z1,...,zM≥0

M∑
m=1

zm

s.t. y0 = 1
ym + zm ≤ B(1)

m ym−1, 1 ≤ m ≤ M
ym ≤ B(2)

m ym−1, 1 ≤ m ≤ M
zm ≤ B(3)

m ym−1, 1 ≤ m ≤ M

(3.8)
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4. Lipschitz Analysis

Lipschitz Analysis
Second Result - cont’d

Theorem (2. BSZ’20)
Then the Lipschitz bound satisfies Lip(F)2 ≤ Γ. Specifically, for any
f , f̃ ∈ L2(Rd ):

‖F(f )−F(f̃ )‖2
2 ≤ Γ‖f − f̃ ‖2

2,
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5. Numerical Results

Example 1: Scattering Network

The Lipschitz constant:
Backpropagation/Chain rule:
Lipschitz bound 40 (hence
Lip ≤ 6.3).

Using our main theorem,
Lip ≤ 1, but Mallat’s result:
Lip = 1.

Filters have been choosen as in a
dyadic wavelet decomposition. Thus
B(1)

m = B(2)
m = B(3)

m = 1, 1 ≤ m ≤ 4.
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5. Numerical Results

Example 2: A General Convolutive Neural Network
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5. Numerical Results

Example 2: A General Convolutive Neural Network
Set p = 2 and:

F (ω) = exp(
4ω2 + 4ω + 1

4ω2 + 4ω
)χ(−1,−1/2)(ω) + χ(−1/2,1/2)(ω) + exp(

4ω2 − 4ω + 1
4ω2 − 4ω

)χ(1/2,1)(ω).

φ̂1(ω) = F (ω)
ĝ1,j (ω) = F (ω + 2j − 1/2) + F (ω − 2j + 1/2) , j = 1, 2, 3, 4

φ̂2(ω) = exp(
4ω2 + 12ω + 9
4ω2 + 12ω + 8

)χ(−2,−3/2)(ω) +

χ(−3/2,3/2)(ω) + exp(
4ω2 − 12ω + 9
4ω2 − 12ω + 8

)χ(3/2,2)(ω)

ĝ2,j (ω) = F (ω + 2j) + F (ω − 2j) , j = 1, 2, 3
ĝ2,4(ω) = F (ω + 2) + F (ω − 2)
ĝ2,5(ω) = F (ω + 5) + F (ω − 5)

φ̂3(ω) = exp(
4ω2 + 20ω + 25
4ω2 + 20ω + 24

)χ(−3,−5/2)(ω) +

χ(−5/2,5/2)(ω) + exp(
4ω2 − 20ω + 25
4ω2 − 20ω + 25

)χ(5/2,3)(ω).
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5. Numerical Results

Example 2: A General Convolutive Neural Network

Bessel Bounds: B(1)
m = 2e−1/3 =

1.43, B(2)
m = B(3)

m = 1.
The Lipschitz bound:

Using
backpropagation/chain-rule:
Lip2 ≤ 5.
Using Theorem 1:
Lip2 ≤ 2.9430.
Using Theorem 2 (linear
program): Lip2 ≤ 2.2992.

Radu Balan (UMD) HA - ML Day 1 06/28-30/2023



Overview Day 1:Neural Networks Day 1: Lipschitz Analysis Day 2 Day 3

5. Numerical Results

Example 3: Lipschitz constant based objective functions
Nonlinear Discriminant Analysis

In Linear Discriminant Analysis (LDA), the objective is to maximize the
”separation” between two classes, while controlling the variances within
class.
A similar nonlinear discriminant can be defined:

S = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2

‖Cov(F(f )|f ∈ C1)‖F + ‖Cov(F(f )|f ∈ C2)‖F
.

Replace the statistics ‖Cov‖F by Lipschitz bounds:
Lipschitz bound based separation:

S̃ = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2

Lip2
1 + Lip2

2
.
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5. Numerical Results

Example 3: Lipschitz constant based objective functions
Nonlinear Discriminant Analysis

The Lipschitz bounds Lip2
1 , Lip2

2 are computed using Gaussian generative
models for the two classes: (µc ,WcW T

c ), where Wc represents the
whitening filter for class c ∈ {1, 2}.
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5. Numerical Results

Example 3: Lipschitz constant based objective functions
Numerical Results

Dataset: MNIST database; input images: 28× 28 pixels. Two classes: ”3”
and ”8”
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for uniformly distributed random weights

Conclusion: The error rate decreases as the Lipschitz bound separation
increases. The discriminant spread is wider.
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6. Local Analysis and Stochastic Approach

Local Analysis
Consider a deep network F : (X , ‖ · ‖2)→ (Y , ‖ · ‖2) between Euclidean
finite-dimensional linear spaces with M layers, where the i th layer is
characterized by the input-output nonlinear Lipschitz map Fi . Denote by
JF , JFi the Jacobian matrices of these maps. Then by an application of
the Fundamental Theorem of Calculus (plus Lebesgue’s differentiation
theorem), the optimal Lipschitz constant is

Lip(F) = sup
x∈X
‖JF (x)‖Op = sup

x∈X
‖JFM · · · JF1(x)‖Op

where the Op norm is the largest singular value of the corresponding
Jacobian.
In the case of type I or II network (i.e., no multiplicative aggregation), the
nonlinear are homogeneous of degree 1, and in each layer the Jacobian
factors as a product of 3 matrices:

JF (x) = PM(x)DM(x)AMPM−1(x)DM−1(x)AM−1 · · ·P1(x)D1(x)A1,
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6. Local Analysis and Stochastic Approach

Local Analysis (2)

JF (x) = PM(x)DM(x)AMPM−1(x)DM−1(x)AM−1 · · ·P1(x)D1(x)A1,

where: Ai is the matrix associated to linear operators (filters), Di is the
diagonal matrix associated to derivative of activation functions (it is a
binary matrix composed of 0’s and 1’s in the case of ReLU activation),
and Pi is the matrix associated to the composition of downsampling and
pooling sublayers. In the case of sum-pooling, Pi is independent of input
x ; in the case of max-filter, it has a weak dependency on x . In both cases
it is sparse, with binary entries.

Results for Alex Net using method: Lip const

Analytical estimate: based on Theorem 1 2.51× 103

Empirical bound: quotient from pairs of samples 7.32× 10−3

Numerical estimate: maximize the “sandwich” formula 1.44

Radu Balan (UMD) HA - ML Day 1 06/28-30/2023



Overview Day 1:Neural Networks Day 1: Lipschitz Analysis Day 2 Day 3

6. Local Analysis and Stochastic Approach

Local Analysis (2)

JF (x) = PM(x)DM(x)AMPM−1(x)DM−1(x)AM−1 · · ·P1(x)D1(x)A1,

where: Ai is the matrix associated to linear operators (filters), Di is the
diagonal matrix associated to derivative of activation functions (it is a
binary matrix composed of 0’s and 1’s in the case of ReLU activation),
and Pi is the matrix associated to the composition of downsampling and
pooling sublayers. In the case of sum-pooling, Pi is independent of input
x ; in the case of max-filter, it has a weak dependency on x . In both cases
it is sparse, with binary entries.

Results for Alex Net using method: Lip const

Analytical estimate: based on Theorem 1 2.51× 103

Empirical bound: quotient from pairs of samples 7.32× 10−3

Numerical estimate: maximize the “sandwich” formula 1.44

Radu Balan (UMD) HA - ML Day 1 06/28-30/2023



Overview Day 1:Neural Networks Day 1: Lipschitz Analysis Day 2 Day 3

6. Local Analysis and Stochastic Approach

Local Analysis: Domains of linearity

It is not suprising that the analytic estimate 2.51× 103 is bigger than the
numerical estimate 1.44. The suprising conclusion is the difference
between the numerical estimate, 1.44, and the empirical bound 7.32−3.

The “sandwich” formula provides
additional information: The upper
bound is achieved locally for the prin-
cipal right-singular vector v at the
specific input x where the maximum
is achieved. We performed the fol-
lowing numerical expriment: we com-
puted the ratio R(t) = 1

t ‖F(x +tv)−
F(x)‖2:

Figure: The ratio
R(t) = ||F(x + t · v)−F(x)||/t for
different t.
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6. Local Analysis and Stochastic Approach

Lipschitz Analysis: Stochastic Model
The numerical study of the Alex Net showed that the optimal Lipschitz
constant is somewhat theoretical and is achieved by very small
perturbations. Notice for two inputs x1 and x2:

F(x1)−F(x2) =
∫ 1

0
JFM JFM−1 · · · JF1((1−t)x1+tx2)(x2−x1)dt = J∗·(x2−x1)

where the effective Jacobian J∗ is estimated by

J∗ ≈ (E[PM ])(E[DM ])AM · · · (E[P1])(E[D1])A1

where we assume:
1 (ergodicity) x1 and x2 are sufficientlly distinct so that the network

passes through all linearity domains during the convex combination
x1 → (1− t)x2 + tx2 → x2, and

2 (independence) the behavior of activation maps and pooling sublayers
are independent from layer to layer.
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