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High-Level Overview

In this series of lectures, we discuss a few harmonic analysis techniques
and problems applied to machine learning.
1. NN: Neural networks (NN) and their universal approximation property.
2. Lipschitz analysis: we provide rationals for studying Lipschitz properties
of NNs, and then we perform a Lipschitz analysis of these networks. We
focus on two aspects of this analysis: stochastic modelng of local vs.
global analysis, and a scattering network inspired Lipschitz analysis of
convolutive networks.
3. Invariance and Equivariance: We highlight the duality between
invariance and covariance/equivariance, with focus on G-invariant
representations.
4. Applications to data analysis and modeling: We present applications on
a variety of problems: classification and regression on graphs; generative
models for data sets; neural network based modeling of time-evolution of
dynamical systems; discrete optimizatons.
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High-Level View
Two related problems with many variations:
Given a (discrete) group G acting on a normed space V :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm. Classification of cosets.

2 Construct the projection onto cosets,
π : V → [y ] = ŷ = {g .y , g ∈ G}.
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Overview
Two related problems with many variations:
Given a (discrete) group G acting on a normed space V :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm. Classification of cosets.

2 Construct projections onto cosets, π : V → [y ] = ŷ = {g .y , g ∈ G}.
Optimizations within cosets.
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1. Motivation

A. Similarity of Matrices

Consider two symmetric matrices A,B ∈ Sym(n). When are they
equivalent modulo an orthonormal change of coordinates?
Specificaly, is there an orthogonal matrix U ∈ O(n) so that B = UAUT ?

An elementary derivation in linear algebra shows that A O(n)∼ B if and only
if A and B have the same set of eigenvalues with exactly same
multiplicities.

But what about other groups G? For instance what about the group of
permutation matrices Sn?
Find necessary and sufficient conditions so that A Sn∼ B.
Recall:

Sn = {P ∈ O(n) : Pi ,j ∈ {0, 1}} = O(n)∩{W ∈ [0, 1]n×n : W 1 = 1,W T 1 = 1}
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1. Motivation

A. The Graph Isomorphism Problem

Consider two graphs G = (V, E) and G̃ = (Ṽ, Ẽ) with n nodes. The graph
isomorphism problem is the computational problem of determining
whether these graphs are identical after a relabeling of nodes.

If A and Ã denote their adjacency matrices, these graphs are isomorphic if
and only if Ã = ΠAΠT for some permutation matrix Π ∈ Sn.

Current state-of-the-art (Wikipedia): Babai (2015,2017) presented a
quasi-polynomial algorithm with running time 2O((log n)c ), for some fixed
c > 0. Helfgott (2017) claims that one can take c = 3.

Similar problem can be stated for weighted graphs: A, Ã ∈ Sym(n) with
nonnegative entries, isomorphic if and only if Ã = ΠAΠT for some Π ∈ Sn.
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1. Motivation

B. Graph Alignment Problems

Consider two n× n symmetric matrices A,B. In the alignment problem for
quadratic forms one seeks an orthogonal matrix U ∈ O(n) that minimizes

‖UAUT −B‖2
F := trace((UAUT −B)2) = ‖A‖2

F +‖B‖2
F −2trace(UAUT B).

The solution is well-known and depends on the eigendecomposition of
matrices A,B: if A = U1D1UT

1 , B = U2D2UT
2 then

Uopt = U2UT
1 , ‖UoptAUT

opt − B‖2
F =

n∑
k=1
|λk − µk |2,

where D1 = diag(λk) and D2 = diag(µk) are diagonal matrices with
eigenvalues ordered monotonically.
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1. Motivation

B. Quadratic Assignment Problem

The challenging case is when U is constrained to the permutation group as
is the case in the graph matching problem. In this case, the optimization
problem becomes

min
U∈Sn

‖UAUT − B‖F

turns into a QAP:
max
U∈Sn

trace(UAUT B).

This is equivalent to computing the natural distance
d(Â, B̂) = minP,Q∈Sn ‖PAPT − QBQT‖F between the equivalence classes
Â, B̂ ∈ Ŝym(n) induced by the group action Sn × Sym(n)→ Sym(n),
(Π,A) 7→ ΠAΠT .
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1. Motivation

C. Graph Learning Problems

Given a data graph (e.g., social network, transportation network, citation
network, chemical network, protein network, biological networks):

Graph adjacency or weight matrix, A ∈ Rn×n;
Data matrix, X ∈ Rn×r , where each row corresponds to a feature
vector per node.

Contruct a map f : (A,X )→ f (A,X ) that performs:
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

Key observation: The outcome should be invariant to vertex permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.
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1. Motivation

Invariance vs. Equivariance
Graph learning problems are prime examples of the difference between
invariant vs. equivariant representations.
If the machine learning task is node classification or regression:

f : (A,X ) 7→ f (A,X ) ∈ {1, 2, · · · , c}n or Rn

where f (A,X ) is a graph signal, i.e., f (A,X )i is signal at node i , then the
nonlinear map f is equivariant and must satisfy f (PAPT ,PX ) = Pf (A,X ),
for all P ∈ Sn.

On the other hand, if the machine learning task is graph classification or
regression,

f : (A,X ) 7→ f (A,X ) ∈ {1, 2, · · · , c} or R

where f (A,X ) is assigned for the entire graph, then the nonlinear map f is
invariant and must satisfy f (PAPT ,PX ) = f (A,X ), for all P ∈ Sn.
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1. Motivation

C. Graph Convolution Networks (GCN), Graph Neural
Networks (GNN)

General architecture of a GCN/GNN

GCN (Kipf and Welling (’16)) choses Ã = I + A; GNN (Scarselli et.al.
(’08), Bronstein et.al. (’16)) choses Ã = pl (A), a polynomial in adjacency
matrix. L-layer GNN has parameters (p1,W1,B1, · · · , pL,WL,BL).

Note the covariance (or, equivariance) property: for any P ∈ O(n)
(including Sn), if (A,X ) 7→ (PAPT ,PX ) and Bi 7→ PBi then Y 7→ PY .
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1. Motivation

C. Deep Learning with GCN/GNN
The approach for the two learning tasks (classification or regression) is
based on the following scheme (see also Maron et.al. (‘19)):

where α is a permutation invariant map (embedding), and SVM/NN is a
single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network) trained on invariant representations.
The purpose of this talk is to analyze the α component.
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2. Permutation Invariant Representations for V = Rn×d

The metric space V̂ when V = Rn×d

Recall the equivalence relation ∼ on V = Rn×d induced by the group of
permutation matrices Sn acting on V by left multiplication: for any
X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let R̂n×d = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈ R̂n×d .

The computation of the minimum distance is performed by solving the
Linear Assignment Problem (LAP) whose convex relaxation is exact:

max
P∈Sn

trace(PX2X T
1 ) = max

W∈DS(n)
trace(WX2X T

1 )

where DS(n) = {W ∈ [0, 1]n×n : W 1 = 1,W T 1 = 1} is the convex set of
doubly stochastic matrices.
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2. Permutation Invariant Representations for V = Rn×d

The embedding problem

Problem: Construct a bi-Lipschitz embedding α̂ : R̂n×d → Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm with constants
0 < a ≤ b <∞ so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′).
2 If α(X ) = α(X ′) then X ∼ X ′.
3 a · d(X̂ , X̂ ′) ≤ ‖α(X )− α(X ′)‖2 ≤ b · d(X̂ , X̂ ′).

where d(X̂ , X̂ ′) = minP∈Sn ‖X − PX ′‖F .
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2. Permutation Invariant Representations for V = Rn×d

A Universal Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure. xk is the kth row of X .
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.
The Wasserstein-2 distance is isometrically equivalent to d:

W2(µ(X ), µ(Y ))2 := inf
q∈J(µ(X),µ(Y ))

Eq[‖x − y‖2
2] = min

P∈Sn
‖Y − PX‖2

By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance)
extends to a norm on the space of signed Borel measures.

Main drawback: P(Rd ) is infinite dimensional!
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2. Permutation Invariant Representations for V = Rn×d

Finite Dimensional Embeddings
Idea: “Project” the measure onto a finite dimensional space. This is
accomplished by kernel methods:
Fix a family of functions f1, · · · , fm and consider:

µ(X ) 7→
∫
Rd

fj(x)dµ(X ) = 1
n

n∑
k=1

fj(xk) , j ∈ [m]

Possible choices:
1 Polynomial embeddings: R[X ]Sn , ring of invariant polynomials;

[Lipman&al.],[Peyré&al.],[Sanay&al.],[Kemper book] ...
2 Gaussian kernels: fj(x) = exp(−‖x − aj‖2/σ2

j ) ;
[Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...

3 Fourier kernels (cmplx embd): fj(x) = exp(2πi〈x , ωj〉); related to
Prony method; [Li&Liao] for bi-Lipschitz estimates.

Main drawback: No global bi-Lipschitz embeddings [Cahill&al.’19]. Ok on
(some) compacts.
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3. Polynomial Embeddings

Polynomial Expansions - Quadratics
In the case d = 1 recall Vieta’s formulas, Newton-Girard identities

P(X ) =
N∏

k=1
(X − xk)↔ (

∑
k

xk ,
∑

k
x2

k , ...,
∑

k
xn

k )

For d > 1, consider the quadratic d-variate polynomial:

P(Z1, · · · ,Zd ) =
n∏

k=1

(
(Z1 − xk,1)2 + · · ·+ (Zd − xk,d )2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Z p1

1 · · ·Z
pd
d

Encoding complexity:

m =
(

2n + d
d

)
∼ (2n)d .

Radu Balan (UMD) HA - ML Day 2 06/28-30/2023



Overview Day 1 Day 2: Permutation invariant representations Day 2: G-invariant representations Day 3

3. Polynomial Embeddings

Polynomial Expansions - Quadratics
In the case d = 1 recall Vieta’s formulas, Newton-Girard identities

P(X ) =
N∏

k=1
(X − xk)↔ (

∑
k

xk ,
∑

k
x2

k , ...,
∑

k
xn

k )

For d > 1, consider the quadratic d-variate polynomial:

P(Z1, · · · ,Zd ) =
n∏

k=1

(
(Z1 − xk,1)2 + · · ·+ (Zd − xk,d )2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Z p1

1 · · ·Z
pd
d

Encoding complexity:

m =
(

2n + d
d

)
∼ (2n)d .

Radu Balan (UMD) HA - ML Day 2 06/28-30/2023



Overview Day 1 Day 2: Permutation invariant representations Day 2: G-invariant representations Day 3

3. Polynomial Embeddings

Polynomial Expansions - Quadratics (2)

A more careful analysis of P(Z1, ...,Zd ) reveals a form:

P(Z1, ...,Zd ) = tn+Q1(Z1, ...,Zd )tn−1+· · ·+Qn−1(Z1, ...,Zd )t+Qn(Z1, ...,Zd )

where t = Z 2
1 + · · ·+ Z 2

d and each Qk(Z1, ...,Zd ) ∈ Rk [Z1, ...,Zd ] is a
(non-homogeneous) polynomial of degree k. Hence one needs to encode:

m =
(

d + 1
1

)
+
(

d + 2
2

)
+ · · ·+

(
d + n

n

)
=
(

d + n + 1
n

)
− 1

number of coefficients.
A significant drawback: Inversion is numerically unstable and embedding is
not Lipschitz.
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3. Polynomial Embeddings

Readout Mapping Approach
Polynomial Expansion - Linear Forms

A stable (Lipschitz, not bi-Lipschitz!) embedding can be constructed as
follows (see also Gobels’ algorithm (1996) or [Derksen, Kemper ’02]).
Consider the n linear forms λk(Z1, ...,Zd ) = xk,1Z1 + · · · xk,d Zd . Construct
the polynomial in variable t with coefficients in R[Z1, ...,Zd ]:

P(t) =
n∏

k=1
(t−λk(Z1, ...,Zd )) = tn−e1(Z1, ..,Zd )tn−1+· · · (−1)nen(Z1, ...,Zd )

= tn +
∑

p0, p1, · · · , pd ≥ 0
p0 + p1 + · · ·+ pd = n , p0 < n

cp0,p1,···,pd tp0Z p1
1 · · ·Z

pd
d

The elementary symmetric polynomials (e1, ..., en) are in 1-1
correspondence (Newton-Girard theorem) with the moments:
µp = ∑n

k=1 λ
p
k(Z1, ...,Zd ), 1 ≤ p ≤ n.
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3. Polynomial Embeddings

Polynomial Expansions - Linear Forms (2)

Each µp is a homogeneous polynomial of degree p in d variables. Hence to

encode each of them one needs
(

d + p − 1
p

)
coefficients. Hence the

embedding dimension is

m0 =
(

d
1

)
+
(

d + 1
2

)
+ · · ·+

(
d + n − 1

n

)
=
(

d + n
n

)
− 1

The map α0 : Rn×d → Rm0 , X 7→ (cp0,p1,···,pd )p0,p1,···,pd is injective modulo
Sn but it is not Lipschitz. However a simple modification as suggested by
[Cahill et.al.‘19] makes it Lipschitz.
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Polynomial Expansions - Linear Forms (2)

Each µp is a homogeneous polynomial of degree p in d variables. Hence to

encode each of them one needs
(

d + p − 1
p

)
coefficients. Hence the

embedding dimension is

m0 =
(

d
1

)
+
(

d + 1
2

)
+ · · ·+

(
d + n − 1

n

)
=
(

d + n
n

)
− 1

The map α0 : Rn×d → Rm0 , X 7→ (cp0,p1,···,pd )p0,p1,···,pd is injective modulo
Sn but it is not Lipschitz. However a simple modification as suggested by
[Cahill et.al.‘19] makes it Lipschitz.
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3. Polynomial Embeddings

Polynomial Lipschitz embedding
Denote by L0 the Lipschitz constant of α0 when restricted to the closed
unit ball B1(Rn×d ) : {X ∈ Rn×d , ‖X‖ ≤ 1} of Rn×d , i.e.
‖α0(X )−α0(Y )‖ ≤ L0‖X −Y ‖ for any X ,Y ∈ Rn×d with ‖X‖, ‖Y ‖ ≤ 1.
Let ϕ0 : R→ [0, 1], ϕ0(x) = min(1, 1

x ) be a Lipschitz monotone
decreasing function with Lipschitz constant 1.
Theorem
The map:

α1 : Rn×d → Rm , α1(X ) =
(

α0

(
ϕ0(‖X‖)X

)
‖X‖

)
,

with m =
(

n + d
d

)
= m0 + 1 lifts to an injective and globally Lipschitz

map α̂1 : R̂n×d → Rm with Lipschitz constant Lip(α̂1) ≤
√

1 + L2
0.
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3. Polynomial Embeddings

Minimality

For d = 1, m = n which is minimal.

For d = 2, m = n2+3n
2 . Is this minimal?
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3. Polynomial Embeddings

Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk,1 + ixk,2.
Consider the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

Open problem: Can this construction be extended to d ≥ 3?
Remark: A drawback of polynomial (algebraic) embeddings: [Cahill’19]
showed that polynomial embeddings of translation invariant spaces cannot
be bi-Lipschitz.
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4. Sorting based Embeddings

The Max Pool approach
The idea is provided by the following observation.
Let ↓: Rn → Rn denote the sorting map x 7→ ↓ x = Πx , Π ∈ Sn, so that

(Πx)1 ≥ (Πx)2 ≥ · · · ≥ (Πx)n.

Lemma
↓: R̂n → Rn is an isometry (hence bi-Lipschitz):

‖ ↓ (x)− ↓ (y)‖ = min
P∈Sn

‖x − Py‖ , for all x , y ∈ Rn.

Proof is based on the rearrangement inequality (see Wikipedia, or
Hardy-Littlewood-Pólya “Inequalities” §10.2).

Our main goal is to extend this construction from Rn to Rn×d
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4. Sorting based Embeddings

The Encoder βA
Notations

Recall the equivalence relation, for X ,Y ∈ Rn×d ,

X ∼ Y ⇔ ∃Π ∈ Sn , Y = ΠX

that induces a quotient space R̂n×d = Rn×d/ ∼ and the natural distance

d : R̂n×d × R̂n×d → R , d([X ], [Y ]) = min
Π∈Sn

‖X − ΠY ‖F

In the following we construct an Euclidean embedding of the form

βA : Rn×d → Rn×D , βA(X ) =↓ (XA)

where ↓ (·) sorts decreasingly each column of ·, independently.
The matrix A ∈ Rd×D is called the key of encoder βA.
The key is called universal if β̂A : R̂n×d → Rn×D is injective.
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4. Sorting based Embeddings

Intuition behind universality of keys

Consider the case
n = 2 , d = 3

X=

[
X11 X12 X13
X21 X22 X23

]
.
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4. Sorting based Embeddings

Intuition behind universality of keys

X=

[
X11 X12 X13
X21 X22 X23

]
.

Y =↓ X

Y =

[
Y11 Y12 Y13
Y21 Y22 Y23

]
.

Information lost!
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4. Sorting based Embeddings

Intuition for this encoder

X=

[
X11 X12 X13
X21 X22 X23

]
.

Y =↓
[

X Xa
]

Y =

[
Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

]
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4. Sorting based Embeddings

Three results (1)
Existence of Universal Keys

Theorem

Consider the metric space (R̂n×d ,d). Set D = 1 + (d − 1)n! and let
A ∈ Rd×D be a matrix whose columns form a full spark frame. Then the
key A is universal and the induced map β̂A : R̂n×d → Rn×D,
β̂A([X ]) =↓ (XA) is injective. Furthermore, β̂A is bi-Lipschitz with
constants a0 = minJ⊂[D],|J|=d sd (A[J ]) and b0 = s1(A), where s1(A)
denotes the largest singular value of A, A[J ] denotes the submatrix of A
formed by columns indexed by J, and sd (A[J ]) denotes the d th singular
value (in this case, the smallest) of A[J ]. Specifically, for any
X ,Y ∈ Rn×d ,

a0d([X ], [Y ]) ≤ ‖βA(X )− βA(Y )‖ ≤ b0d([X ], [Y ]) (3.1)

where all norms are Frobenius norms.
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4. Sorting based Embeddings

Three results (2)
Bi-Lipschitz Property of Universal Keys

Theorem

Assume the key A ∈ Rd×D is universal, i.e., the induced map
β̂A : R̂n×d → Rn×D, [X ] 7→ βA(X ) =↓ (XA) is injective. Then β̂A is
bi-Lipschitz, that is, there are constants a0 > 0 and b0 > 0 so that for all
X ,Y ∈ Rn×d ,

a0 d([X ], [Y ]) ≤ ‖βA(X )− βA(Y )‖ ≤ b0 d([X ], [Y ]) (3.2)

where all are Frobenius norms. Furthermore, an estimate for b0 is provided
by the largest singular value of A, b0 = s1(A).
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4. Sorting based Embeddings

Three results (3)
Dimension Reduction

Theorem

Assume A ∈ Rd×D is a universal key for R̂n×d with D ≥ 2d. Then, for
m ≥ 2nd, a generic linear operator B : Rn×D → Rm with respect to
Zariski topology on Rn×D×m, the map

β̂A,B : R̂n×d → R2nd , β̂A,B(X̂ ) = B
(
β̂A(X̂ )

)
(3.3)

is bi-Lipschitz. In particular, almost every full-rank linear operator
B : Rn×D → R2nd produces such a bi-Lipschitz map.

This result is compatible with a Whitney embedding theorem with the
important caveat that the Whitney embedding result applies to smooth
manifolds, whereas R̂n×d is not a manifold.
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4. Sorting based Embeddings

Highlights of proofs
First result: Universal keys

The upper bound is imediate. For lower bound, fix X ,Y ∈ Rn×d :

‖βA(X )− βA(Y )‖2
2 =

D∑
k=1
‖ ↓ (Xak)− ↓ (Yak)‖2

2 =
D∑

k=1
‖PkXak − QkYak‖2

2

Πk :=QT
k Pk=

D∑
k=1
‖(ΠkX − Y )ak‖2

2

≥
d∑

j=1
‖(Πkj X − Y )akj‖

2
2

so that Πk1 = · · · = Πkd = Π0 (pigeonhole principle: needs
D > (d − 1)n!). Then:

‖βA(X )− βA(Y )‖2
2 ≥

d∑
j=1
‖(Π0X − Y )akj‖

2
2

full spark
≥ sd (A[J ])2‖Π0X − Y ‖2

≥ sd (A[J ])2 min
Π∈Sn

‖ΠX − Y ‖2 = sd (A[J ])2d([X ], [Y ])2
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4. Sorting based Embeddings

Highlights of proofs
Second result: Bi-Lipschitz Property

The proof resembles the treatment of phase retrieval problem:
1 Homogeneity and compactness reduce the problem to local analysis.
2 The encoder is “locally” linearized. The failure of local lower

Lipschitz bound implies a certain behavior for a Quadratically
Constrained Ratio of Quadratics (QCRQ).

3 QCRQ has a minimizer:inf ⇒ min. [Teboulle&al.]
This step took most of time and lots of (self)convincing !

4 Contradiction to injectivity assumption.
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4. Sorting based Embeddings

More detailed proof of the bi-Lipschitz result (1)

1. Reduction to local lower Lipschitz bound.
Assume infX 6∼Y ‖βA(X )− βA(Y )‖2/d([X ], [Y ]) = 0. By homogeneity and
compactness, extract/construct sequences (Xj)j and (Yj)j so that: (i)
Xj → Z ; (ii) Yj → Z ; (iii) ‖Yj‖ ≤ ‖Xj‖ = ‖Z‖ = 1; (iv)
d([Xj ], [Z ]) = ‖Xj − Z‖; (v) d([Xj ], [Yj ]) = ‖Xj − Yj‖; (vi)
d([Yj ], [Z ]) = ‖Yj − z‖.
2. Local linearization.
Let H = {P ∈ Sn ; PZ = Z} denote the stabilizer of Z . Let Uj = Xj − Z
and Vj = Yj − Z . Then:

lim
j→∞

∑D
k=1 minQ∈H ‖QUjak − Vjak‖2

‖Uj − Vj‖2 = 0 , ‖Uj−Vj‖ ≤ ‖Uj−PVj‖, ∀P ∈ H.
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4. Sorting based Embeddings

More detailed proof of the bi-Lipschitz result (2)

3. QCQP
Last limit implies:

inf
(u, v) ∈ Rn×d :

U 6= QV ,∀V ∈ H

max
P∈H

∑D
k=1 ‖(U − ΠkV )ak‖2

2
‖U − PV ‖2 = 0

where Πk achieves alignment between Ujak and Vjak .
Since these groups are finite, we obtain that the infimum is achieved!
Hence:
4. Injectivity no-go
There are U,V ∈ Rn×d so that Z + U 6∼ Z + V and yet
(Z + U)ak = Πk(Z + V )ak for all k ∈ [D]. This shows
βA(Z + U) = βA(Z + V ) which contradicts injectivity!
Q.E.D.
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4. Sorting based Embeddings

Highlights of proofs
Third result: Dimension Reduction

The proof follows the approach in [Cahill&al.], [Dufresne]:

0 = B(βA(X ))− B(βA(Y ))⇒ βA(X )− βA(Y ) ∈ ker(B)

Need to show: βA(X )− βA(Y ) = 0, or, Ran(∆) ∩ ker(B) = {0}, where

∆ : Rn×d × Rn×d → Rn×D , ∆(X ,Y ) = βA(X )− βA(Y ).

In the polynomial case, [Cahill&al.] exploit arguments from algebraic
geometry. Here the problem is simpler since Ran(∆) is included in a finite
union of linear subspaces of dimension at most 2nd .
By a dimension argument it follows that the target space for B must be of
dimension at least 2nd to obtain an injective embedding. In this case,
generically, Ran(∆) and ker(B) intersect transversally.
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4. Sorting based Embeddings

Towards universal keys

The arXiv preprint provides necessary and sufficient conditions for a key to
be universal.
Open Problem: Given (n, d) find the smallest dimension D so that there
exists a universal key A ∈ Rd×D for Rn×d .
So far we obtained (joint with Daniel Levy (UMD) ):

n d D-d
2 2 1
3 2 2
4 2 2
5 2 3
6 2 ≥ 4

Open Problem: If a universal key exists for a triple (n, d ,D) then is it true
that universal keys are generic in Rd×D ?
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4. Sorting based Embeddings

Related results

A sequence of preprints came out almost simultaneously:
1 R. Balan, N. Haghani, M.Singh, Permutation Invariant

Representations with Applications to Graph Deep Learning,
arXiv:2203.07546 (2022)

2 N. Dym, S. J. Gortler, Low Dimensional Invariant Embeddings for
Universal Geometric Learning, arXiv:2205.02956 (2022)

3 J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max
filtering, arXiv:2205.14039 (2022)

all of them based on sorting in one way or another. [Dym and Gortler]
shows that the key size should be significantly smaller than n!. [Cahill
et.al.’22] introduced the concept of max filter which is a special case of a
more general G-invariant representation discussed next.
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High-Level View

Recall the framework for Euclidean embeddings of metric spaces induced
by orthogonal representations of (finite) groups G acting on a linear space
V .
Metric space (V̂ ,d) where: V̂ = V /G is the set of orbits,
[x ] = {Ug , g ∈ Gx}, for x ∈ V ; and d(x̂ , ŷ) = minu∈x̂ ,v∈ŷ ‖u − v‖V .
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The Program

Given a (discrete) group G acting unitarly on a normed space V , we
formulate four general problems

1 Construct injective embeddings of the quotient space V /G ,
α : V̂ → Rm. The injectivity problem.

2 Construct/Obtain bi-Lipschitz properties for the Euclidean embedding
α : V̂ → Rm. The stability problem.

3 Develop algorithms for inversion α−1 : Rm → V̂ . The recovery
problem.

4 Analyze specific cases. Applications.
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2 Construct/Obtain bi-Lipschitz properties for the Euclidean embedding
α : V̂ → Rm. The stability problem.
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Today we focus on the first two problems: injectivity and bi-Lipschitz

stability.
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1. Invariant Coorbit Representations

Invariant Representations
Let V be a d-dimensional Hilbert space and G a finite group of size
N = |G | acting unitarily on V , {Ug , g ∈ G}.
The quotient space V̂ = V /G is the set of orbits [x ] = {Ug x , g ∈ G}
induced by the group action, where for x , y ∈ V , x ∼ y iff y = Ug x for
some g ∈ G . (V̂ ,d) becomes a metric space with the natural distance

d([x ], [y ]) = min
g∈G
‖x − Ug y‖

How to construct an invariant representation?
The standard method in the computational invariant theory: Find
generators of the ring of invariant polynomials in d variables. This method
goes back to Cayley, Hilbert, Noether .... However this approach has a
drawback: it cannot produce bi-Lipschitz embeddings 1, unless special
cases.1J. Cahill, A. Contreras, A.C. Hip, Complete Set of translation Invariant
Measurements with Lipschitz Bounds, ACHA 2020
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1. Invariant Coorbit Representations

Sorting based Representations

Different approaches were considered recently 2,3,4 based on sorting. A
unified framework for these approaches is presented here.

Fix a generator w ∈ V (call it, window or template) and consider the
nonlinear map induced by sorting its coorbit:

φw : V → RN , φw (x) =↓ ((〈x ,Ug w〉)g∈G) .

where ↓ (y) = (yπ(i))i∈[N] is the non-increasing sorting operator:
yπ(1) ≥ · · · ≥ yπ(N).

2R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with
Applications to Graph Deep Learning, arXiv:2203.07546 (2022)

3N. Dym, S. J. Gortler, Low Dimensional Invariant Embeddings for Universal
Geometric Learning, arXiv:2205.02956 (2022)

4J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max filtering,
arXiv:2205.14039 (2022)
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1. Invariant Coorbit Representations

Representations based on sorting (2)

φw : V → RN , φw (x) =↓ ((〈x ,Ug w〉)g∈G) .

Remarks:
1 φw (Ug x) = φw (x) for every g ∈ G and x ∈ V . Thus φw lifts to the

quotient space V̂ .
2 Invariant polynomials, and more generally, invariant functions

obtained by the averaging operator (the Reynolds operator), can be
obtained as:

K 7→ FK (x) = 1
|G |

∑
g∈G

K (〈Ug x ,w〉) = 1
|G |

∑
g∈G

K (φw (x))
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1. Invariant Coorbit Representations

Invariant Coorbit Representations

For a collection w = (w1, · · · ,wp) ∈ V p let

Φw : V → RN×p , Φw(x) =
[
φw1(x)| · · · |φwp (x)

]
.

For a subset S ⊂ [N]× [p] of cardinal m = |S|, let

Φw,S : V → l2(S) ∼ Rm , Φw,S(x) = (Φw(x))|S

be the restriction of Φw to S. For a linear operator L : l2(S)→ Rm, let

Ψw,S,L : V → Rm , Ψw,L(x) = L(Φw,S(x))

be the “projection” of Φw,S through L into Rm.
Problems: Construct (w,S) so that Φw,S is a bi-Lipschitz embedding of
V̂ . Construct (w, S,L) so that Ψw,S,L is bi-Lipschitz.
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1. Invariant Coorbit Representations

Invariant Coorbit Representations

Special cases:
1. If G = Sn and V = Rn×d with action (P,X ) 7→ PX , then 5 introduced
the embedding βA(X ) =↓ (XA), for key A ∈ Rd×D and sorting operator
acting independently in each column.
Equivalent recasting: Let w1 = δ1 · aT

1 ,..., wD = δ1 · aT
D , where

δ1 = (1, 0, · · · , 0)T and A = [a1| · · · |aD]. Then note
φw1(X ) =↓ (Xa1)⊗ 1(n−1)!. Thus Φw(X ) = βA(X )⊗ 1(n−1)!. Thus
βA(X ) = Φw,S(X ) for an appropriate subset S ⊂ [n!]× [D] of size nD.
2. The max filter introduced in 6 for some template w ∈ V is defined by
〈〈·,w〉〉 : V → R, 〈〈x ,w〉〉 = maxg∈G 〈x ,Ug w〉. Equivalent recasting:
〈〈x ,w〉〉 = Φw ,S(X ), for S = {1}.

5R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with
Applications to Graph Deep Learning, arXiv:2203.07546 (2022)

6J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max filtering,
arXiv:2205.14039 (2022)
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2. Injective Invariant Representations

Sufficient conditions for an injective embedding

Theorem
Consider G finite group of size N acting unitarily on the d-dimensional V . Let
w ∈ V p, S ⊂ [N]× [p], Sk the k th slice, and linear map L : l2(S)→ Rm. Denote
γ2 = ming∈G,g 6=1 minλ∈R rank(λId−Ug ), γ3 = maxg∈G,g 6=1 minλ∈R rank(λId−Ug ).
Then for almost every w and L the maps Φw,S or Ψw,S,L are injective on V̂ in
any of the following cases:

1 (Max filter, Cahill et.al. 2022) If p ≥ 2d and Smax = {(1, 1), · · · , (1, p)}
then the max filterbank Φw,Smax is injective for a.e. w ∈ V p.

2 (variation of previous result) If p ≥ 2d and |Sk | ≥ 1 for all k ∈ [p] then Φw,S
is injective for a.e. w ∈ V p.

3 a If G is a reflection group and p ≥ d then the max filterbank Φw,Smax is
injective for a.e. w ∈ V p.

aD. Mixon, Y. Qaddura, Injectivity, stability, and positive definiteness of max
filtering, arXiv:2212.11156
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2. Injective Invariant Representations

Sufficient conditions for injective embedding (cont)

Theorem
4 If p ≥ 2d − γ2, |S| ≥ 2d, and for each k, |Sk | ∈ {1, 2} then Φw,S is

injective for a.e. w ∈ V p.
5 If 2d − γ3 ≤ p ≤ 2d, |S1| = · · · = |S2d−p| = N, and
|S2d−p+1| = · · · = |Sp| = 1 then Φw,S is injective for a.e. w ∈ V p.

6 If Φw,S is injective and m ≥ 2d then the map Ψw,S,L is injective for
a.e. linear map L : l2(S)→ Rm.

Remark:
This result can be extended to the case when S has an irregular structure.
However this requires some involved spectral conditions.
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2. Injective Invariant Representations

Injectivity – sketch of proof

The proof provides a semi-algebraic characterization of the set of “bad”
windows, i.e., windows w that fail to separate, say F .

F ⊂
⋃

g,h∈Gp∗
Fg,h , Gp∗ = {(gk

i )(i ,k)∈S , ∀k, (gk
i )i∈Sk ∈ G |Sk |are distinct}

Fg,h =
⋃

(x ,y)∈Γ
⊗p

k=1{Ugk
1

x − Uhk
1
y , ...,Ugk

mk
x − Uhk

mk
y}⊥

where Γ = {(x , y) ∈ V 2 : x 6∼ y , ‖x‖2 + ‖y‖2 = 1}, mk = |Sk |. Using
the “lift-and-project” technique, we realize each Fg,h as finite unions of
projection onto second term of total manifolds of certain real-analytic
vector bundles. The vector bundles have as base manifolds subsets of Γ
where dimension of the orthogonal complement of constant. In turn those
subsets are controled by spectral properties of Ug ’s.
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2. Injective Invariant Representations

Injectivity – sketch of proof

The base manifolds of these vector bundles are themselves total spaces of
a different vector bundles living over Grassmanian manifolds. For instance,
for |Sk | = mk = 2, First construct the bundle (Gr(1,R2), π,E ) over
Gr(1,R2) = RP1 ∼ [0, π) with total space

E = {(θ, x , y) ∈ [0, π)×V 2 ; cos(θ)(Ug1x−Uh1y)+sin(θ)(Ug2x−Uh2y) = 0}

Most of fibers are d-dimensional except what tan(θ) is an eigenvalue of
some unitary Ug . Those two cases induce a disjoint partition
Γ = (Γ \ Π2(E )) ∪ (Γ ∩ Π2(E )) so that

(x , y) ∈ Γ1 := Γ \ Π2(E ) → dim{Ug1x − Uh1y), (Ug2x − Uh2y}⊥ = d − 2
(x , y) ∈ Γ2 := Γ ∩ Π2(E ) → dim{Ug1x − Uh1y), (Ug2x − Uh2y}⊥ = d − 1

from where the dimension estimates arise.
Radu Balan (UMD) HA - ML Day 2 06/28-30/2023



Overview Day 1 Day 2: Permutation invariant representations Day 2: G-invariant representations Day 3

3. Bi-Lipschitz Property

Main Result
Theorem
Consider G finite group of size N acting unitarily on the d-dimensional V .
Let w ∈ V p, S ⊂ [N]× [p] and L : l2(S)→ Rm. Let

B=max
σ1, · · · , σp ⊂ G ,
|σk | = |Sk |, ∀k

λmax

(∑p
k=1

∑
g∈σk

Ug wkwT
k UT

g

)

where Sk = {i ∈ [N], (i , k) ∈ S} for each k ∈ [p].
1 Φw,S : (V̂ ,d)→ l2(S) is Lipschitz with constant upper bounded by√

B.
2 If S = [N]× [p] and Φw,S : (V̂ ,d)→ (Rm, ‖ · ‖2) is injective then it is

also bi-Lipschitz;
3 If S = [N]× [p] and Φw,S : (V̂ ,d)→ (Rm, ‖ · ‖2) is injective then for

a generic L with m ≥ 2d, the map Ψw,S,L : (V̂ ,d)→ (Rm, ‖ · ‖2) is
injective and bi-Lipschitz.
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3. Bi-Lipschitz Property

Sketch of Proof

1. The upper Lipschitz bound is not too hard. A quick way to obtain it is
by the Fundamental Theorem of Calculus: Fix x , y ∈ V and choose them
so that d([x ], [y ]) = ‖x − y‖. The function f : [0, 1]→ l2(S),
f (t) = Φw,S((1− t)x + ty) is Lipschitz because the sorting operator ↓ is
Lipschitz. The upper Lipschitz constant is computable from FTC and
Lebesgue’s differentiation theorem:

‖f (1)−f (0)‖2 = ‖
∫ 1

0
(Jf )|(1−t)x+ty (y−x)dt‖ ≤ supz‖JΦw,S(z)‖∞d([x ], [y ])

But wherever Φ is differentiable, JΦw,S(z) =
[
(Ug(πk (i)wk)T

]
(i ,k)∈S

where
πk is the permutation that sorts φwk (z). From here one obtains the upper
bound.
The same goes for Ψw,S,L.
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3. Bi-Lipschitz Property

Sketch of Proof (2)
2. The lower Lipschitz bound is more challanging. The proof follows the
recipe from (Balan et.al. 2022) and is by contradiction.
Assume the lower bound is A = 0.
Step 1. A compactness argument together with the homogeneity of map Φ
implies the local lower Lipschitz constant must vanish: there is z ∈ S1(V ):

lim
r↓0

inf
x 6∼y

d([x ],[z])<r ,d([y ],[z])<r

‖Φw,S(x)− Φw,S(y)‖2
d([x ], [y ]) = 0.

Step 2. Construct sequences (xn)n and (yn)n so that: (i) ‖xn‖ = 1, (ii)
‖yn‖ ≤ 1; (iii) d([xn], [yn]) = ‖xn − yn‖; (iv) d([xn], [z ]) = ‖xn − z‖; and
xn → z , [yn]→ [z ], and yn → y∞.
Step 3. Let H = {g ∈ G : Ug z = z} denote the stabilizer of z . Let
∆0 = ming∈G\H ‖z − Ug z‖ > 0. Assume n large enough so that
un = xn − z , vn = yn − z satisfy ‖un‖, ‖vn‖ < 1

4 ∆0. This forces y∞ = z .
Radu Balan (UMD) HA - ML Day 2 06/28-30/2023



Overview Day 1 Day 2: Permutation invariant representations Day 2: G-invariant representations Day 3

3. Bi-Lipschitz Property

Sketch of Proof (2)

Step 4. By finiteness of G , we extract subsequences so that
(Φw,S(xn))i ,k = 〈xn,Ug(1,i ,k)wk〉 and (Φw,S(yn))i ,k = 〈yn,Ug(2,i ,k)wk〉
(note the group elements are independent on n !). It follows:

lim
n→∞

1
‖un − vn‖2

∑
(i ,k)∈S

|〈wk ,UT
g(1,i ,k)un − UT

g(2,i ,k)vn〉|2 = 0

Step 5. Using an argument about ratios of quadratics, it follows that one
is able to produce u, v so that u 6∼ v and 〈wk ,UT

g(1,i ,k)u − UT
g(2,i ,k)v〉 = 0

for all (i , k) ∈ S. Then for s > 0 small enough, x = z + su and y = z + sv
we have d([x ], [y ]) > 0 and yet Φw,S(x) = Φw,S(y). Contradiction!
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Thank you!

Questions?
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