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Introduction

Chronic Myeloid Leukemia (CML)
> Cancer of the blood—white blood cells
> Genetic mutation in hematopoietic
stem cells — Philadelphia Chromosome (Ph)
° Increase tyrosine kinase activity allows for
uncontrolled stem cell growth

Treatment —
° Imatinib: tyrosine kinase inhibitor
o Controls population of mutated cells in two ways
> Not effective as a cure
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Figure: Chronic Myelogenous Leukemia Treatment.
National Cancer Institute. 21 Sept. 2015. Web.



Project Goals

Mathematically model clinically observed phenomena of three non-interacting cell populations
to simulate CML genesis and Imatinib treatment

> Nonleukemia cells (Ph")
o Leukemia cells (Ph*)
o Imatinib-affected leukemia cells (Ph*/A)

Three model types based on cell state diagram
o Model 1: Agent Based Model (Roeder et al., 2006)
o Model 2: System of Difference Equations (Kim et al., 2008)
> Model 3: PDE (Kim et al., 2008)

How do these models compare?

What do they tell us about CML and the effects of Imatinib?




CeH State Diagram (Roeder et al., 2006)
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Circulation between A and Q based on cellular affinity
> High affinity: likely to stay in/switch to A
> Low affinity: likely to stay in/switch to Q
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Figures: Kim et al. in Bull. Math. Biol. 70(3), 728-744 2008
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Review of Completed Models

Generate a steady state population of healthy cells
Introduce a single leukemic cell and simulate cancer growth

Start treatment by simulating the effects of Imatinib on leukemic cells

Model 1: Agent Based Model Model 2: System of Difference Equations
Cells simulated individually Cells grouped by common characteristics
Stochastic Discrete, time steps of 1 hour

Discrete, time steps of 1 hour



Model 1: ABM (Roeder et al., 2006)

Top:
o Simulation of healthy cell
population for 2 years

Left:
o CML genesis over 15 years

o Ph* cells in red, Ph™in blue

Right:
o BCR-ABL1 ratio calculated
during treatment (400 days)

o Biphasic decline
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Model 2: Difference Equations (im et at., 2008)

Deterministic: Ph™ pop. with maximum affinity = 91550.7154 = = TO p .

— ABM: Ph™ pop. with maximum affinity = 91512 . .
o Simulation of healthy cell
population for 1 year
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Left:
o CML genesis over 15 years
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——— ABM (average of 20) o Ph+ Ce”S in rEd, Ph_ in blue

Right:
o BCR-ABL1 ratio calculated
during treatment (400 days)
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Model 3: PDE (kim et al., 2008)

Transform model into a system of first order
hyperbolic PDEs

o Consider the cell state system as a function of multiple
internal clocks

> Real time (t)

o Affinity (x = —log(a))
> Cell cycle (c)

> Cell Age (s)

o Each cell state can be represented as a function of 1-3
of these variables
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Figures: Kim et al. in Bull. Math. Biol. 70(3), 1994-2016 2008



Numerical Simulations

Discretization:
> A stem cell domain:[Xmin, Xmax] X RS
A* stem cell domain: R{
Q stem cell domain:[X,min, Xmax] X [0,49) X RE
Q* stem cell domain:[X,in, Xmax] X RE
Equally spaced meshes:
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Numerical Simulations

Discretization:
> Precursor cell domain: [0,480] x R¢

> Mature cell domain: [0,192] x R{
o Equally spaced meshes: As = 1/w

First Order Upwmd Scheme

oPln+1 A(Pln P 1n) i=1,..
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° Ml,n+1 = Ml,n As(Ml,n 1—1,n) i=1,..

Boundary Conolitions: _
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Model 3: PDE—Steady State Profile

Mumber of cells

Number of Cells

— PDE; Ph-pop. w/ max affinity = 9124730493
ABM: Ph- pop.w/ max affinity = 91512

a0
k (affinity a = ek

k (affinity a = e™”)

Top:
o Validation image

o PDE vs Agent Based
Model

Bottom:

o Simulation of healthy cell
population for 1 year.

o Cells with max affinity:
91,314
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Model 3: PDE—CML Genesis

Mature Ph- and mature Ph* cells simulated over 15 years
° Same general behavior as Model 1 and 2

o Qverestimates number of Ph* cells at steady state
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Figures: Kim et al. in Bull. Math. Biol. 70(3), 1994-2016 2008
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Model 3: PDE—Imatinib Treatment

BCR—ABL Ratio during simulation of Treatment (400 days)
o Left: Project results (tba)
> Center: Validation image.
° Right: Treatment simulation with variation of r,, and r,., parameters
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Figures: Kim et al. in Bull. Math. Biol. 70(3), 1994-2016 2008
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Implementation

Implementation Hardware
o Asus Laptop with 8 GB RAM

Implementation Language
o Matlab R2015b

Parameter values from Roeder et al., 2006




Model Complexity and Comparison

Steady State (2 years) 44.4919 s 2.5857 s 8.93 min (dt=0.1)

CML genesis (15 years) 14.06 min 45.606 s 31.33 min (dt=0.5)
Treatment (400 days) 38.5801 s 5.4113 s TBA (dt=0.45)

Original paper average run times for CML genesis
> 6 hours 22 mins (Agent Based Model)

> 4 mins 32 secs (Difference Equations)
o ~ 2 hours (PDE)

Model 1—ABM complexity based on number of agents, i.e. number of stem cells (~10°)
Model 2—Difference Equations computation of 10° simpler equations

Model 3—PDE computation of several more complex equations




Testing

Questions to answer:
o What are the transition rates between A and Q7

> How long does disease genesis take?

> Does Model 1 always predict CML genesis?

o What is the relationship between Model 1 and Model 2?

o With treatment, does a steady state occur? What does it look like?
° Drug administration — when, how often?
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Duration of CML Genesis

Calculate average time to reach three different thresholds

; Mature Phtcells
o BCR — ABL Ratio = —
Mature Phtcells+2«*Mature Ph—cells

o Thresholds tested: BCR — ABL Ratio = 20%, 50%, 99%

20% Threshold 3.8289 years 4.8825 years

50% Threshold 4.7506 years 5.90 years
99% Threshold 10.8669 years 12.884 years
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Comparison of Discrete Models

CML Genesis
o Left: Two single runs of Model 1—Agent Based versus Model 2—Difference Equations

> Right: Average of 20 Model 1 simulations in comparison to Model 2 simulation
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Comparison of Discrete Models

Effects of Imatinib Treatment
o Left: Two single runs of Model 1 versus Model 2
> Right: Average of 20 Model 1 simulations in comparison to Model 2 simulation
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Effects of Imatinib Treatment

Mature cell populations plotted over ~16 years — Treatment starts at year 15

Number of Ph* cells drops drastically in about one tenth of a year

Ph- grows rapidly

Effects of Treatment (Model 2) Effects of Treatment (Model 2) Effects of Treatment (Model 2)
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Post Treatment

The model predicts a recurrence of CML once treatment stops

o Left: Mature cell populations during CML genesis (15 years), followed by 400 days of treatment and 10
years post treatment

o Right: BCR—ABL Ratio during and post treatment

Treatment Stopped (Model 2)

-
[e)]

N
~

-
N

-
o

-

[¢;]

'
N

® IS
g 9
"(-u'.
Y —_
S —
) —
o [an)]
E <
z 5
m

6
Time (years)

10 15 20
Time (years)

21



Extended Treatment

Simulations over longer periods of time (2 and 5 years respectively) suggest that CML cells will
eventually die out
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Final Thoughts

Model 1—ABM:
o Realistically simulates cells individually
> Not the most efficient
> Does not allow for realistic stem cell population sizes

Model 2—Difference Equations:
> Most efficient, but perhaps least realistic

Model 3—PDE:
o Continuous time model correlates better to real life cell growth development
° Explore parameter sensitivity (step sizes, r;;, ryeq €tC.)

Further improvements:
> Allow for variation in fixed parameters (cell lifespans, cell cycle clock duration, cellular division, etc)
o Address discrepancies in outcome of treatment
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Project Schedule

Phase 1: October—Early December
o Implement difference equation model

o Improve efficiency and validate

Phase 2: January—Early March
o Implement ABM
o Improve efficiency and validate

Phase 3: March—Early April

o Implement basic PDE method and validate on simple test problem

Phase 4: April—May
o Apply basic method to CML - Imatinib biology and validate
o Testing and Model Comparison
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