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Abstract 

Chronic Myelogenous Leukemia (CML) is a blood cancer affecting approximately 1 in 100,000 

people. While there are many different treatments for controlling CML, there is currently no 

cure. Recently, many mathematical models have been developed to explore disease genesis and 

the effects of various therapies with the hope of improving or discovering new therapeutic 

strategies. In this project three such models are studied: an agent-based model, a system of 

difference equations, and a system of partial differential equations.  
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1 Project Background 
 

Chronic Myelogenous Leukemia (CML) is a type of blood cancer resulting in the overproduction 

of white blood cells. Approximately 20% of all leukemia cases are CML. CML can be 

characterized by a genetic mutation in hematopoietic stem cells in which a translocation between 

chromosomes 9 and 22 occurs. During this translocation, fusion of the bcr-abl gene occurs on 

chromosome 22 to form what is known as the Philadelphia (Ph) chromosome, a detectable 

characteristic in 90% of all CML patients. Fusion of this gene results in increased tyrosine kinase 

activity contributing to uncontrolled stem cell growth and survival, and ultimately cancer.  

 There are currently many types of treatment available to CML patients. Of particular 

interest is a form of targeted therapy involving the drug Imatinib. Imatinib is a tyrosine kinase 

inhibitor that specifically targets Ph+ cells and binds to the bcr-abl enzyme. This drug controls 

the population of cancer cells in two ways: by preventing proliferation of mutated cells and 

increasing apoptosis or cellular suicide. Although quite effective as a control, Imatinib is not a 

cure for CML.  

 In the past decade, there has been much interest in the use of mathematical models to 

gain further insight into the dynamics of CML genesis and explore the effects of treatment. This 

project will consider three such models, each biologically based on the same cell differentiation 

process as described by Roeder et al. This process consists of three stages of cell differentiation: 

stem cells, precursors and mature cells. Additionally, stem cells are categorized as either non-

proliferating (𝐴) or proliferating cells (𝛺). Movement between compartments is as follows (fig. 

1).  

 
Figure 1: A cell state diagram as proposed by Roeder et al. Figure from [2]. 

 

 Each stem cell may be characterized by its cellular affinity, a quantity based on cell age 

and state. Cells in 𝐴 increase their affinity over time until the maximum affinity is reached. They 

transfer from 𝐴 to 𝛺 with probability 𝜔 determined by affinity and the total number of 

proliferating cells. In 𝛺, stem cells proliferate by completing the 48 hour cell cycle. The cell 

cycle consists of four necessary phases for cell growth and division. These stages in order are G1, 

S, G2, and M. Cells enter 𝛺 from 𝐴 at hour 32 of the cell cycle, the beginning of the S phase 

during which DNA synthesis occurs. At hour 48, the cell divides into two identical daughter cells 
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that each begin the cycle in the G1 growth phase. Transitions from 𝛺 to 𝐴 occur during the G1 

phase with probability 𝛼. Cell affinity decreases over time in 𝛺 until the minimum affinity is 

attained.  

 Stem cells with minimum affinity differentiate into precursor cells. These cells divide 

symmetrically once every 24 hours for 20 days, at which point they become mature cells. Cells 

live in the mature stage for 8 days before dying.  

 The biology described here is a simplification of the cell maturation process and makes a 

few assumptions. Firstly, the differentiation process has been reduced to three stages of 

maturation. Second, transition probabilities between stem cell compartments are assumed to be 

based on affinity, an internal quantity for each stem cell that varies in time within an interval 

[amin,
 amax]. Affinity is a notion whose existence was postulated by Roeder [1] and is not directly 

associated with any known biological mechanism specific to the hematopoietic system. 

Furthermore, the time spent in each stage is deterministic. It is assumed that these lifespans are 

known and fixed. Lastly, it is assumed that when a cell undergoes mitosis and divides, it does so 

symmetrically. This means that each daughter cell is identical and of the same type of cell as the 

parent, i.e. stem cells divide into two stem cells, precursors divide into two precursors. 

 

2 Approach 
 

There are three components to this project. The first is an agent based model (ABM) for 

simulating CML genesis as described by Roeder et al. The second component is an 

implementation of a reformulation of the ABM model as a system of discretized difference 

equations [2]. Lastly, a system of PDEs is used to simulate CML and its treatment [3]. All three 

algorithms are based upon the same underlying biological model (fig. 1) and use the same 

parameter values as given by Roeder (table B.1). Three cell populations will be simulated: 

healthy, leukemic and Imatinib-affected leukemic. These populations will be denoted Ph-, Ph+ 

and Ph+/A, respectively, where Ph represents the presence of the Philadelphia chromosome.  

 

2.1 Agent Based Model 
 

Roeder’s agent based model simulates each cell individually according to a set of rules (fig. 2). 

At each discrete time step these rules are applied and cells are updated simultaneously. At the 

start of each time step, the number of cells in the 𝐴 and 𝛺 compartments is determined and used 

to govern the movement of each stem cell in the model. As previously mentioned, cells in 𝐴 

transition to 𝛺 with probability 𝜔, while cells in Ω move to 𝐴 with probability 𝛼.  

 

    𝜔(Ω(𝑡), 𝑎(𝑡)) =
𝑎𝑚𝑖𝑛

𝑎(𝑡)
𝑓𝜔(Ω(𝑡)) 

𝛼(Ω(𝑡), 𝑎(𝑡)) =
𝑎(𝑡)

𝑎𝑚𝑎𝑥
𝑓𝛼(A(𝑡))    (1) 
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The transition probabilities are dependent on the affinity 𝑎(𝑡) as well as the number of non-

proliferating cells A(𝑡) and proliferating cells Ω(𝑡). The functions 𝑓𝜔 and 𝑓𝛼 are sigmoidal 

functions, which are given by equation (B.1) in the appendix.  

 
Figure 2: Update algorithm for ABM stem cells. Cell affinity is given by 𝑎(𝑡), position in cell cycle by 𝑐(𝑡) and 

cell compartment by 𝑚(𝑡). Δ𝑡 = 1 ℎ𝑟. From [1]. 

 

Cells that remain in Α increase affinity by a factor 𝑟 known as the regeneration factor. When 

cells transfer into Ω, 𝑐(𝑡) is set to 32 to correspond to the beginning of the S phase of the cell 

cycle. Cells remaining in Ω, may only transition to Α when 𝑐(𝑡) corresponds to the G1 

phase (0 ≤ 𝑐(𝑡) ≤ 31). Once the cell cycle has been completed, the cell duplicates. Affinity of 

Ω cells is decreased by a differentiation factor 1/𝑑 until minimum affinity is reached. A cell with 

minimum affinity begins terminal differentiation. Unlike the stem cells in this model, the 

behavior of the differentiated cells is not stochastic. Precursor and mature cells move according 

to fixed rules, as given by the cell state diagram (fig. 1).  
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2.1.1 Simulation of CML Genesis 

 

The algorithm depicted in figure 2 demonstrates the rules for updating healthy or Ph- cells. To 

simulate the onset of CML in a healthy patient and track disease genesis, parameters of the 

sigmoidal functions 𝑓𝜔 and 𝑓𝛼 of a single cell are set to values specific to leukemic cells. That 

cell will be labeled leukemic (Ph+) and tracked over time. All of its progeny will be considered 

as Ph+ cells.  

 

2.1.2 Simulation of Treatment 

 

Treatment is introduced to the algorithm in two ways, reflecting the two ways Imatinib can affect 

Ph+ cells. First, Imatinib can limit proliferation of mutated cells. This will be accomplished in the 

model by altering the 𝑓𝜔 function for previously unaffected Ph+ cells, with probability 𝑟𝑖𝑛ℎ at 

each time step. Once this change has been made, these cells will be marked as affected (Ph+/A) 

and maintain this configuration of 𝜔 for the duration of the simulation. Altering this function 

alone decreases the ability for resting cells to transition to Ω and begin proliferating. Imatinib 

also increases apoptotic activity in Ph+ cells, causing cells to die. Implementation of this function 

will consist of removing Ph+ and Ph+/A cells in Ω from the system, with probability 𝑟𝑑𝑒𝑔, at each 

time step.  

 Simulation of Imatinib treatment will begin once the proportion of differentiated Ph+ cells 

has reached more than 99.5% of the total cell population. To stop treatment, all parameter values 

and functions are reset to their initial values.  

 

2.2 A System of Difference Equations Model 

 

Model 2 formulates the cell state diagram as a system of discretized difference equations. Rather 

than simulating each cell individually as the ABM model does, this system groups cells by their 

common characteristics i.e., cell state compartment, affinity level, cell cycle position. The 

progression of CML is simulated by tracking the number of cells in each group. This approach 

reduces computational complexity and allows for simulation of realistic cell numbers.  

 In order to devise the difference equations, the state space must be discretized. Time is 

already discretized in the ABM; cell positions are updated at fixed and uniform time steps. 

Affinity is discretized by setting 𝑎(𝑡) = 𝑒−𝑘𝜌 where 𝜌 = log(𝑑) ≈ 0.0488 and 0 ≤ 𝑘 ≤ 127 is 

an integer. The affinity of each cell can now be characterized discretely by the value of 𝑘 

where log(𝑎(𝑡)) = −𝑘𝜌. 

 

2.2.1 The Difference Equations 

 

The stem cell populations can be represented by the following difference equations with 𝑘 

representing cell affinity and 𝑐 representing position in the cell cycle:  
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Α𝑘(𝑡 + 1) =

{
 
 

 
 
(Α0(𝑡) − Β0(𝑡)) + (Α1(𝑡) − Β1(𝑡)) + (Α2(𝑡) − Β2(𝑡)),           𝑘 = 0

(Α𝑘+2(𝑡) − Β𝑘+2(𝑡)) + ∑ Ψ𝑘,𝑐(𝑡),                               𝑘 = 1,… ,125
31

𝑐=0

∑ Ψ𝑘,𝑐(𝑡),
31

𝑐=0
                                                                            𝑘 = 126, 127

 

(2) 

Ω𝑘(𝑡 + 1) =

{
  
 

  
 
Β0(𝑡),                                                                   𝑘 = 0, 𝑐 = 32

2Ω𝑘−1,48(𝑡),                                                           𝑘 > 0, 𝑐 = 0

Ω𝑘−1,𝑐−1(𝑡) − Ψ𝑘−1,𝑐−1(𝑡),                   𝑘 > 0, 𝑐 = 1,… ,31

(Ω𝑘−1,31(𝑡) − Ψ𝑘−1,31(𝑡)) + Β𝑘(𝑡),              𝑘 > 0, 𝑐 = 32

Ω𝑘−1,𝑐−1(𝑡),                                            𝑘 > 0, 𝑐 = 33,… ,48

0                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3) 

Transitions between the Α𝑘 and 𝛺𝑘,𝑐 compartments are determined by the binomial random 

variables Β𝑘 and Ψ𝑘,𝑐 which have the following distributions: 

Β𝑘(𝑡) ~ 𝐵𝑖𝑛(Α𝑘(𝑡), 𝜔(Ω(𝑡), 𝑒
−𝑘𝜌))

 
                                 

Ψ𝑘,𝑐(𝑡) ~ 𝐵𝑖𝑛 (Ω𝑘,𝑐(𝑡), 𝛼(Α(𝑡), 𝑒
−𝑘𝜌)) ,       𝑐 = 0, . .31

 

Here Ω(𝑡) = ∑ Ω𝑘,𝑐(𝑡)𝑘,𝑐  and Α(𝑡) = ∑ Α𝑘(𝑡)𝑘  denote the total number of proliferating and 

resting cells respectively. The transition probabilities 𝜔 and 𝛼 are as previously given by (1).  

 The differentiated cells can be represented in a similar fashion. The equations for 

precursors are denoted by 𝑃𝑗(𝑡) where 𝑗 = 0,… ,479 is the number of hours a cell has spent in 

this compartment, up to 20 days. Similarly mature cells are denoted by 𝑀𝑗(𝑡) where 𝑗 =

0, … ,191 is the number of hours spent as a mature cell, up to 8 days.  

 

𝑃𝑗(𝑡 + 1) =  

{
 
 

 
 ∑ Ω127,𝑐(𝑡)

48

𝑐=0
−∑ Ψ127,𝑐(𝑡)

31

𝑐=0
,                 𝑗 = 0

2𝑃𝑗−1(𝑡),                                   𝑗 = 24, 48, 72,… , 456

𝑃𝑗−1(𝑡),                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(4) 

𝑀𝑗(𝑡 + 1) =  {
2𝑃479(𝑡),                𝑗 = 0 

𝑀𝑗−1(𝑡),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5) 

These equations directly reflect the rules of cell differentiation as presented in the cell state 

diagram (fig. 1). The first line of (4) represents proliferating cells that have attained minimum 

affinity and differentiate into precursors. Precursors divide every 24 hours, producing two 

daughter cells, as represented by line two. Line three denotes an increase in age, which is 

necessary to track the time spent as a precursor before maturing. The first line of (5) signifies the 

number of precursors that undergo one final division before entering the mature state. Similar to 

the final line of (4), the second line of (5) tracks the age of mature cells before they die.  
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2.2.2 Modeling CML and Imatinib Treatment 

 

Three non-interacting cell populations are simulated to mathematically model clinically observed 

phenomena. These populations are healthy cells (Ph-), leukemic cells (Ph+) and Imatinib-affected 

cells (Ph+/A). Equations (2) to (5) as written were used to simulate Ph- cells. Alterations to 

equation (3) and new parameter values were used to represent Ph+ and Ph+/A cells.  

 Ph+ cells uncontrollably proliferate, therefore the transition rates between Α and Ω differ 

from those of Ph- cells. The transition functions 𝑓𝛼/𝜔 are updated with new parameter values (see 

table B.1) that correspond to this behavior. This is the only update necessary to simulate CML 

genesis. Equations (2) – (5) remain unchanged.  

 A slight alteration to equation (3) for Ph+ Ω cells is made when treatment simulation 

begins; equations (2), (4) and (5) are as previously stated. When Imatinib is introduced, 

proliferating stem cells become Imatinib affected with probability 𝑟𝑖𝑛ℎ and undergo apoptosis 

with probability 𝑟𝑑𝑒𝑔 at each time step. The number of proliferating Ph+ stem cells infected at 

time 𝑡 is given by Ω+/𝐼(𝑡) ~ 𝐵𝑖𝑛(Ω𝑘,𝑐
+ (𝑡), 𝑟𝑖𝑛ℎ). The number of proliferating stem cells that die at 

time 𝑡 is given by Ω+/𝐷(𝑡) ~ 𝐵𝑖𝑛(Ω𝑘,𝑐
+ (𝑡), 𝑟𝑑𝑒𝑔). These cells are removed from the Ph+ cell 

population at the beginning of each time step before any other transition occurs. To accomplish 

this, Ω𝑘,𝑐
+/𝑅(𝑡) is substituted into the right hand side of (3), where Ω𝑘,𝑐

+/𝑅(𝑡) = Ω𝑘,𝑐
+ (𝑡) − Ω𝑘,𝑐

+/𝐼(𝑡) −

Ω𝑘,𝑐
+/𝐷

(𝑡) is the number of cycling Ph+ stem cells remaining unaffected for the next time step. The 

overall structure of the equations remains unchanged. 

  The Ph+/A cell population differs from Ph- cells in two ways. First, since Imatinib inhibits 

the ability of these cells to proliferate, transition functions 𝑓𝛼/𝜔 will be updated with 

corresponding parameter values (table B.1). Second, affected proliferating stem cells, Ω+/𝐴 

undergo apoptosis at each time step according to a binomial distribution with probability 𝑟𝑑𝑒𝑔. 

These cells are removed at the beginning of each time step and infected cells are added, before 

regular transitions occur. In terms of the equations, Ω+/𝐴,𝑅(𝑡) is substituted into the right hand 

side of (3) where Ω+/𝐴,𝑅(𝑡) = Ω𝑘,𝑐
+/𝐴(𝑡) − Ω𝑘,𝑐

+/𝐴,𝐷(𝑡) + Ω𝑘,𝑐
+/𝐼
(𝑡). This new quantity is used to 

calculate Ω𝑘,𝑐
+/𝐴(𝑡 + 1). Again, equations (2), (4) and (5) and the overall structure of (3) remain 

unchanged for Ph+/A population. 

 

2.3 A PDE Model 
 

The third model transforms Roeder’s ABM into a system of partial differential equations, the 

goal being to describe the same CML dynamics but with continuous variables. The PDE model 

has advantages over the original model. Like the system of difference equations, it is designed to 

reduce the complexity of the ABM, which can produce a solution in less time and allows 

simulations of realistic cell population sizes. Additionally, it tracks disease genesis in continuous 

time which more accurately reflects true biological processes.  

 Transitions for stem cells will be governed by three variables 𝑡, 𝑎 and 𝑐, which can be 

thought of as three internal clocks representing real time, affinity and cell cycle position 
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respectively. Differentiated cells are not dependent on affinity or the cell cycle. Lifespans and 

functions of these cells will be represented by 𝑡 and 𝑠, where 𝑠 denotes cell age.  

 

2.3.1 The System and Boundary Conditions 

 

As noted in the difference equation model, the log of cell affinity is linear with respect to real 

time. Hence, the population of non-proliferating cells Α will be denoted Α(𝑥, 𝑡) where 𝑥 =

−log (𝑎) with 𝑎 being affinity. Over time, cells in Α increase their affinity up to some maximum 

value. This will correspond to 𝑥𝑚𝑖𝑛 = −log (𝑎max). To deal with the accumulation of cells 

occurring at this boundary, cells with maximum affinity will be considered as a subpopulation 

denoted Α∗(𝑡). The population of proliferating cells will be denoted Ω(𝑥, 𝑐, 𝑡). 

Additionally, Ω∗(𝑥, 𝑡) will be used to denote the subpopulation of proliferating cells that 

transferred from Α∗. 
 

 
Figure 3: A representation of the stem cell compartments for the PDE model. Alpha stem cells decrease their log 

affinity until reaching a minimum value, at which point they are shifted to the A* compartment. Omega stem cells 

increase their log affinity values x and position in the cell cycle c. The shaded region corresponds to the portion of 

the cell cycle during which cells prepare for and undergo mitosis. The unshaded region corresponds to the G1 growth 

phase during which cells can transfer to Alpha. Cells that transfer from Alpha enter Omega at the line denoted c=32. 

A* becomes a point source for the population of Ω* cells. These cells increase their log affinity values over time and 

complete specific phases of the cell cycle at the time counters y1, y2, y3, y4, and y5. From [3]. 

  

 The PDEs for these four subpopulations are as follows:  

 

𝜕Α

𝜕𝑡
− 𝜌𝑟

𝜕Α

𝜕𝑡
= −𝜔(Ω, 𝑒−𝑥)Α + 𝛼(Α, 𝑒−𝑥)∫ Ω(𝑥, 𝑐, 𝑡)𝑑𝑐

32

0

+ {
0,                            𝑥 𝜖 𝑋𝑎

𝛼(Α, 𝑒−𝑥)Ω∗,       𝑥 𝜖 𝑋𝑏
 

(6) 

𝑑Α∗

𝑑𝑡
= 𝜌𝑟Α(𝑥𝑚𝑖𝑛, 𝑡) − 𝜔(Ω, 𝑒

−𝑥𝑚𝑖𝑛)Α∗ 

(7) 
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𝜕Ω

𝜕𝑡
+ 𝜌𝑑

𝜕Ω

𝜕𝑥
+
𝜕Ω

𝜕𝑐
= {

−𝛼(Α, 𝑒−𝑥)Ω,      𝑓𝑜𝑟 𝑐 𝜖 (0,32]

0,                         𝑓𝑜𝑟 𝑐 𝜖 (32, 49]
 

(8) 

𝜕Ω∗

𝜕𝑡
+ 𝜌𝑑

𝜕Ω∗

𝜕𝑥
= {

0,                                 𝑥 𝜖 𝑋𝑎

−𝛼(Α, 𝑒−𝑥)Ω∗,         𝑥 𝜖 𝑋𝑏
 

(9) 

The domain of 𝑥 is divided into two subsets 𝑋𝑎 and 𝑋𝑏 where 𝑋𝑎 = (𝑥𝑚𝑖𝑛, 𝑦1] ∪ (𝑦2, 𝑦3] ∪

(𝑦4, 𝑦5] and 𝑋𝑏 = (𝑦1, 𝑦2] ∪ (𝑦3, 𝑦4] ∪ (𝑦5, 𝑥𝑚𝑎𝑥], with 𝑦1, 𝑦2, 𝑦3, 𝑦4, and  𝑦5 being constants 

corresponding to affinity values at which Ω∗ cells reach cell cycle time counters of 49, 32, 49, 32, 

and 49 respectively [3]. The transition probabilities 𝜔 and 𝛼 are given by (1). Regeneration and 

differentiation factors for affinity are incorporated into the advection rates 𝜌𝑟 = log 𝑟 and 𝜌𝑑 =

log 𝑑. Equations (6) - (9) are dependent on the total population of cells in Α and Ω. These are 

denoted by 

Α(𝑡) =  ∫ Α(𝑥, 𝑡)𝑑𝑥 + Α∗(𝑡)
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 

Ω(𝑡) =  ∫ ∫ Ω(𝑥, 𝑐, 𝑡)𝑑𝑐 𝑑𝑥 + ∫ Ω∗(𝑥, 𝑡)𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

49

0

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 

Boundary conditions for Α and Ω are given by 

Α(𝑥𝑚𝑖𝑛, 𝑡) = 0 

Ω(𝑥, 0, 𝑡) = 2Ω(𝑥, 49, 𝑡) 

Ω(𝑥, 32+, 𝑡) = Ω(𝑥, 32−, 𝑡) + 𝜔(Ω, 𝑒−𝑥)Α 

Ω∗(𝑥𝑚𝑖𝑛, 𝑡) =
𝜔(Ω, 𝑒−𝑥𝑚𝑖𝑛)

𝜌𝑑
Α∗ 

Ω(𝑦𝑖
+, 𝑡) = 2Ω(𝑦𝑖

−, 𝑡),      𝑖 = 1,3,5 

(10) 

 Cells that have attained minimum affinity differentiate into precursor cells, where their 

behavior is no longer dependent on affinity or the cell cycle seen in Ω. The PDE for these cells 

can then be written as a linear advection equation based on age:  

𝜕𝑃

𝜕𝑡
+
𝜕𝑃

𝜕𝑠
= 0,     𝑠 𝜖 [0,480) 

(11) 

Precursors divide once every 24 hours. This will be incorporated into the boundary conditions 

for (11) which are given as  

{
𝑃(0, 𝑡) = 𝜌𝑑 (∫ Ω(𝑥𝑚𝑎𝑥, 𝑐, 𝑡)𝑑𝑐

32

0

+ Ω∗(𝑥𝑚𝑎𝑥 , 𝑡))

𝑃(𝑣+, 𝑡) = 2𝑃(𝑣−, 𝑡),              𝑣 = 24, 48, 72, … , 456

 

(12) 

Here, the boundaries are considered to be the times at which division occurs. Mature cells can be 

considered in a similar fashion, as their population depends only on real time and cell age. The 

PDE is given by (13) with boundary condition (14) to signify the final division of precursor cells.  
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𝜕𝑀

𝜕𝑡
+
𝜕𝑀

𝜕𝑠
= 0,     𝑠 𝜖 [0,192) 

(13) 

𝑀(0, 𝑡) = 2𝑃(480, 𝑡) 
(14) 

 

2.3.2 Modeling CML and Imatinib Treatment 

 

Simulating disease genesis and treatment in the PDE model will be similar as in the difference 

equations. Leukemic cells will be denoted by Ph+, nonleukemic cells as Ph- and Imatinib-

affected leukemic cells by Ph+/A. A separate set of PDEs will be formulated for each population 

according to equations (6) - (9), (11) and (13), with some modifications for Ph+ and Ph+/A cells. 

The boundary conditions will remain the same across all populations. PDEs for Ph- cells are as 

written above.  

 Unaffected Ph+ cells transition between Α and Ω based on transition functions 𝑓𝛼/𝜔, with 

parameter values specific to Ph+ cells (table B.1). Proliferating leukemic cells Ω+can become 

Imatinib affected or undergo apoptosis. This is introduced in by altering (8) and (9) to include an 

additional term on the right hand side: −(𝑟𝑖𝑛ℎ + 𝑟𝑑𝑒𝑔)Ω
+and −(𝑟𝑖𝑛ℎ + 𝑟𝑑𝑒𝑔)Ω

∗,+respectively. 

The rest of the PDEs and boundary conditions remain unchanged. 

 Imatinib-affected cells transition between Α and Ω based on transition functions 𝑓𝛼/𝜔, 

with parameter values specific to Ph+/A cells (table B.1). The effects of Imatinib are introduced 

by including an additional right hand side term to (8) and (9) of the form 𝑟𝑖𝑛ℎΩ
+ − 𝑟𝑑𝑒𝑔Ω

𝑖 and 

𝑟𝑖𝑛ℎΩ
∗,+ − 𝑟𝑑𝑒𝑔Ω

∗,𝑖 respectively. Here Ω𝑖denotes the affected proliferating stem cell population 

Again, all other equations for the Ph+/A cells are as given by (6), (7), (11) and (13). The boundary 

conditions remain unchanged.  

 

2.3.3 Numerical Methods 

 

To numerically simulate the PDE model, first the domain will be discretized into an equally 

spaced grid. The equations and boundary conditions given above will be discretized using the 

numerical scheme presented by Kim et al. Starting with the stem cells, the grid points for the 

domain  [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [0, 49] × ℝ0
+ are given by 𝑥𝑗 = 𝑗Δ𝑥, 𝑐𝑘 = 𝑘Δ𝑐 and 𝑡𝑛 = 𝑛Δ𝑡, where  

Δ𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝐽
,    Δ𝑐 =

49

𝐾
 

and 𝑗 = 0,… , 𝐽, 𝑘 = 0,… , 𝐾, and 𝑛 = 0,… ,𝑁. Let 𝜆𝑥 = Δ𝑡/Δ𝑥 and 𝜆𝑐 = Δ𝑡/Δ𝑐 be the fixed 

mesh ratios. The composite trapezoidal rule will be used to evaluate all integrals that appear in 

the above equations and is denoted by 𝒯𝑢(𝑓) =
Δ𝑢

2
∑ (𝑓(𝑢𝑙+1) − 𝑓(𝑢𝑙))
𝑀−1
𝑙=0 . Note 

that Α̂𝑛, Ω̂𝑛, Α̃𝑗,𝑛, Α̃𝑛
∗ ,  Ω̃𝑗,𝑘,𝑛 and  Ω̃𝑗,𝑛

∗  will represent the numerical approximations 

for Α(𝑡𝑛), Ω(𝑡𝑛), Α(𝑥𝑗 , 𝑡𝑛), Α
∗(𝑡𝑛),  Ω(𝑥𝑗 , 𝑐𝑘, 𝑡𝑛) and Ω∗(𝑥𝑗 , 𝑡𝑛) respectively. Following this 

notation, 

Α̂𝑛 = 𝒯𝑥(Α̃−,𝑛) + Α̃𝑛
∗ , 
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Ω̂𝑛 = 𝒯𝑥 ∘ 𝒯𝑐(Ω̃−,−,𝑛) + 𝒯𝑥(Ω̃−,𝑛
∗ ) 

Then the numerical approximation for (6) is 

Α̃𝑗,𝑛+1 = Α̃𝑗,𝑛 + 𝜆𝑥𝜌𝑟(Α̃𝑗+1,𝑛 − Α̃𝑗,𝑛) − Δ𝑡(𝜔(Ω̂𝑛, 𝑒
−𝑥𝑗)Α̃𝑗,𝑛 − 𝛼(Α̂𝑛, 𝑒

−𝑥𝑗)𝒯𝑐(Ω̃𝑗,−,𝑛)

+ {
0,                                             𝑥𝑗  𝜖 𝑋𝑎,

(Δ𝑡)𝛼( Α̂𝑛, 𝑒
−𝑥𝑗)Ω̃𝑗,𝑛

∗ ,         𝑥𝑗  𝜖 𝑋𝑏.
 

with associated boundary condition obtained from the first line of (10) 

Α̃𝐽,𝑛+1 = 0. 

The approximation for (7) is given as  

Α̃𝑛+1
∗ = Α̃𝑛

∗ + Δ𝑡 (𝜌𝑟Α0,𝑛 −
𝜔(Ω̂𝑛, 𝑒

−𝑥0)

𝜌𝑑
Α̃𝑛
∗ ). 

The numerical scheme for Ω cells is derived from (8) as 

Ω̃𝑗,𝑘,𝑛+1 = Ω̃𝑗,𝑘,𝑛 + 𝜆𝑥𝜌𝑑(Ω̃𝑗,𝑘,𝑛 − Ω̃𝑗−1,𝑘,𝑛) − 𝜆𝑐(Ω̃𝑗,𝑘,𝑛 − Ω̃𝑗,𝑘−1,𝑛)

+ {
−(Δ𝑡)𝛼( Α̂𝑛, 𝑒

−𝑥𝑗)Ω𝑗,𝑘,𝑛,         𝑓𝑜𝑟 𝑐 𝜖 (0,32],

0,                                                𝑓𝑜𝑟 𝑐 𝜖 (32, 49].
 

with boundary conditions  

Ω̃0,𝑘,𝑛 = 0    ∀𝑘, 𝑛 

Ω̃𝑗,0,𝑛+1 = 2Ω̃𝑗,𝐾,𝑛 

Ω̃
𝑗,𝑘+,𝑛+1

= Ω̃𝑗,𝑘−,𝑛+1 + 𝜔(Ω̂𝑛, 𝑒
−𝑥𝑗)Α̃𝑗,𝑛+1. 

The first boundary condition corresponds to 𝑥 = 𝑥0, the second to 𝑐 = 0, and the last to 𝑐 = 32 

where 𝑘 is the index between 0 and K such that 𝑐𝑘 is as close to 32 as possible [3]. Next, 

equation (9) for cells in Ω∗ is discretized as  

Ω̃𝑗,𝑛+1
∗ = Ω̃𝑗,𝑛

∗ − 𝜆𝑥𝜌𝑑(Ω̃𝑗,𝑛
∗ − Ω̃𝑗−1,𝑛

∗ ) + {
0,                                                 𝑥𝑗  𝜖 𝑋𝑎,

−(Δ𝑡)𝛼( Α̂𝑛, 𝑒
−𝑥𝑗)Ω̃𝑗,𝑛

∗ ,         𝑥𝑗  𝜖 𝑋𝑏.
 

The boundary condition given by the fourth and fifth lines of (10) become  

Ω̃0,𝑛+1
∗ = Δ𝑡

𝜔(Ω̂𝑛, 𝑒
−𝑥0)

𝜌𝑑
Α̃𝑛
∗  

Ω̃𝑗+,𝑛+1
∗ = 2Ω̃𝑗−,𝑛+1

∗ . 

 For the differentiated cells, the grid points for the time domain is the same as stated 

above. The grid points for the age domains [0,480] and [0,192] for precursor and mature cells 

respectively, are given by 𝑠𝑖 = 𝑖Δ𝑠 where Δ𝑠 = 1\𝑤 for some integer 𝑤 and 𝑖 = 1,… , 𝐼𝑚, … , 𝐼𝑝. 

Note that 𝑃̃ and 𝑀̃represent the numerical approximations to 𝑃 and 𝑀, respectively. An explicit 

upwind scheme is used to approximate equations (11) and (13) as 

𝑃̃𝑖,𝑛+1 = 𝑃̃𝑖,𝑛 − 𝜆𝑠(𝑃̃𝑖,𝑛 − 𝑃̃𝑖−1,𝑛) 

𝑀̃𝑖,𝑛+1 = 𝑀̃𝑖,𝑛 − 𝜆𝑠(𝑀̃𝑖,𝑛 − 𝑀̃𝑖−1,𝑛) 

The boundary conditions are given as 

{

𝑃̃0,𝑛 = 𝜌𝑑(𝒯𝑐(Ω̃𝐽,−,𝑛) + Ω̃𝐽,𝑛
∗ )                                                

𝑃̃𝑣𝑤+,𝑛 = 2𝑃̃𝑣𝑤−,𝑛                    𝑓𝑜𝑟 𝑣 = 24, 48, 72,… ,456

𝑀̃0,𝑛 = 2𝑃̃𝐼𝑝,𝑛                                                                           
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 The numerical approximations for leukemic cells are derived similarly. This numerical 

method is a first-order method. Extensions of the scheme in higher-order can be considered as a 

follow-up project.  

 

3 Implementation 
 

All three models were implemented in Matlab R2015b. Simulations were run on an ASUS 

Notebook with a 2.4 GHz Intel Core i5 processor and 8 GB of RAM.  

 The complete simulation for this project involves three steps: steady state, CML genesis, 

and treatment. For the first step, a small number of healthy cells are simulated by looping over 

time until a steady mature cell count is reached. The model is initialized by setting Ω0,32
− (0) = 1, 

or some other small number. Although the results are not dependent on the initial condition, 

choosing a cycling stem cell with maximum affinity at hour 32 of the cell cycle guarantees that 

the system will have two cycling stem cells 17 discrete time steps later when the cell completes 

mitosis. Steady state is reached at around two years when there are approximately 6.58 × 1010 

mature Ph- cells. The steady state profile for Ph- cells is used as the starting value for Ph- cells 

when CML genesis begins. The Ph+ population is initialized by setting Ω0,32
+ (0) = 1, or some 

other small number. The duration of CML genesis is assumed to be 15 years for these 

simulations. At this point, most runs predict the Ph+ population to be roughly 99.5% of the total 

cell population. Lastly, treatment is simulated using the Ph- and Ph+ population values from 

CML genesis as starting values. The Ph+/A initial population will be set during the first time step 

to be Ω𝑘,𝑐
+/𝐴(0) = Ω𝑘,𝑐

+/𝐼
(0). Treatment was simulated for 400 days for validation. Other lengths of 

treatment were explored during testing. 

 

3.1 Agent Based Model 
 

Each stem cell in the Agent Based Model is represented and tracked using a row vector whose 

entries hold the values for affinity and cell cycle position. Additional values were added during 

testing to track transition characteristics. Row vectors tracking Alpha stem cells are grouped in a 

matrix A, so that transitions to these cells can be executed simultaneously and efficiently with 

built-in Matlab functions. Similarly, Omega stem cells are grouped into a matrix O. When a 

single stem cell moves between compartments, the row of the matrix corresponding to the cell is 

deleted from one matrix and inserted at the end of the other. Implementing the ABM in this way 

reflects the stochastic nature of the stem cell transitions in this model, but is quite inefficient as 

matrix sizes will change on each iteration. 

 Differentiated cells in the ABM are not stochastic in nature. Because of this, precursor 

and mature cells need not be simulated individually. These cells can be represented as a single 

vector whose entries hold the total number of differentiated cells with the same cell age. At each 

time step, the total number of Omega cells that have reached minimum affinity will be used to 

set the first entry of the differentiated cell vector. In this way, the ABM is updated similarly to 

the difference equations.    

 Time steps of one hour were used for all simulations.  
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3.2 Difference Equations 
 

At each time step, approximately 105 simple equations are computed. The difference equations 

were vectorized to achieve a more efficient simulation of these computations. Α and Β  are 

represented as column vectors, where the 𝑘𝑡ℎ entry contains the number of cells with an affinity 

level of 𝑘. Ω and Ψ cells are dependent on both affinity and cell cycle. These cells are tracked by 

matrices whose (𝑘, 𝑐) entries contain the number of cells with affinity 𝑘, at position 𝑐 in the cell 

cycle. 𝑃 and 𝑀 are structured as column vectors whose 𝑗𝑡ℎ entry contains the number of cells of 

age 𝑗 in the respective compartment. Time steps of one hour were used for each phase of 

simulation. 

 

3.3 PDE 
 

Like the ABM and difference equation models, the PDE model was implemented to take 

advantage of many of Matlab’s built in matrix functions and capabilities. The cells in 𝐴∗ are 

tracked by a single number, since these cells are only dependent on real time t. Cells in 𝐴, Ω∗, 𝑃 

and 𝑀 are all dependent on two of the four variables. They are represented by vectors of size 

dependent on the mesh size being used. For 𝐴 and Ω∗, the jth entry in the representative vector 

holds the number of cells with affinity level xj. For 𝑃 and 𝑀, the ith entry in the representative 

vector contains the number of cells at age si. The number of Ω cells with affinity xj at cell cycle 

position ck are tracked by the (j,k) entry of a matrix whose size is dependent on the mesh sizes 

for x and c domains.  

 The mesh sizes used for validation are consistent with those given in [3] and can be found 

in table B.2. Due to the long 15 year simulation of CML Genesis, a much coarser mesh was used 

for this phase of model simulation. After healthy cell steady state simulation is complete 𝐴, 

 Ω, Ω∗, 𝑃 and 𝑀 are restricted to the coarse domain. These values are then used as initial 

populations for Ph- cells during CML genesis.  

 

4 Validation 
 

4.1 ABM 
 

The complexity of the ABM is based on the number of agents in the system. The completed 

model was validated by running simulations first on a small number of cells, increasing 

gradually to larger values. Validity was determined by comparing resulting cell counts and 

figures to those presented by Kim et al and to the difference equation model, which was 

implemented and validated before the ABM. Furthermore, the ability to simulate total stem cell 

counts on the order of 105
 or larger will demonstrate an efficient implementation of the ABM. 

Simulations of the nonleukemic cell population were run and validated before introducing the 

algorithm alterations representing CML genesis and Imatinib treatment.  
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 Due to the stochastic nature of the ABM, each run of the model produces slightly 

different results. However, the general characteristics of each figure produced by each run should 

be similar and comparable to each other as well as to the validation figures. Two such runs of 

steady state simulations can be seen in figure 3. It is clear that each of these runs showcases the 

desired characteristics of healthy stem cells in a steady state population. A general upward 

stepping pattern is seen in Omega stem cells as affinity decreases. There is a large accumulation 

of Alpha stem cells at the maximum affinity level. The total number of stem cells for these 

simulations also validates this model. The number of Ph- stem cells at steady state is on the order 

of 106, which is in accordance with the Roeder model. There are 91,379 cells and 91,452 cells 

with maximum affinity in the top and middle images of figure 3, respectively. This is around the 

number of cells produced by the difference equation model (fig. 3). 

 

 

 
Figure 3: Steady state profile for nonleukemic stem cells achieved by ABM. Both resting and proliferating stem cell 

populations are shown. The figures shown on top and in the middle are two separate runs of steady state simulation 

using ABM. The original figure from [2], shown on bottom, shows desired results of an ABM run in gray. 

 

Validation of ABM CML genesis is shown in figure 4. The two images here represent two 

separate runs CML genesis resulting from the same steady state profile. Total mature cell counts 

for Ph- and Ph+ cells are plotted over time. These simulations are overlaid onto the validation 

images. Depending on the run, it can be seen that the ABM predicts different rates of cancer 

development, but it general similar trends are seen between runs and the validation image.  
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Figure 4: Simulation of CML genesis by two separate runs of ABM. Dynamics of both leukemic (Ph+) and 

nonleukemic (Ph-) cells are shown by plotting the number of mature cells in each population versus time. The 

original figure from [2] shown in gray is overlaid with the results from this project. Ph- cells are plotted in blue. Ph+ 

cells are plotted in red. 

 

 
Figure 5: BCR-ABL1 ratio during Imatinib treatment. The original figure from [2] shown in gray is overlaid with 

the results from this project in blue. Two separate runs of ABM are shown. 

 

 Lastly, the treatment stage of simulation was validated using the BCR-ABL1 ratio. This 

ratio provides a measure of the ratio of CML cells to healthy cells. It is calculated using the 

formula given in Roeder et al.:  

𝐵𝐶𝑅 − 𝐴𝐵𝐿1 𝑟𝑎𝑡𝑖𝑜 =
# 𝑚𝑎𝑡𝑢𝑟𝑒 𝑃ℎ+𝑐𝑒𝑙𝑙𝑠

# 𝑚𝑎𝑡𝑢𝑟𝑒 𝑃ℎ+𝑐𝑒𝑙𝑙𝑠 + 2 ∗ # 𝑚𝑎𝑡𝑢𝑟𝑒 𝑃ℎ− 𝑐𝑒𝑙𝑙𝑠 
. 

(15) 
The number of mature Ph+ cells used here is the total number of leukemic cells, both affected 

and unaffected. Due to the stochastic nature of the model, each individual run results in a very 

jagged curve. Despite this noise, the biphasic decline that is characteristic of Imatinib treatment 

is captured by this simulation. Thus, this model is fully validated. 
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4.2 Difference Equations 
 

Validation of the difference equation model was achieved by recreating the figures presented in 

Kim et al. The results of simulation were overlaid onto the figures from [2] to determine if the 

figure was accurately recovered. Initially, Matlab’s binornd(N,P) function was used to calculate 

Β𝑘(𝑡) and Ψ𝑘,𝑐(𝑡). This produced the results seen in figure 6. It can be seen that the desired 

dynamics are present, namely an accumulation of Α cells at 𝑘 = 0 which then tapers to zero 

around 𝑘 = 60. To achieve smooth curves that exactly replicate the desired figure, all binomial 

distributions were replaced with their respective expected values.  

 Validation of this model’s steady state is shown in figure 7. The steady state profile of 

nonleukemic stem cells for the difference equations is achieved by plotting Α𝑘(𝑡𝑠𝑠) and 

 ∑ Ω𝑘,𝑐(𝑡𝑠𝑠)𝑐  versus affinity level 𝑘, where 𝑡𝑠𝑠 is the steady state time. The blue and red curves 

produced during simulation closely match the curves from [2]. Slight variations can be seen at 

the jumps in Ω that occur near 𝑘 = 15, 65, 115. Overall, this simulation is considered successful.  

 

 
Figure 6: Steady state profile for nonleukemic stem cells achieved by ABM and difference equation method. Both 

resting and proliferating stem cell populations are shown. The original figure from [2] shown in gray, is overlaid 

with the results from this project. The blue line shows the number of resting stem cells while red plots the number of 

cycling stem cells. Binomial distribution used for Β𝑘 and Ψ𝑘,𝑐. 

 
Figure 7: Steady state profile for nonleukemic stem cells achieved by ABM and difference equation method. Both 

resting and proliferating stem cell populations are shown. The original figure from [2] shown in gray, is overlaid 

with the results from this project. The blue line shows the number of resting stem cells while red plots the number of 

cycling stem cells. Expected value for Β𝑘 and Ψ𝑘,𝑐  used instead of binomial distributions. 

 

 Figure 8 depicts the number of mature leukemic (𝑀+(𝑡) = ∑ 𝑀𝑠
+(𝑡)𝑠 ) and nonleukemic 

cells (𝑀−(𝑡) = ∑ 𝑀𝑠
−(𝑡)𝑠 ) versus time. As expected, simulation of Ph- cells begin at a steady 

state value of approximately 6.58 × 1010 cells and begin to decrease to zero just before five 

years. Beginning at the same time point, the Ph+ population begins to sharply increase until it 
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approaches a cell count of 16 × 1010 cells. This is consistent with the original model and 

therefore successfully validates CML genesis for this model.   

 Simulation of treatment is again validated using the BCR – ABL ratio. The biphasic 

decline in the BCR-ABL1 ratio that can be seen in blue (fig. 9) is consistent with the original 

figure from [2] and validates this implementation. 
 

 
Figure 8: Simulation of CML genesis. Dynamics of both leukemic (Ph+) and nonleukemic (Ph-) cells are shown by 

plotting the number of mature cells in each population versus time. The original figure from [2] shown in gray is 

overlaid with the results from this project. Ph- cells are plotted in blue. Ph+ cells are plotted in red. 

 

 

 

  
Figure 9: BCR-ABL1 ratio during Imatinib treatment. The original figure from [2] shown in gray is 

overlaid with the results from this project in blue. 
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4.3 PDE  
 

Validation of the PDE model is accomplished in a slightly different manner. The goal is to 

recreate the figures presented in Kim et al for each phase of simulation. Before this can be done, 

the numerical approximation for each compartment is verified by comparing the PDE output to 

the difference equation output. The numerical approximations for P and M, the simplest of the 

equations, were verified first by initializing the system with a small amount of precursor cells 

and simulating cell development for various time periods (5, 20 and 30 days). This simulation 

does not involve the stem cell equations as they are initialized with zero cells. The total amount 

of precursor and mature cells after these durations were compared to the difference equation 

output and were verified to be identical, thereby justifying the validity of the P and M numerical 

approximations.  

 Next, the numerical approximations for Alpha and Omega cells were implemented and 

verified. To determine that updates within each compartment were accurate, the transition 

probabilities ω and α were set to zero to prevent cells transferring between the two 

compartments. Various initial populations of Alpha and Omega were used to determine that total 

cell counts remained constant away from the boundaries. Transitions from Omega to Alpha were 

verified by setting ω to zero. This allows Omega cells to transition to Alpha but prevents them 

from transitioning back to Omega. It can then be determined if equal amounts of cells are leaving 

Omega and entering Alpha at each time step. Validation of the Alpha to Omega transition was 

completed similarly.  

 Validation is concluded with numerical simulations of the entire system, resulting in 

figures similar to those presented by Kim et al. Validity ideally is determined by overlaying this 

model’s output onto the images in [3] to demonstrate the ability of the PDE model to capture 

CML behavior (fig. 10, 11).  

 In examining the steady state profile of stem cells (fig. 10), the PDE model seems to 

underestimate the number of cells at each level of affinity for both Alpha and Omega stem cells. 

However, the general shape of the profile appears to be consistent with the desired outcome. This 

would suggest that the overall structure of the code is correct and the differences between the 

figures can be accounted for by a scaling error, which is yet to be found.  

  

 
Figure 10: Steady state profile of nonleukemic cell population achieved by ABM and PDE model. Both 

resting and proliferating stem cell populations are shown. The original figure from [3] shown in gray. 

Results from this project overlaid in blue (Alpha cells) and red (Omega cells). 
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 Plots of CML genesis and treatment were not overlaid onto validation images for the 

PDE model, since it was clear that they are not exact matches. While this implementation of the 

PDE model does predict CML genesis will occur, the behavior of the mature cell populations 

over time does not follow the behavior seen in the validation image. Almost immediately after 

CML simulation begins, the Ph+ population reaches its steady state level and the Ph- population 

instantaneously declines to nearly zero. The source of this error is not yet determined.  

 Simulation of the treatment phase with the PDE model yielded mixed results. While the 

resulting image did not agree with the validation image, the characteristic biphasic decline of 

Imatinib treatment can be seen (fig. 12). The minimum BCR – ABL ratio attained by this 

implementation is 0.06%, which is much lower than the BCR – ABL ratio reported in Kim et al. 

(approximately 8.2%). The appearance of biphasic decline suggests that, like the steady state 

simulation, the underlying structure is correct. It is possible that the error in CML genesis 

simulation is the cause of the differences seen here.  

  
Figure 11: CML genesis as simulated by each of the three models. Dynamics of both leukemic (Ph+) and 

nonleukemic (Ph-) cells are shown by plotting the number of mature cells in each population versus time. 

Validation image from [3] on the right. Results from this project on the left.  

 

 
Figure 12: The log of the BCR-ABL ratio (15) is plotted over the 400 day treatment simulation. Results from [3] are 

shown in the images in the center and right. The figure on the left are the results of this project. The figure in the 

center shows difference between the PDE model and the two discrete model when the original values of rinh=0.05 

and rdeg=0.033 are used. The figure on the right demonstrates that the PDE model achieves more similar results these 

parameters are varied; (rinh, rdeg) = (0.1, 0.037), (0.1, 0.04), and (0.1, 0.43) for cases 1, 2 and 3 respectively.  
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5 Complexity Analysis and Model Comparison 
 

As shown in section 4, the three models implemented in this project produce reasonably similar 

simulations of each cell population and compartment. However, the models greatly differ in 

terms of efficiency. The ABM can become quite computationally complex, as it is based on the 

number of stem cells being simulated. At initial implementation by Roeder in 2006, simulations 

of approximately 105 stem cells were achieved. This is only about 
1

10
 of realistic values. In this 

implementation, approximately 106 stem cells were simulated.   

 The system of difference equations model was created to combat this computational 

complexity and create a much more efficient model. Simulation of the difference equations 

requires computing tens of thousands of fairly simple equations at each time step, however this 

method proves to be much more efficient than the ABM as demonstrated by the average run 

times reported in table 1. While the PDE model is grouping cells by their common characteristics 

similarly to the difference equations, it is not as efficient for each phase of the simulation due to 

smaller time steps. This is especially noted for simulation of the healthy cell steady state 

population which uses a time step that is one tenth of the time step for the discrete model.   

 

Average Run Time ABM  Difference Equations PDE 

Steady State (2 yrs) 44.4919 s 2.5857 s 32.983 min (dt=0.1) 

CML Genesis (15 yrs) 14.06 min 45.606 s 4.7836 min (dt=0.5) 

Treatment (400 days) 38.5801 s 5.4113 s 33.6282 s (dt=0.45) 
 

Table 1: Average run times for each phase of simulation. Shown are the averages for 20 runs of each 

model. The same steady state profile was used as an initial population for each of the 20 ABM runs of 

CML genesis and treatment simulations. 

 

 It is clear from these values that the difference equations are significantly faster than both 

the ABM and PDE models. Surprisingly, the PDE model is significantly slower than either of the 

other two when simulating the steady state population. In comparison to the original run times 

for each model, these implementations appear to be much more efficient. Run times for CML 

genesis, the longest simulation phase, were reported to be 6.5 hours, 4.5 minutes and just under 2 

hours for the ABM, difference equations and PDE model respectively [3]. 

 

6 Testing 
 

There are many questions we would like to be able to answer about CML and Imatinib treatment 

using these models. Firstly, it has been shown that due to its stochastic nature, the ABM 

produces different output on each run. Is there a chance that the ABM will not predict the 

development of cancer? How does the average run of the ABM compare to the deterministic 

difference equations? What is the average duration for CML genesis?  
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Figure 13: Mature cell populations for Ph+ (left) and Ph- (left) during 15 year simulation of CML genesis for 20 

different runs of the ABM. Figure on right shows Ph- and Ph+ plotted together over time.  

 

 
 

Figure 14: Average of 18* ABM runs plotted over time for CML genesis (left) and treatment (right). The plot on 

the right shows the ABM average (yellow and purple) versus the difference equations (red and blue). *Only runs 

that attained a 99% BCR – ABL barrier were used to calculate the average.  

 

 It can be seen from figure 13 that the ABM does not always predict the development of 

CML within a 15 year period. Of the 20 runs simulated, 18 of them reached the desired 99% 

BCR – ABL threshold. One of the two simulations that did not meet this barrier within the 15 

year simulation period does show the development of CML (in yellow), but at a much slower 

rate. This simulation predicts that the 50% threshold will be met at the 10 year mark, which is 

almost double the time the average run takes (table 2). The last of the 20 simulations fails to 

reach even the 20% threshold (in dark red). It predicts extinction of the Ph+ population by day 

116 of simulation.  

 An average of the 18 runs that met the 99% BCR – ABL barrier shows behavior almost 

identical to a single run of the difference equation model (fig. 14). It seems as though the ABM 

is predicting CML development at a slightly faster pace than the difference equations. This is 

further demonstrated in the average time to reach thresholds of 20%, 50% and 99% (table 2). 

There is reason to believe that an average over a larger sample of runs would match more closely 
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with the difference equation model. However, this hypothesis was not fully explored in the 

timeframe of this project.  

 

Threshold Met Time ABM Difference Equations 

BCR – ABL = 20% 4.3505 years 4.8825 years 

BCR – ABL = 50% 5.3573 years 5.900 years 

BCR – ABL = 99% 12.1705 years 12.8840 years 
 

Table 2: Simulation time at which BCR –ABL ratio thresholds were met. Shown are the averages for 18* runs of 

the ABM. The same steady state profile was used as an initial population for each of the 18 ABM runs of CML 

genesis. *Only runs that attained a 99% BCR – ABL barrier were used to calculate the average. 

 

 It is also beneficial to explore what these models can tell us about the effects of Imatinib. 

Over the first 400 days of treatment, all three models predict a biphasic decline in the BCR – 

ABL ratio. What does this mean in terms of the Ph- and Ph+
 cells populations and what will 

happen over an extended treatment period? Does a steady state arise? Imatinib is an effective 

control for CML, but it is not a cure. The majority of CML patients will rely on Imatinib or a 

similar drug for the rest of their lives or risk recurrence of the disease. Do these models 

demonstrate this outcome? These questions were addressed using the difference equation model 

due to its efficient nature; similar results would be expected when using the ABM and PDE 

models.   

 As previously shown, the treatment phase of simulation results in a biphasic decline in 

the BCR – ABL ratio. Figure 15 shows what this means in terms of the mature Ph- and Ph+ cell 

populations. At the beginning of treatment, the number of leukemic cells in the system rapidly 

declines to levels that appear close to zero. After closely examining this time frame, it can be 

seen that while there is a drastic downsize in the population, CML is not completely eradicated. 

The Ph+ population reaches a minimum value of approximately 5.6 × 106 cells after 160 days of 

treatment. 

 

 
Figure 15: Mature cell populations for Ph- (blue) and Ph+ (red) during 15 year simulation of CML genesis and 400 

day treatment simulation.  
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Figure 16: Simulations of extended treatment. The log of the BCR – ABL ratio is plotted over the duration of 

treatment. Treatment is simulated for 2 years (left) and 5 years (right).  

 

 
Figure 17: Recurrence of CML when treatment is stopped. Mature Ph- (blue) and Ph+ (red) cell populations over the 

15 year CML genesis phase, 400 days of treatment and 10 years post treatment are plotted on the left. Log of the 

BCR – ABL ratio is plotted in blue on the right. The red line indicates the time at which treatment ends.  

  

 If treatment were to be extended past the 400 days, could this population be completely 

eradicated? Simulations of 2 years and 5 years were run to address this question. The results 

suggest that the BCR-ABL ratio will continue to decline steadily over time (fig. 16). It does not 

seem that a steady state will be reached, suggesting that it would be possible to eradicate the Ph+ 

cell population if the duration of treatment is long enough. However, this does not agree with the 

true behavior of CML in actual patients. This presents a possible weakness in the model.  

 Figure 17 can be used to predict what happens post treatment. Here treatment is 

considered to be 400 days long, after which point treatment will cease to be simulated and all 

populations will transition according to the original transition rules. It can be seen that 

approximately 5 years post-treatment, the Ph+ population has overgrown the Ph- population. By 

10 years post-treatment, the BCR-ABL ratio has reached the 99% barrier once more, suggesting 

a recurrence of CML. 
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7 Conclusion 
 

At completion of this project all three models have been implemented and simulate the growth 

and development of both healthy and leukemic cells according to the rules and assumptions set 

forth in the cell state diagram (fig. 1). The agent based model realistically simulates each stem 

cell individually. The stochastic nature of this model is more applicable to authentic biological 

concepts. However, it is not the most efficient model which can make it somewhat cumbersome 

to use for testing. The difference equation model is able to capture an average simulation of the 

ABM in a very efficient manner. It is therefore the easiest to use for testing and validation as it 

produces quick and consistent results. The PDE model turned out to be the least efficient model 

implemented for this project. It is the only continuous time model, which better correlates to real 

life cell growth and development. It is perhaps the best of the three models to use to explore 

parameter sensitivity, especially in relation to step sizes and the parameters involved in treatment 

(rinh, rdeg) as demonstrated in figure 12. However, its slow computation time may make it 

cumbersome to use in extensive testing. 

 Further exploration of these models could include altering the underlying structure of the 

model to more accurately reflect true biological behavior of hematopoietic cells. This could 

include: allowing variation in the fixed parameters for cell lifespan and cell cycle clock duration, 

relaxing the condition on symmetric cellular division, and addressing discrepancies between 

simulated treatment and clinical results of treatment.  

 

Appendix A: Project schedule 
 

The project is divided into four phases: 

  Phase 1: October – Early December  

◦ Implement difference equation model  

◦ Improve efficiency and validate  

  Phase 2: January – Early March 

◦ Implement Agent Based Model  

◦ Improve efficiency and validate 

  Phase 3: March – Early April 

◦ Implement basic PDE method  

◦ Validate for precursor and mature populations  

  Phase 4: mid-February – April 

◦ Implement numerical approximations for stem cell compartments 

◦ Testing and model comparison 

◦ Draw conclusions 
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Appendix B: Parameter estimates 
 

The sigmoidal transition functions given by Roeder et al. take the form  

𝑓𝛼/𝜔(Α/Ω(𝑡)) =
1

𝜈1 + 𝜈2 exp (
𝜈3Α/Ω(𝑡)

𝑁̃Α/Ω
)

+ 𝜈4 

(B.1) 

where  

𝜈1 =
ℎ1ℎ3 − ℎ2

2

ℎ1 + ℎ3 − 2ℎ2
,

𝜈2 = ℎ1 − 𝜈1,             

𝜈3 = ln (
ℎ3 − 𝜈1
𝜈2

),    

𝜈4 = 𝑓𝛼
𝜔
(∞),              

 

and 

ℎ1 =
1

𝑓𝛼/𝜔(0) − 𝑓𝛼/𝜔(∞)
,     

ℎ2 =
1

𝑓𝛼/𝜔 (
𝑁̃Α
2 ) − 𝑓𝛼/𝜔

(∞)

,

ℎ3 =
1

𝑓𝛼/𝜔(𝑁̃Α) − 𝑓𝛼/𝜔(∞)
.  

 

 

The parameter values for 𝑓𝛼/𝜔(∗) for each cell type are as given by Roeder et al. and can be 

found in the Table 1 with all other parameter values.  
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Table B.1 Parameters  

Parameter Description Ph- Ph+/Imatinib-affected

amin Min value of affinity a 0.002 0.002

amax Max value of affinity a 1.0 1.0

fα(0) Transition characteristic for fα 0.5 1.0

fα(ÑA/2) Transition characteristic for fα 0.45 0.9

fα(ÑA) Transition characteristic for fα 0.05 0.058

fα(∞) Transition characteristic for fα 0.0 0.0

ÑA Scaling factor for fα 105 105

fω(0) Transition characteristic for fω 0.5 1.0/0.0500

fω(ÑΩ/2) Transition characteristic for fω 0.3 0.99/0.0499

fω(ÑΩ) Transition characteristic for fω 0.1 0.98/0.0498

fω(∞) Transition characteristic for fω 0.0 0.96/0.0496

ÑΩ Scaling factor for fω 105 105

rinh Inhibition intensity 0.050

rdeg Degredation internsity 0.033  

 

Table B.2 Mesh Sizes for PDE Numerical Approximations 

 

Mesh Size Steady State CML Genesis Treatment 

Δt 0.1 0.5 0.45 

Δx 2ρd*Δt ρd ρd 

Δc 0.2 1 1 

Δs 0.1 0.5 0.5 
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