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Abstract 

Chronic Myelogenous Leukemia (CML) is a blood cancer affecting approximately 1 in 100,000 

people. While there are many different treatments for controlling CML, there is currently no 

cure. Recently, many mathematical models have been developed to explore disease genesis and 

the effects of various therapies with the hope of improving or discovering new therapeutic 

strategies. It is the goal of this project to study three such models: an agent-based model, a 

system of difference equations, and a system of partial differential equations. Implementation 

and successful validation for the difference equation model has been completed. This report 

includes the details of this progress. 
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1 Introduction 
 

Chronic Myelogenous Leukemia (CML) is a type of blood cancer resulting in the overproduction 

of white blood cells. Approximately 20% of all leukemia cases are CML. CML can be 

characterized by a genetic mutation in hematopoietic stem cells in which a translocation between 

chromosomes 9 and 22 occurs. During this translocation, fusion of the bcr-abl gene occurs on 

chromosome 22 to form what is known as the Philadelphia (Ph) chromosome, a detectable 

characteristic in 90% of all CML patients. Fusion of this gene results in increased tyrosine kinase 

activity contributing to uncontrolled stem cell growth and survival, and ultimately cancer. 

  There are currently many types of treatment available to CML patients. Of particular 

interest is a form of targeted therapy involving the drug Imatinib. Imatinib is a tyrosine kinase 

inhibitor that specifically targets Ph+ cells and binds to the bcr-abl enzyme. This drug controls 

the population of cancer cells in two ways: by preventing proliferation of mutated cells and 

increasing apoptosis or cellular suicide. Although quite effective as a control, Imatinib is not a 

cure for CML.  

 In the past decade, there has been much interest in the use of mathematical models to 

gain further insight into the dynamics of CML genesis and explore the effects of treatment. This 

project will consider three such models, each biologically based on the same cell differentiation 

process as described by Roeder et al. This process consists of three stages of cell differentiation: 

stem cells, precursors and mature cells. Additionally, stem cells are categorized as either non-

proliferating (𝐴) or proliferating cells (𝛺). Movement between compartments is as follows (fig. 

1).  

 Each stem cell may be characterized by its cellular affinity, a quantity based on cell age 

and state. Cells in 𝐴 increase their affinity over time until the maximum affinity is reached. They 

transfer from 𝐴 to 𝛺 with probability 𝜔 determined by affinity and the total number of 

proliferating cells. In 𝛺, stem cells proliferate by completing the 48 hour cell cycle. The cell 

cycle consists of four necessary phases for cell growth and division. These stages in order are G1, 

S, G2, and M. Cells enter 𝛺 from 𝐴 at hour 32 of the cell cycle, the beginning of the S phase 

during which DNA synthesis occurs. At hour 48, the cell divides into two daughter cells that 

each begin the cycle in the G1 growth phase. Transitions from 𝛺 to 𝐴 occur during the G1 phase 

with probability 𝛼. Cell affinity decreases over time in 𝛺 until the minimum affinity is attained.  

 Stem cells with minimum affinity differentiate into precursor cells. These cells divide 

once every 24 hours for 20 days, at which point they become mature cells. Cells live in the 

mature stage for 8 days before dying.  
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Figure 1: A cell state diagram as proposed by Roeder et al. Figure from [2]. 

 

 The biology described here is a simplification of the cell maturation process and makes a 

few assumptions. Firstly, the differentiation process has been reduced to three stages of 

maturation. Second, transition probabilities between stem cell compartments are assumed to be 

based on affinity, an internal quantity for each stem cell that varies in time within an interval 

[amin,
 amax]. Affinity is a notion whose existence was postulated by Roeder [1] and is not directly 

associated with any known biological mechanism specific to the hematopoietic system. 

Furthermore, the time spent in each stage is deterministic. It is assumed that these lifespans are 

known and fixed.  

 As stated in the project proposal, three models will be implemented, validated and tested 

upon completion of this project. Model 1 is an agent based model (ABM) for describing CML 

genesis as described by Roeder et al. Model 2 is a reformulation of Model 1 as a system of 

discretized difference equations [2]. Lastly, in Model 3 a system of PDEs will be used to 

simulate CML and its treatment [3]. All three algorithms are based upon the same underlying 

biological model (fig. 1) and use the same parameter values as given by Roeder. Because it is the 

least complex of the three models, Model 2 has been completed first and is the focus of this mid-

year report.  

 

2 Approach 
 

Model 2 formulates the cell state diagram as a system of discretized difference equations. Rather 

than simulating each cell individually as the ABM model does, this system groups cells by their 

common characteristics i.e., cell state compartment, affinity level, cell cycle position. The 

progression of CML is simulated by tracking the number of cells in each group. This approach 

reduces computational complexity and allows for simulation of realistic cell numbers.  

 In order to devise the difference equations, the state space must be discretized. Time is 

already discretized in the ABM; cell positions are updated at fixed time steps of one hour. 

Affinity is discretized by setting 𝑎(𝑡) = 𝑒−𝑘𝜌 where 𝜌 = 0.0488 and 0 ≤ 𝑘 ≤ 127 is an integer. 

The affinity of each cell can now be characterized discretely by the value of 𝑘 

where log(𝑎(𝑡)) = −𝑘𝜌.  
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2.1 The Difference Equations 

 

The stem cell populations are represented by the following difference equations with 𝑘 

representing cell affinity and 𝑐 representing position in the cell cycle:  

 

Α𝑘(𝑡 + 1) =

{
 
 

 
 
(Α0(𝑡) − Β0(𝑡)) + (Α1(𝑡) − Β1(𝑡)) + (Α2(𝑡) − Β2(𝑡)),           𝑘 = 0

(Α𝑘+2(𝑡) − Β𝑘+2(𝑡)) + ∑ Ψ𝑘,𝑐(𝑡),                               𝑘 = 1,… ,125
31

𝑐=0

∑ Ψ𝑘,𝑐(𝑡),
31

𝑐=0
                                                                            𝑘 = 126, 127

 

(1) 

Ω𝑘,𝑐(𝑡 + 1) =

{
  
 

  
 
Β0(𝑡),                                                                   𝑘 = 0, 𝑐 = 32

2Ω𝑘−1,48(𝑡),                                                           𝑘 > 0, 𝑐 = 0

Ω𝑘−1,𝑐−1(𝑡) − Ψ𝑘−1,𝑐−1(𝑡),                   𝑘 > 0, 𝑐 = 1,… ,31

(Ω𝑘−1,31(𝑡) − Ψ𝑘−1,31(𝑡)) + Β𝑘(𝑡),              𝑘 > 0, 𝑐 = 32

Ω𝑘−1,𝑐−1(𝑡),                                            𝑘 > 0, 𝑐 = 33,… ,48

0                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2) 

Transitions between the Α𝑘 and 𝛺𝑘,𝑐 compartments are determined by the binomial random 

variables Β𝑘 and Ψ𝑘,𝑐 which have the following distributions: 

Β𝑘(𝑡) ~ 𝐵𝑖𝑛(Α𝑘(𝑡), 𝜔(Ω(𝑡), 𝑒
−𝑘𝜌))

 
                                 

Ψ𝑘,𝑐(𝑡) ~ 𝐵𝑖𝑛 (Ω𝑘,𝑐(𝑡), 𝛼(Α(𝑡), 𝑒
−𝑘𝜌)) ,    𝑐 = 0,… ,31

 

Here Ω(𝑡) = ∑ Ω𝑘,𝑐(𝑡)𝑘,𝑐  and Α(𝑡) = ∑ Α𝑘(𝑡)𝑘  denote the total number of proliferating and 

resting cells respectively. The transition probabilities 𝜔 and 𝛼 are given by:  

𝜔(Ω(𝑡), 𝑎(𝑡)) =
𝑎𝑚𝑖𝑛
𝑎(𝑡)

𝑓𝜔(Ω(𝑡)) 

𝛼(Α(𝑡), 𝑎(𝑡)) =
𝑎(𝑡)

𝑎𝑚𝑎𝑥
𝑓𝛼(Α(𝑡)) 

where 𝑓𝛼/𝜔 are sigmoidal functions given by equation (B.1) in the appendix .  

 The differentiated cells are represented in a similar fashion. The equations for precursors 

are denoted by 𝑃𝑗(𝑡) where 𝑗 = 0,… ,479 is the number of hours a cell has spent in this 

compartment, up to 20 days. Similarly mature cells are denoted by 𝑀𝑗(𝑡) where 𝑗 = 0,… ,191 is 

the number of hours spent as a mature cell, up to 8 days.  

 

𝑃𝑗(𝑡 + 1) =  

{
 
 

 
 ∑ Ω127,𝑐(𝑡)

48

𝑐=0
−∑ Ψ127,𝑐(𝑡)

31

𝑐=0
,                 𝑗 = 0

2𝑃𝑗−1(𝑡),                                   𝑗 = 24, 48, 72,… , 456

𝑃𝑗−1(𝑡),                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3) 
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𝑀𝑗(𝑡 + 1) =  {
2𝑃479(𝑡),                𝑗 = 0 

𝑀𝑗−1(𝑡),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

These equations directly reflect the rules of cell differentiation as presented in the cell state 

diagram (fig. 1). The first line of (3) represents proliferating cells that have attained minimum 

affinity and differentiate into precursors. Precursors divide every 24 hours, producing two 

daughter cells, as represented by line two. Line three denotes an increase in age, which is 

necessary to track the time spent as a precursor before maturing. The first line of (4) signifies the 

number of precursors that undergo one final division before entering the mature state. Similar to 

the final line of (3), the second line of (4) tracks the age of mature cells before they die.  

 

2.2 Modeling CML and Imatinib Treatment 

 

Three non-interacting cell populations will be simulated to mathematically model clinically 

observed phenomena. These populations are healthy cells (Ph-), leukemic cells (Ph+) and 

Imatinib-affected cells (Ph+/A). Equations (1) to (4) as written were used to simulate Ph- cells. 

Alterations to equation (2) and new parameter values were used to represent Ph+ and Ph+/A cells.  

 Ph+ cells uncontrollably proliferate, therefore the transition rates between Α and Ω differ 

from those of Ph- cells. The transition functions 𝑓𝛼/𝜔 are updated with new parameter values that 

correspond to this behavior. This is the only update necessary to simulate CML genesis. 

Equations (1) – (4) remain unchanged.  

 A slight alteration to equation (2) for Ph+ Ω cells is made when treatment simulation 

begins; equations (1), (3) and (4) are as previously stated. When Imatinib is introduced, 

proliferating stem cells become Imatinib affected with probability 𝑟𝑖𝑛ℎ and undergo apoptosis 

with probability 𝑟𝑑𝑒𝑔 at each time step. The number of proliferating Ph+ stem cells infected at 

time 𝑡 is given by Ω+/𝐼(𝑡) ~ 𝐵𝑖𝑛(Ω𝑘,𝑐
+ (𝑡), 𝑟𝑖𝑛ℎ). The number of proliferating stem cells that die at 

time 𝑡 is given by Ω+/𝐷(𝑡) ~ 𝐵𝑖𝑛(Ω𝑘,𝑐
+ (𝑡), 𝑟𝑑𝑒𝑔). These cells are removed from the Ph+ cell 

population at the beginning of each time step before any other transition occurs. To accomplish 

this, Ω𝑘,𝑐
+/𝑅(𝑡) is substituted into the right hand side of (2), where Ω𝑘,𝑐

+/𝑅(𝑡) = Ω𝑘,𝑐
+ (𝑡) − Ω𝑘,𝑐

+/𝐼(𝑡) −

Ω𝑘,𝑐
+/𝐷

(𝑡) is the number of cycling Ph+ stem cells remaining unaffected for the next time step. The 

overall structure of the equations remains unchanged. 

  The Ph+/A cell population differs from Ph- cells in two ways. First, since Imatinib inhibits 

the ability of these cells to proliferate, transition functions 𝑓𝛼/𝜔 will be updated with 

corresponding parameter values. Second, affected proliferating stem cells, Ω+/𝐴 undergo 

apoptosis at each time step according to a binomial distribution with probability 𝑟𝑑𝑒𝑔. These cells 

are removed at the beginning of each time step and infected cells are added, before regular 

transitions occur. In terms of the equations, Ω+/𝐴,𝑅(𝑡) is substituted into the right hand side of (2) 

where Ω+/𝐴,𝑅(𝑡) = Ω𝑘,𝑐
+/𝐴(𝑡) − Ω𝑘,𝑐

+/𝐴,𝐷(𝑡) + Ω𝑘,𝑐
+/𝐼
(𝑡). This new quantity is used to 

calculate Ω𝑘,𝑐
+/𝐴(𝑡 + 1). Again, equations (1), (3) and (4) and the overall structure of (2) remain 

unchanged for Ph+/A population. 
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3 Implementation 
 

The difference equations were vectorized to achieve efficient simulation. Α and Β  are 

represented as column vectors, where the 𝑘𝑡ℎ entry contains the number of cells with an affinity 

level of 𝑘. Ω and Ψ cells are dependent on both affinity and cell cycle. These cells are tracked by 

a matrix whose (𝑘, 𝑐) entry contains the number of cells with affinity 𝑘, at position 𝑐 in the cell 

cycle. 𝑃 and 𝑀 are structured as column vectors whose 𝑗𝑡ℎ entry contains the number of cells of 

age 𝑗 in the respective compartment.  

 The complete simulation for this project involves three steps: steady state, CML genesis, 

and treatment. For the first step, a single healthy cell is simulated by looping over time until a 

steady mature cell count is reached. The model is initialized by setting Ω0,32
− (0) = 1. Although 

the results are not dependent on the initial condition, choosing a cycling stem cell with maximum 

affinity at hour 32 of the cell cycle guarantees that the system will have two cycling stem cells 17 

time steps later when the cell completes mitosis. Steady state is reached at one year when there 

are approximately 6.58 × 1010 mature Ph- cells. Runtime for reaching steady state is 

approximately two seconds. The steady state profile for Ph- cells is used as the starting value for 

Ph- cells when CML genesis begins. The Ph+ population is initialized by setting Ω0,32
+ (0) = 1. 

The duration of CML genesis is 15 years, which in approximately 69 seconds of runtime. Lastly, 

treatment is simulated using the Ph- and Ph+ population values from CML genesis as starting 

values. The Ph+/A initial population will be set during the first time step to be Ω𝑘,𝑐
+/𝐴(0) =

Ω𝑘,𝑐
+/𝐼
(0). Treatment was simulated for 400 days, corresponding to a runtime of approximately 8 

seconds.  

 Model 2 was implemented in Matlab R2014a. Simulations were run on an ASUS 

Notebook with a 2.4 GHz Intel Core i5 processor and 8 GB of RAM.  

 

4 Validation 
 

Validation of the difference equation model was achieved by recreating the figures presented in 

Kim et al. The results of simulation were overlaid onto the figures from [2] to determine if the 

figure was accurately recovered. Initially, Matlab’s binornd(N,P) function was used to calculate 

Β𝑘(𝑡) and Ψ𝑘,𝑐(𝑡). This produced the results seen in figure 2. It can be seen that the desired 

dynamics are present, namely an accumulation of Α cells at 𝑘 = 0 which then tapers to zero 

around 𝑘 = 60. To achieve smooth curves that exactly replicate the desired figure, all binomial 

distributions were replaced with their respective expected values.  

 Validation of this model’s steady state is shown in Figure 3. The steady state profile of 

nonleukemic stem cells for the difference equations is achieved by plotting Α𝑘(𝑡𝑠) and 

 ∑ Ω𝑘,𝑐(𝑡𝑠)𝑐  versus affinity level 𝑘, where 𝑡𝑠 is the steady state time. The blue and red curves 

produced during simulation closely match the curves from [2]. Slight variations can be seen at 

the jumps in Ω that occur near 𝑘 = 15, 65, 115. Overall, this simulation is considered successful.  

 Figure 4 depicts the number of mature leukemic (𝑀+(𝑡) = ∑ 𝑀𝑠
+(𝑡)𝑠 ) and nonleukemic 

cells (𝑀−(𝑡) = ∑ 𝑀𝑠
−(𝑡)𝑠 ) versus time. As expected, simulation of Ph- cells begin at a steady 
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state value of approximately 6.58 × 1010 cells and begin to decrease to zero just before five 

years. Beginning at the same time point, the Ph+ population begins to sharply increase until it 

approaches a cell count of 16 × 1010 cells. This is consistent with the original model and 

therefore successfully validates CML genesis for this model.   

 Lastly, the treatment stage of simulation was validated using the BCR-ABL1 ratio. This 

ratio provides a measure of the ratio of leukemic cells to healthy cells. It is calculated using the 

formula given in Roeder et al.:  

𝐵𝐶𝑅 − 𝐴𝐵𝐿1 𝑟𝑎𝑡𝑖𝑜 =
# 𝑚𝑎𝑡𝑢𝑟𝑒 𝑃ℎ+𝑐𝑒𝑙𝑙𝑠

# 𝑚𝑎𝑡𝑢𝑟𝑒 𝑃ℎ+𝑐𝑒𝑙𝑙𝑠 + 2 ∗ # 𝑚𝑎𝑡𝑢𝑟𝑒 𝑃ℎ− 𝑐𝑒𝑙𝑙𝑠 
. 

The number of mature Ph+ cells used here is the total number of leukemic cells, both affected 

and unaffected. The biphasic decline in the BCR-ABL1 ratio that can be seen in blue (fig. 5) is 

consistent with the original figure from [2]. 

 

 

 
Figure 2: Steady state profile for nonleukemic stem cells achieved by ABM and difference equation method. Both 

resting and proliferating stem cell populations are shown. The original figure from [2] shown in gray, is overlaid 

with the results from this project. The blue line shows the number of resting stem cells while red plots the number of 

cycling stem cells. Binomial distribution used for Β𝑘 and Ψ𝑘,𝑐. 

 

 

 

 
Figure 3: Steady state profile for nonleukemic stem cells achieved by ABM and difference equation method. Both 

resting and proliferating stem cell populations are shown. The original figure from [2] shown in gray, is overlaid 

with the results from this project. The blue line shows the number of resting stem cells while red plots the number of 

cycling stem cells. Expected value for Β𝑘 and Ψ𝑘,𝑐  used instead of binomial distributions. 
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Figure 4: Simulation of CML genesis. Dynamics of both leukemic (Ph+) and nonleukemic (Ph-) cells are shown by 

plotting the number of mature cells in each population versus time. The original figure from [2] shown in gray is 

overlaid with the results from this project. Ph- cells are plotted in blue. Ph+ cells are plotted in red. 

 

 

 

  
Figure 5: BCR-ABL1 ratio during Imatinib treatment. The original figure from [2] shown in gray is 

overlaid with the results from this project in blue. 
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5 Conclusion 
 

Implementation and successful validation have been completed for Model 2, the system of 

difference equations. The next step towards completion of this project is to implement and 

validate the original ABM model, Model 1.  To do so, the difference equations in a sense will be 

decompartmentalized to represent each cell transitioning independently of all other cells. 

Validations will be achieved by overlaying simulation results on to the figures from [2]. The 

results should mirror those seen in figures 3, 4 and 5. Because of the stochastic nature of this 

model, each run could produce slightly different results. However, the general characteristics for 

steady state, CML genesis and BCR-ABL ratio should still be present in each run.  

 After completion of the ABM model, work on the third and final component will begin. 

The PDE model, Model 3, restructures the original model into a continuous problem that can be 

expressed as a function of three internal clocks. The PDEs will be solved numerically and the 

results again should produce similar figures, which will be overlaid on the corresponding figures 

from [3]. The details for each of these models can be found in the project proposal.  

 

 

 

Appendix A: Project schedule 
 

The project is divided into four phases: 

  Phase 1: Complete 

◦ Implement difference equation model  

◦ Improve efficiency and validate  

  Phase 2: December 

◦ Implement ABM  

◦ Improve efficiency and validate 

  Phase 3: January – mid-February 

◦ Implement basic PDE method 

◦ Validate on simple test problem 

  Phase 4: mid-February – April 

◦ Apply basic method to CML - Imatinib biology and validate 

◦ Test models with clinical data 

◦ Draw conclusions 

 

Appendix B: Parameter estimates 
 

The sigmoidal transition functions given by Roeder et al. take the form  

𝑓𝛼/𝜔(Α/Ω(𝑡)) =
1

𝜈1 + 𝜈2 exp (
𝜈3Α/Ω(𝑡)

𝑁̃Α/Ω
)

+ 𝜈4 

(B.1) 
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where  

𝜈1 =
ℎ1ℎ3 − ℎ2

2

ℎ1 + ℎ3 − 2ℎ2
,

𝜈2 = ℎ1 − 𝜈1,             

𝜈3 = ln (
ℎ3 − 𝜈1
𝜈2

),    

𝜈4 = 𝑓𝛼
𝜔
(∞),              

 

and 

ℎ1 =
1

𝑓𝛼/𝜔(0) − 𝑓𝛼/𝜔(∞)
,     

ℎ2 =
1

𝑓𝛼/𝜔 (
𝑁̃Α
2 ) − 𝑓𝛼/𝜔

(∞)

,

ℎ3 =
1

𝑓𝛼/𝜔(𝑁̃Α) − 𝑓𝛼/𝜔(∞)
.  

 

 

The parameter values for 𝑓𝛼/𝜔(∗) for each cell type are as given by Roeder et al. and can be 

found in the Table 1 with all other parameter values.  

 
Table 1 Parameters  

Parameter Description Ph- Ph+/Imatinib-affected

amin Min value of affinity a 0.002 0.002

amax Max value of affinity a 1.0 1.0

fα(0) Transition characteristic for fα 0.5 1.0

fα(ÑA/2) Transition characteristic for fα 0.45 0.9

fα(ÑA) Transition characteristic for fα 0.05 0.058

fα(∞) Transition characteristic for fα 0.0 0.0

ÑA Scaling factor for fα 105 105

fω(0) Transition characteristic for fω 0.5 1.0/0.0500

fω(ÑΩ/2) Transition characteristic for fω 0.3 0.99/0.0499

fω(ÑΩ) Transition characteristic for fω 0.1 0.98/0.0498

fω(∞) Transition characteristic for fω 0.0 0.96/0.0496

ÑΩ Scaling factor for fω 105 105

rinh Inhibition intensity 0.050

rdeg Degredation internsity 0.033  
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