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Abstract 

Chronic Myelogenous Leukemia (CML) is a blood cancer affecting approximately 1 in 100,000 

people. While there are many different treatments for controlling CML, there is currently no 

cure. Recently, many mathematical models have been developed to explore disease genesis and 

the effects of various therapies with the hope of improving or discovering new therapeutic 

strategies. It will be the goal of this project to study three such models: an agent-based model, a 

system of difference equations and a system of partial differential equations.  
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1 Project Background 
Chronic Myelogenous Leukemia (CML) is a type of blood cancer resulting in the overproduction 

of white blood cells. Approximately 20% of all leukemia cases are CML. CML can be 

characterized by a genetic mutation in hematopoietic stem cells in which a translocation between 

chromosomes 9 and 22 occurs. During this translocation, fusion of the bcr-abl gene occurs on 

chromosome 22 to form what is known as the Philadelphia (Ph) chromosome, a detectable 

characteristic in 90% of all CML patients. Fusion of this gene results in increased tyrosine kinase 

activity contributing to uncontrolled stem cell growth and survival, and ultimately cancer.  

 There are currently many types of treatment available to CML patients. Of particular 

interest is a form of targeted therapy involving the drug Imatinib. Imatinib is a tyrosine kinase 

inhibitor that specifically targets Ph+ cells and binds to the bcr-abl enzyme. This drug controls 

the population of cancer cells in two ways: by preventing proliferation of mutated cells and 

increasing apoptosis or cellular suicide. Although quite effective as a control, Imatinib is not a 

cure for CML.  

 In the past decade, there has been much interest in the use of mathematical models to 

gain further insight into the dynamics of CML genesis and explore the effects of treatment. This 

project will consider three such models, each biologically based on the same cell differentiation 

process as described by Roeder et al. This process consists of three stages of cell differentiation: 

stem cells, precursors and mature cells. Additionally, stem cells are categorized as either non-

proliferating (𝐴) or proliferating cells (𝛺). Movement between compartments is as follows (fig. 

1).  

 Each stem cell may be characterized by its cellular affinity, a quantity based on cell age 

and state. Cells in 𝐴 increase their affinity over time until the maximum affinity is reached. They 

transfer from 𝐴 to 𝛺 with probability 𝜔 determined by affinity and the total number of 

proliferating cells. In 𝛺, stem cells proliferate by completing the 48 hour cell cycle. The cell 

cycle consists of four necessary phases for cell growth and division. These stages in order are G1, 

S, G2, and M. Cells enter 𝛺 from 𝐴 at hour 32 of the cell cycle, the beginning of the S phase 

during which DNA synthesis occurs. At hour 48, the cell divides into two daughter cells that 

each begin the cycle in the G1 growth phase. Transitions from 𝛺 to 𝐴 occur during the G1 phase 

with probability 𝛼. Cell affinity decreases over time in 𝛺 until the minimum affinity is attained.  

 Stem cells with minimum affinity differentiate into precursor cells. These cells divide 

once every 24 hours for 20 days, at which point they become mature cells. Cells live in the 

mature stage for 8 days before dying.  
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Figure 1: A cell state diagram as proposed by Roeder et al. Figure from [2]. 

 

 The biology described here is a simplification of the cell maturation process and makes a 

few assumptions. Firstly, the differentiation process has been reduced to three stages of 

maturation. Second, transition probabilities between stem cell compartments are assumed to be 

based on affinity, an internal quantity for each stem cell that varies in time within an interval 

[amin,
 amax]. Affinity is a notion whose existence was postulated by Roeder [1] and is not directly 

associated with any known biological mechanism specific to the hematopoietic system. 

Furthermore, the time spent in each stage is deterministic. It is assumed that these lifespans are 

known and fixed.  

 

2 Approach 
There will be three components to this project. The first is to implement an agent based model 

(ABM) for describing CML genesis as described by Roeder et al. The second component will be 

to implement a reformulation of this model as a system of discretized difference equations [2]. 

Lastly, a system of PDEs will be used to simulate CML and its treatment [3]. All three 

algorithms are based upon the same underlying biological model (fig. 1) and use the same 

parameter values as given by Roeder.  

 

2.1 Agent Based Model 
Roeder’s agent based model simulates each cell individually according to a set of rules (fig. 2). 

At each discrete time step (1 hour) these rules are applied and cells are updated simultaneously. 

At the start of each time step, the number of cells in the 𝐴 and 𝛺 compartments is determined and 

used to govern the movement of each cell in the model. As previously mentioned, cells in 𝐴 

transition to 𝛺 with probability 𝜔, while cells in Ω move to 𝐴 with probability 𝛼.  

 

    𝜔(Ω(𝑡), 𝑎(𝑡)) =
𝑎𝑚𝑖𝑛

𝑎(𝑡)
𝑓𝜔(Ω(𝑡)) 

𝛼(Ω(𝑡), 𝑎(𝑡)) =
𝑎(𝑡)

𝑎𝑚𝑎𝑥
𝑓𝛼(A(𝑡))    (1) 
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The transition probabilities are dependent on the affinity 𝑎(𝑡) as well as the number of non-

proliferating cells A(𝑡) and proliferating cells Ω(𝑡). The functions 𝑓𝜔 and 𝑓𝛼 are sigmoidal 

functions.  

 
Figure 2: Update algorithm for ABM. Cell affinity is given by 𝑎(𝑡), position in cell cycle by 𝑐(𝑡) and cell 

compartment by 𝑚(𝑡). Δ𝑡 = 1 ℎ𝑟. From [1]. 

 

Cells that remain in Α increase affinity by a factor 𝑟 known as the regeneration factor. When 

cells transfer into Ω, 𝑐(𝑡) is set to correspond to the beginning of the S phase of the cell cycle. 

Cells remaining in Ω, may only transition to Α when 𝑐(𝑡) corresponds to the G1 phase. Once the 

cell cycle has been completed, the cell duplicates. Affinity of Ω cells is decreased by a 

differentiation factor 1/𝑑 until minimum affinity is reached. Once minimum affinity has been 

reached, the cell begins terminal differentiation.  

 This model can become quite computationally complex, as it is based on the number of 

cells being simulated. At initial implementation by Roeder in 2006, simulations of approximately 

105 cells were achieved. This is only about 
1

10
 of realistic values seen in patients.  
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2.1.1 Simulation of CML Genesis 

The algorithm depicted in figure 2 demonstrates the rules for updating healthy or nonleukemic 

cells. To simulate the onset of CML in healthy patient and track disease genesis, the sigmoidal 

functions 𝑓𝜔 and 𝑓𝛼 will be altered with parameters specific to Ph+ cells, for a single cell in a 

population of Ph- cells. That cell will be labeled leukemic (Ph+) and tracked over time. All of its 

progeny will be considered as Ph+ cells.  

 

2.1.2 Simulation of Treatment 

Treatment is introduced to the algorithm in two ways, reflecting the two ways Imatinib can affect 

Ph+ cells. First, Imatinib can limit proliferation of mutated cells. This will be accomplished in the 

model by altering the 𝑓𝜔 function for previously unaffected Ph+ cells with probability 𝑟𝑖𝑛ℎ at each 

time step. Once this change has been made, these cells will be marked as affected (Ph+) and 

maintain this configuration of 𝜔 for the duration of the simulation. Altering this function alone 

decreases the ability for resting to cells to transition to Ω and begin proliferating. Imatinib also 

increases apoptotic activity in Ph+ cells. Implementation of this function will consist of removing 

Ph+ cells in Ω from the system with probability 𝑟𝑑𝑒𝑔 at each time step.  

 Simulation of Imatinib treatment will begin once the proportion of differentiated Ph+ cells 

has reached more than 99.5%. To stop treatment, all parameter values and functions are reset to 

their initial values.  

 

2.2 A System of Difference Equations Model 
The second model will replace the ABM with a system of discretized difference equations. 

Rather than simulating each cell individually, the system will group cells by their common 

characteristics i.e., cell state compartment, affinity level, cell cycle position. The progression of 

CML can be simulated by tracking the number of cells in each group. This approach reduces 

computational complexity of the model and allows for simulation of more realistic cell numbers.  

 In order to formulate the difference equations, the state space must be discretized. Time is 

already discretized in the ABM; cell positions are updated at fixed time steps of one hour. 

Affinity is discretized by setting 𝑎(𝑡) = 𝑒−𝑘𝜌 where 𝜌 = 0.0488 and 0 ≤ 𝑘 ≤ 127. The affinity 

of each cell can now be characterized discretely by the value of 𝑘 where log(𝑎(𝑡)) = −𝑘𝜌.  

 

2.2.1 The Difference Equations 

The stem cell populations can be represented by the following difference equations with 𝑘 

representing cell affinity and 𝑐 representing position in the cell cycle:  

 

Α𝑘(𝑡 + 1) =

{
 
 

 
 
(Α0(𝑡) − Β0(𝑡)) + (Α1(𝑡) − Β1(𝑡)) + (Α2(𝑡) − Β2(𝑡)),           𝑘 = 0

(Α𝑘+2(𝑡) − Β𝑘+2(𝑡)) + ∑ Ψ𝑘,𝑐(𝑡),                               𝑘 = 1,… ,125
31

𝑐=0

∑ Ψ𝑘,𝑐(𝑡),
31

𝑐=0
                                                                            𝑘 = 126, 127

 

(2) 
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Ω𝑘(𝑡 + 1) =

{
  
 

  
 
Β0(𝑡),                                                                   𝑘 = 0, 𝑐 = 32

2Ω𝑘−1,48(𝑡),                                                           𝑘 > 0, 𝑐 = 0

Ω𝑘−1,𝑐−1(𝑡) − Ψ𝑘−1,𝑐−1(𝑡),                   𝑘 > 0, 𝑐 = 1,… ,31

(Ω𝑘−1,31(𝑡) − Ψ𝑘−1,31(𝑡)) + Β𝑘(𝑡),              𝑘 > 0, 𝑐 = 32

Ω𝑘−1,𝑐−1(𝑡),                                            𝑘 > 0, 𝑐 = 33,… ,48

0                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3) 

Transitions between the Α𝑘 and 𝛺𝑘,𝑐 compartments are determined by the binomial random 

variables Β𝑘 and Ψ𝑘,𝑐 which have the following distributions: 

Β𝑘(𝑡) ~ 𝐵𝑖𝑛(Α𝑘(𝑡), 𝜔(Ω(𝑡), 𝑒
−𝑘𝜌))

 
                                 

Ψ𝑘,𝑐(𝑡) ~ 𝐵𝑖𝑛 (Ω𝑘,𝑐(𝑡), 𝛼(Α(𝑡), 𝑒
−𝑘𝜌)) ,       𝑐 = 0, . .31

 

Here Ω(𝑡) and Α(𝑡) denote the total number of proliferating and resting cells respectively, and 

are found by summing over all values of 𝑘 and 𝑐. The transition probabilities 𝜔 and 𝛼 are as 

previously given by (1).  

 The differentiated cells can be represented in a similar fashion. The equations for 

precursors and denoted by 𝑃𝑗(𝑡) where 𝑗 = 0, … ,479 is the number of hours a cell has spent in 

this compartment, up to 20 days. Similarly mature cells are denoted by 𝑀𝑗(𝑡) where 𝑗 =

0, … ,191 is the number of hours spent as a mature cell, up to 8 days.  

 

𝑃𝑗(𝑡 + 1) =  

{
 
 

 
 ∑ Ω127,𝑐(𝑡)

48

𝑐=0
−∑ Ψ127,𝑐(𝑡)

31

𝑐=0
,                 𝑗 = 0

2𝑃𝑗−1(𝑡),                                   𝑗 = 24, 48, 72,… , 456

𝑃𝑗−1(𝑡),                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(4) 

𝑀𝑗(𝑡 + 1) =  {
2𝑃479(𝑡),                𝑗 = 0 

𝑀𝑗−1(𝑡),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5) 

These equations directly reflect the rules of cell differentiation as presented in the cell state 

diagram (fig. 1). The first line of (4) represents proliferating cells that have attained minimum 

affinity and differentiate into precursors. Precursors divide every 24 hours, producing two 

daughter cells, as represented by line two. Line three denotes an increase in age, which is 

necessary to track the time spent as a precursor before maturing. The first line of (5) signifies the 

number of precursors that undergo one final division before entering the mature state. Similar to 

the final line of (4), the second line of (5) tracks the age of mature cells before they die.  

 

2.2.2 Modeling CML and Imatinib Treatment 

Equations (2) to (5) as written will be used to simulate Ph- cells. As with ABM, alterations to 

some of these equations will need to be made in order to represent Ph+ cells and Imatinib-

affected cells (Ph+/A).  
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 Ph+ cells uncontrollably proliferate and so the transition rates between Α and Ω differ 

from those of Ph- cells. The transition functions 𝑓𝜔 and 𝑓𝛼 are updated with new parameter 

values that correspond to Ph+ cells. This is the only update necessary to simulate CML genesis. 

Further changes to the Ph+ equations are necessary when Imatinib is introduced. When the drug 

is introduced, proliferating stem cells become Imatinib affected with probability 𝑟𝑖𝑛ℎ at each time 

step. This probability is given by Ω+/𝐼(𝑡) ~ 𝐵𝑖𝑛(Ω𝑘,𝑐
+ (𝑡), 𝑟𝑖𝑛ℎ) where Ω+/𝐼(𝑡) represents 

proliferating Ph+ stem cells that become affected at time 𝑡. These cells will be removed from the 

Ph+ cell population at the beginning of each time step before any other transition occurs. To 

accomplish this, Ω𝑘,𝑐
+ (𝑡 + 1) from (3) will change to become the number of cells remaining 

unaffected for the next time step. This is given by Ω𝑘,𝑐
+/𝑅(𝑡) = Ω𝑘,𝑐

+ (𝑡) − Ω𝑘,𝑐
+/𝐼(𝑡). 

  The Ph+/A cell population is also governed by slightly altered equations. First, since 

Imatinib inhibits the ability of these cells to proliferate, transition functions 𝑓𝜔 and 𝑓𝛼 will be 

updated with corresponding parameter values. Second, affected proliferating stem cells, Ω+/𝐴 

undergo apoptosis at each time step with probability 𝑟𝑑𝑒𝑔. These cells will be removed at the 

beginning of each time step, before regular transitions occur.  

 

2.3 A PDE Model 
The third model transforms Roeder’s ABM into a system of partial differential equations, the 

goal being to describe the same CML dynamics with continuous variables. The PDE model has 

advantages over the original model. Like the system of difference equations, it reduces the 

complexity of ABM, which can produce a solution in less time and allows simulations of 

realistic cell population sizes. Additionally, it tracks disease genesis in continuous time which 

more accurately reflects true biological processes.  

 Transitions for stem cells will be governed by three variables 𝑡, 𝑎 and 𝑐, which can be 

thought of as three internal clocks representing real time, affinity and cell cycle position 

respectively. Differentiated cells are not dependent on affinity or the cell cycle. Lifespans and 

functions of these cells will be represented by 𝑡 and 𝑠, where 𝑠 denotes cell age.  

 

2.3.1 The System and Boundary Conditions 

As noted in the difference equation model, the log of cell affinity is linear with respect to real 

time. Hence, the population of non-proliferating cells Α will be denoted Α(𝑥, 𝑡) where 𝑥 =

−log (𝑎) with 𝑎 being affinity. Over time, cells in Α increase their affinity up to some maximum 

value. This will correspond to 𝑥𝑚𝑖𝑛 = −log (𝑎max). To deal with the accumulation of cells 

occurring at this boundary, cells with maximum affinity will be considered as a subpopulation 

denoted Α∗(𝑡). The population of proliferating cells will be denoted Ω(𝑥, 𝑐, 𝑡). 

Additionally, Ω∗(𝑥, 𝑡) will be used to denote the subpopulation of proliferating cells that 

transferred into Ω from Α∗. 
 The PDEs for these four subpopulations are as follows:  

 

𝜕Α

𝜕𝑡
− 𝜌𝑟

𝜕Α

𝜕𝑡
= −𝜔(Ω, 𝑒−𝑥)Α + 𝛼(Α, 𝑒−𝑥)∫ Ω(𝑥, 𝑐, 𝑡)𝑑𝑐

32

0

+ {
0,                            𝑥 𝜖 𝑋𝑎

𝛼(Α, 𝑒−𝑥)Ω∗,       𝑥 𝜖 𝑋𝑏
 

(6) 
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𝑑Α∗

𝑑𝑡
= 𝜌𝑟Α(𝑥𝑚𝑖𝑛, 𝑡) − 𝜔(Ω, 𝑒

−𝑥𝑚𝑖𝑛)Α∗ 

(7) 

𝜕Ω

𝜕𝑡
+ 𝜌𝑑

𝜕Ω

𝜕𝑥
+
𝜕Ω

𝜕𝑐
= {

−𝛼(Α, 𝑒−𝑥)Ω,      𝑓𝑜𝑟 𝑐 𝜖 (0,32]

0,                         𝑓𝑜𝑟 𝑐 𝜖 (32, 49]
 

(8) 

𝜕Ω∗

𝜕𝑡
+ 𝜌𝑑

𝜕Ω∗

𝜕𝑥
= {

0,                                 𝑥 𝜖 𝑋𝑎

−𝛼(Α, 𝑒−𝑥)Ω∗,         𝑥 𝜖 𝑋𝑏
 

(9) 

The domain of 𝑥 is divided into two subsets 𝑋𝑎 and 𝑋𝑏 where 𝑋𝑎 = (𝑥𝑚𝑖𝑛, 𝑦1] ∪ (𝑦2, 𝑦3] ∪

(𝑦4, 𝑦5] and 𝑋𝑏 = (𝑦1, 𝑦2] ∪ (𝑦3, 𝑦4] ∪ (𝑦5, 𝑥𝑚𝑎𝑥], with 𝑦1, 𝑦2, 𝑦3, 𝑦4, and  𝑦5 being constants 

corresponding to affinity values at which Ω∗ cells reach cell cycle time counters of 49, 32, 49, 32, 

and 49 respectively [3]. The transition probabilities 𝜔 and 𝛼 are given by (1). Regeneration and 

differentiation factors for affinity are incorporated into the advection rates 𝜌𝑟 = log 𝑟 and 𝜌𝑑 =

log 𝑑. Equations (6) - (9) are dependent on the total population of cells in Α and Ω. These are 

denoted by 

Α(𝑡) =  ∫ Α(𝑥, 𝑡)𝑑𝑥 + Α∗(𝑡)
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 

Ω(𝑡) =  ∫ ∫ Ω(𝑥, 𝑐, 𝑡)𝑑𝑐 𝑑𝑥 + ∫ Ω∗(𝑥, 𝑡)𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

49

0

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 

Boundary conditions for Α and Ω are given by 

Α(𝑥𝑚𝑖𝑛, 𝑡) = 0 

Ω(𝑥, 0, 𝑡) = 2Ω(𝑥, 49, 𝑡) 

Ω(𝑥, 32+, 𝑡) = Ω(𝑥, 32−, 𝑡) + 𝜔(Ω, 𝑒−𝑥)Α 

Ω∗(𝑥𝑚𝑖𝑛, 𝑡) =
𝜔(Ω, 𝑒−𝑥𝑚𝑖𝑛)

𝜌𝑑
Α∗ 

Ω(𝑦𝑖
+, 𝑡) = 2Ω(𝑦𝑖

−, 𝑡),      𝑖 = 1,3,5 

(10) 

 Cells that have attained minimum affinity differentiate into precursor cells, where their 

behavior is no longer dependent on affinity or the cell cycle seen in Ω. The PDE for these cells 

can then be written as a linear advection equation based on age:  

𝜕𝑃

𝜕𝑡
+
𝜕𝑃

𝜕𝑠
= 0,     𝑠 𝜖 [0,480) 

(11) 

Precursors divide once every 24 hours. This will be incorporated into the boundary conditions 

for (11) which are given as  

{
𝑃(0, 𝑡) = 𝜌𝑑 (∫ Ω(𝑥𝑚𝑎𝑥, 𝑐, 𝑡)𝑑𝑐

32

0

+ Ω∗(𝑥𝑚𝑎𝑥, 𝑡))

𝑃(𝑣+, 𝑡) = 2𝑃(𝑣−, 𝑡),              𝑣 = 24, 48, 72,… , 456

 

(12) 
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Here, the boundaries are considered to be the times at which division occurs. Mature cells can be 

considered in a similar fashion, as their population depends only on real time and cell age. The 

PDE is given by (13) with boundary condition (14) to signify the final division of precursor cells.  

𝜕𝑀

𝜕𝑡
+
𝜕𝑀

𝜕𝑠
= 0,     𝑠 𝜖 [0,192) 

(13) 

𝑀(0, 𝑡) = 2𝑃(480, 𝑡) 
(14) 

 

2.3.2 Modeling CML and Imatinib Treatment 

Simulating disease genesis and treatment in the PDE model will be similar as in the difference 

equations. Leukemic cells will be denoted by Ph+, nonleukemic cells as Ph- and Imatinib-

affected leukemic cells by Ph+/A. A separate set of PDEs will be formulated for each population 

according to equations (6) - (9), (11) and (13), with some modifications for Ph+ and Ph+/A cells. 

The boundary conditions will remain the same across all populations. PDEs for Ph- cells are as 

written above.  

 Unaffected Ph+ cells transition between Α and Ω based on transition functions 𝑓𝛼/𝜔, with 

parameter values specific to Ph+ cells. Proliferating leukemic cells Ω+can become Imatinib 

affected or undergo apoptosis. This is introduced in by altering (8) and (9) to include an 

additional term on the right hand side: −(𝑟𝑖𝑛ℎ + 𝑟𝑑𝑒𝑔)Ω
+and −(𝑟𝑖𝑛ℎ + 𝑟𝑑𝑒𝑔)Ω

∗,+respectively.  

 Imatinib-affected cells transition between Α and Ω based on transition functions 𝑓𝛼/𝜔, 

with parameter values specific to Ph+/A cells. The drug effects are introduced by including an 

additional right hand side term to (8) and (9) of the form 𝑟𝑖𝑛ℎΩ
+ − 𝑟𝑑𝑒𝑔Ω

𝑖 and 𝑟𝑖𝑛ℎΩ
∗,+ −

𝑟𝑑𝑒𝑔Ω
∗,𝑖 respectively. Here Ω𝑖denotes the affected proliferating stem cell population.  

 

2.3.3 Numerical Methods 

To numerically simulate the PDE model, first the domain will be discretized into an equally 

spaced grid. The equations and boundary conditions given above will be discretized using the 

numerical scheme presented by Kim et al. Starting with the stem cells, the grid points for the 

domain  [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [0, 49] × ℝ0
+ are given by 𝑥𝑗 = 𝑗Δ𝑥, 𝑐𝑘 = 𝑘Δ𝑐 and 𝑡𝑛 = 𝑛Δ𝑡, where  

Δ𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝐽
,    Δ𝑐 =

49

𝐾
 

and 𝑗 = 0,… , 𝐽, 𝑘 = 0,… , 𝐾, and 𝑛 = 0,… ,𝑁. Let 𝜆𝑥 = Δ𝑡/Δ𝑥 be the fixed mesh ratio. The 

composite trapezoidal rule will be used to evaluate all integrals that appear in the above 

equations and is denoted by 𝒯𝑢(𝑓) =
Δ𝑢

2
∑ (𝑓(𝑢𝑙+1) − 𝑓(𝑢𝑙))
𝑀−1
𝑙=0 . Note that Α̂𝑛, Ω̂𝑛, Α̃𝑗,𝑛, Α̃𝑛

∗ , 

 Ω̃𝑗,𝑘,𝑛 and  Ω̃𝑗,𝑛
∗  will represent the numerical approximations for Α(𝑡𝑛), Ω(𝑡𝑛), Α(𝑥𝑗, 𝑡𝑛), Α

∗(𝑡𝑛), 

 Ω(𝑥𝑗 , 𝑐𝑘, 𝑡𝑛) and Ω∗(𝑥𝑗 , 𝑡𝑛) respectively. Following this notation, 

Α̂𝑛 = 𝒯𝑥(Α̃−,𝑛) + Α̃𝑛
∗ , 

Ω̂𝑛 = 𝒯𝑥 ∘ 𝒯𝑐(Ω̃−,−,𝑛) + 𝒯𝑥(Ω̃−,𝑛
∗ ) 

Then the numerical approximation for (6) is 
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Α̃𝑗,𝑛+1 = Α̃𝑗,𝑛 + 𝜆𝑥𝜌𝑟(Α̃𝑗+1,𝑛 − Α̃𝑗,𝑛) − Δ𝑡(𝜔(Ω̂𝑛, 𝑒
−𝑥𝑗)Α̃𝑗,𝑛 + 𝛼(Α̂𝑛, 𝑒

−𝑥𝑗)𝒯𝑐(Ω̃𝑗,−,𝑛)

+ {
0,                                             𝑥𝑗  𝜖 𝑋𝑎,

(Δ𝑡)𝛼( Α̂𝑛, 𝑒
−𝑥𝑗)Ω̃𝑗,𝑛

∗ ,         𝑥𝑗  𝜖 𝑋𝑏.
 

with associated boundary condition obtained from the first line of (10) 

Α̃𝐽,𝑛+1 = 0. 

The approximation for (7) is given as  

Α̃𝑛+1
∗ = Α̃𝑛

∗ + Δ𝑡 (𝜌𝑟Α0,𝑛 − 𝜔(Ω̂𝑛, 𝑒
−𝑥0)) Α̃𝑛

∗ . 

The numerical scheme for Ω cells is derived from (8) as 

Ω̃𝑗,𝑘,𝑛+1 = Ω̃𝑗,𝑘,𝑛 + 𝜆𝑥𝜌𝑑(Ω̃𝑗,𝑘,𝑛 − Ω̃𝑗−1,𝑘,𝑛) − 𝜆𝑐(Ω̃𝑗,𝑘,𝑛 − Ω̃𝑗,𝑘−1,𝑛)

+ {
−(Δ𝑡)𝛼( Α̂𝑛, 𝑒

−𝑥𝑗)Ω𝑗,𝑘,𝑛,         𝑓𝑜𝑟 𝑐 𝜖 (0,32],

0,                                                𝑓𝑜𝑟 𝑐 𝜖 (32, 49].
 

with boundary conditions  

Ω̃0,𝑘,𝑛 = 0    ∀𝑘, 𝑛 

Ω̃𝑗,0,𝑛+1 = 2Ω̃𝑗,𝐾,𝑛 

Ω̃
𝑗,𝑘+,𝑛+1

= Ω̃𝑗,𝑘−,𝑛+1 + 𝜔(Ω̂𝑛, 𝑒
−𝑥𝑗)Α̃𝑗,𝑛+1. 

The first boundary condition corresponds to 𝑥 = 𝑥0, the second to 𝑐 = 0, and the last to 𝑐 = 32 

where 𝑘 is the index between 0 and K such that 𝑐𝑘 is as close to 32 as possible [3]. Next, 

equation (9) for cells in Ω∗ is discretized as  

Ω̃𝑗,𝑛+1
∗ = Ω̃𝑗,𝑛

∗ − 𝜆𝑥𝜌𝑑(Ω̃𝑗,𝑛
∗ − Ω̃𝑗−1,𝑛

∗ ) + {
0,                                                 𝑥𝑗  𝜖 𝑋𝑎,

−(Δ𝑡)𝛼( Α̂𝑛, 𝑒
−𝑥𝑗)Ω̃𝑗,𝑛

∗ ,         𝑥𝑗  𝜖 𝑋𝑏.
 

The boundary condition given by the fourth and fifth lines of (10) become  

Ω̃0,𝑛+1
∗ =

𝜔(Ω̂𝑛, 𝑒
−𝑥0)

𝜌𝑑
Α̃𝑛
∗  

Ω̃𝑗+,𝑛+1
∗ = 2Ω̃𝑗−,𝑛+1

∗ . 

 For the differentiated cells, the grid points for the time domain is the same as stated 

above. The grid points for the age domains [0,480] and [0,192] for precursor and mature cells 

respectively, are given by 𝑠𝑖 = 𝑖Δ𝑠 where Δ𝑠 = 1\𝑤 for some integer 𝑤 and 𝑖 = 1,… , 𝐼𝑚, … , 𝐼𝑝. 

Note that �̃� and �̃�represent the numerical approximations to 𝑃 and 𝑀, respectively. An explicit 

upwind scheme is used to approximate equations (11) and (13) as 

�̃�𝑖,𝑛+1 = �̃�𝑖,𝑛 − 𝜆𝑠(�̃�𝑖,𝑛 − �̃�𝑖−1,𝑛) 

�̃�𝑖,𝑛+1 = �̃�𝑖,𝑛 − 𝜆𝑠(�̃�𝑖,𝑛 − �̃�𝑖−1,𝑛) 

The boundary conditions are given as 

{

�̃�0,𝑛 = 𝜌𝑑(𝒯𝑐(Ω̃𝐽,−,𝑛) + Ω̃𝐽,𝑛
∗ )                                                

�̃�𝑣𝑤+,𝑛 = 2�̃�𝑣𝑤−,𝑛                    𝑓𝑜𝑟 𝑣 = 24, 48, 72,… ,456

�̃�0,𝑛 = 2�̃�480,𝑛                                                                           

 

 The numerical approximations for leukemic cells are derived similarly. This numerical 

method is a first-order method. Extensions of the scheme in higher-order can be considered as a 

follow-up project.  
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3 Implementation 
All three models will be implemented in Matlab R2014a. Simulations will be run on an ASUS 

Notebook with a 2.4 GHz Intel Core i5 processor and 8 GB of RAM.  

 

4 Validation 
As previously mentioned, the complexity of ABM is based on the number of agents in the 

system. The completed model will be validated by running simulations first on a small number of 

cells, increasing gradually to larger values. Validity will be determined by comparing resulting 

cell counts and figures to those presented by Roeder et al. This model should be able to produce 

figures of a similar shape and scale. Furthermore, the ability to simulate total cell count on the 

order of 105
 or larger will demonstrate an efficient implementation of the ABM. Simulations of 

the nonleukemic cell population will be run and validated before introducing the algorithm 

alterations representing CML genesis and Imatinib treatment.  

 The difference equation model will be validated in a similar fashion as the ABM. 

Simulations should be able to accurately recover the figures produced by Kim et al. Figure 3 

shows the number of nonleukemic stem cells by compartment at each level of affinity. For ABM, 

stem cells are grouped by affinity first and then plotted as a bar chart. The steady state profile for 

the difference equations is achieved by plotting Α𝑘(𝑡𝑠) and ∑ Ω𝑘,𝑐(𝑡𝑠)𝑐  versus affinity level 𝑘, 

where 𝑡𝑠 is the steady state time. Figure 4 depicts the number of mature leukemic (𝑀+(𝑡) =
∑ 𝑀𝑠

+(𝑡)𝑠 ) and nonleukemic cells (𝑀−(𝑡) = ∑ 𝑀𝑠
−(𝑡)𝑠 ) versus time. It will be enough to 

generate similar steady state dynamics with approximately the same cell population values in 

order to determine validity.  

 

 
Figure 3: Steady state profile for nonleukemic stem cells achieved by ABM and difference equation 

method. Both resting and proliferating stem cell populations are shown. From [2]. 
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Figure 4: Simulation of CML genesis. Dynamics of both leukemic (Ph+) and nonleukemic (Ph-) cells are 

shown by plotting the number of mature cells in each population versus time. From [2]. 

 

 Validation of the PDE model will be accomplished in a different manner. It must first be 

verified that the numerical scheme for the model produces accurate results for the PDE in 

question. Since the CML PDE model is a linear system of hyperbolic PDEs, the numerical 

method will be validated on scalar first order hyperbolic PDEs whose solutions are known. Two 

such test problems will be: 

𝑢𝑡 + 𝑎𝑢𝑥 = 0 

𝑢𝑡 + 𝑢𝑥 +  𝑢𝑦 = 0 

(15) 

 

5 Testing 
Testing will be conducted in two stages. Stage one will include applying the PDE numerical 

method to solve the CML PDE model. Simulations will first be run on the nonleukemic cell 

population to determine the validity of the scheme in relation to the proposed biological model. 

The appropriate alterations will then be made to the base model in order to achieve simulation of 

all three cell populations. Testing in this stage will conclude with numerical simulations of the 

entire system, resulting in figures similar to those presented by Kim et al. Validity will be 

determined by this model’s ability to capture the CML behavior (fig. 5 and 6). This will be done 

in a manner similar to validation of the difference equation method.  

 Stage two of testing will be to determine whether these models can accurately depict 

CML genesis in a new set of patients. Simulations will be run with new parameter values that 

reflect clinical data of a different set of CML patients undergoing Imatinib treatment. This data 

originates from Dr. Frank Nicolini in Lyon, France. Dr. Nicolini is a collaborator of the project 

advisor. Figures of these simulations will be plotted for comparison.  
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Figure 5: Steady state profile of nonleukemic cell population achieved by ABM and PDE model. Both 

resting and proliferating stem cell populations are shown. From [3]. 

 

  
Figure 6: CML genesis as simulated by each of the three models. Dynamics of both leukemic (Ph+) and 

nonleukemic (Ph-) cells are shown by plotting the number of mature cells in each population versus time. 

From [3]. 

 

6 Project Schedule and Milestones 
The project is divided into four phases as described below. 

  Phase 1: October – mid-November 

◦ Implement difference equation model  

◦ Improve efficiency and validate  

  Phase 2: November – mid-December 

◦ Implement ABM  

◦ Improve efficiency and validate 

  Phase 3: December – mid-February 

◦ Implement basic PDE method 

◦ Validate on simple test problem 

  Phase 4: mid-February – April 

◦ Apply basic method to CML - Imatinib biology and validate 

◦ Test models with clinical data 

◦ Draw conclusions 
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7 Deliverables 
Deliverables for this project will consist of Matlab code to simulate CML and its treatment 

according to the proposed models, a database or table of parameter values and initial conditions, 

and figures produced during simulations. Course requirements such as mid and end of year 

reports will also be included. 
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