Turan Nazarov inequality

Revati Jadhav

Langer's lemma

Theorem

Let $p(z) = \sum_{k=1}^{n} c_k e^{i\lambda_k z}$ $(0 = \lambda_1 < \lambda_2 < \dots < \lambda_n = \lambda)$ be an exponential polynomial that not identically zero. Then the number of complex zeros of p(z) in any open vertical strip $x_0 < Re\ z < x_0 + \Delta$ of width Δ does not exceed $(n-1) + \frac{\lambda \Delta}{2\pi}$.

Proof

Without loss of generality, we can assume that the coefficients c_1 and c_n are different from zero and that there are no zeros of the exponential polynomial p(z) at the boundary of the strip $x_0 < \text{Re } z < x_0 + \Delta$.

We apply the argument principle for estimating the number of zeros p(z) in the rectangle $Q = \{z : x_0 < \text{Re } z < x_0 + \Delta, |\text{Im } z| \leq y\}$ when $y \to \infty$.

- On the upper side of Q, $p(z) = c_1 + O(e^{-\lambda_2 y})$ and, thus, the increment of the argument along it tends to 0 as $y \to \infty$.
- $p(z) = c_n e^{i\lambda z} (1 + O(e^{-(\lambda \lambda_{n-1})y}))$ on the lower side of Q. The increment of the argument along it tends to $\lambda \Delta$ as $y \to \infty$.

• The increment of the argument p(z) on any vertical segment $\{z = x + it : t \in [\alpha, \beta]\}$, free from zeros of p, does not exceed $\pi(n-1)$.

Let $\xi := e^{i\arg p(x_0 + i\alpha)}$, $q(t) := \operatorname{Im} \bar{\xi} p(x_0 + it) = \sum_{k=1}^n a_k e^{-\lambda_k t} (a_k = \operatorname{Im} \bar{\xi} c_k e^{i\lambda_k x_0})$ - a real exponential polynomial. $q(\alpha) = 0$.

If $q \equiv 0$, then for $t \in [\alpha, \beta]$, $p(x_0 + it)$ lies on the ray $\{\xi y : y > 0\}$. So, $\Delta_{[\alpha,\beta]}$ arg $p(x_0 + it) = 0$.

Otherwise, real zeros of q(t) split the segment $[\alpha,\beta]$ into at most n-1 segments I_j . Within each segment I_j , $p(x_0+it)$ lie in one of the half-planes defined by the straight line $\{\xi y:y\in\mathbb{R}\}$ and thus $|\Delta_{I_j} \text{arg } p(x_0+it)| \leq \pi$. So, $|\Delta_{[\alpha,\beta]} \text{arg } p(x_0+it)| \leq (n-1)\pi$.

The increment of the argument on each side of Q is $\leq \pi(n-1)$.

Putting it together, the upper bound for the $|\Delta \arg p|$ when traversing the boundary Q goes to $2\pi\left(\frac{\Delta\lambda}{2\pi}+(n-1)\right)$ as $y\to\infty$

Theorem

Let $p(t) = \sum_{k=1}^{n} c_k e^{i\lambda_k t}$, where $c_k \in \mathbb{C}$, $\lambda_1 < \cdots < \lambda_n \in \mathbb{R}$, E is a measurable subset of an interval I. Then

$$\sup |p(t)|_{t \in I} \le \left(\frac{316\mu(I)}{\mu(E)}\right)^{n-1} \sup_{t \in E} |p(t)|$$

With a linear change of variables, it is enough to show:

Theorem

Let $p(t) = \sum_{k=1}^{n} c_k e^{i\lambda_k t}$, where $c_k \in \mathbb{C}$, $\lambda_1 < \dots < \lambda_n \in \mathbb{R}$, E is a measurable subset of the segment $I = [-\frac{1}{2}, \frac{1}{2}]$. Then

$$\sup |p(t)|_{t\in I} \leq \left(\frac{316}{\mu(E)}\right)^{n-1} \sup_{t\in E} |p(t)|$$

Case 1: $\lambda \leq n-1$

Idea:

We want to remove a "bad set" of measure $< \mu(E)$ close to the zeros of p. Zeros are well separated by Langer's lemma.

WLOG, we can assume that $0 = \lambda_1 < \cdots < \lambda_n = \lambda \le n-1$.

Complex zeros of the z_j exponential polynomials p(z) are well separated by Langer's lemma.

zeros in a vertical strip of width $\Delta \leq rac{\Delta \lambda}{2\pi} + n - 1 \leq \left(1 + rac{\Delta}{2\pi}
ight)(n-1)$

Number z_j in non-decreasing order of $|\text{Re }z_j|$. Then for all $j\in\mathbb{N}$

$$|\mathsf{Re}\ z_j| \geq \pi rac{j-(n-1)}{n-1}$$

(Otherwise, the zeros z_1, \ldots, z_j lie in a vertical strip of width

$$\Delta < 2\pi rac{j-(n-1)}{n-1}$$
 and by Langer's lemma, it has $\left(1+rac{\Delta}{2\pi}
ight)(n-1) < j$ zeros).

4日本4個本4日本4日本 日

The Hadamard factorization for p(z):

$$p(z) = ce^{az} \prod_{j=1}^{2(n-1)} (z - z_j) \prod_{j>2(n-1)} \left(1 - \frac{z}{z_j}\right) e^{z/z_j} \stackrel{\text{def}}{=} ce^{az} Q(z) R(z)$$

As j>2(n-1), $|\text{Re }z_j|>\pi$. R(z) is "well behaved" on the strip $\frac{-1}{2}<\text{Re }z<\frac{1}{2}$.

Revati Jadhav

Estimating R(z)

As j>2(n-1), $|\operatorname{Re}\, z_j|>\pi.$ Now we have for $|\operatorname{Re}\, z|<\frac{1}{2}$

$$\left| \frac{d}{dz} \log R(z) \right| = \left| \sum_{j>2(n-1)} \left(\frac{1}{z_j} + \frac{1}{z - z_j} \right) \right| \le |z| \left| \sum_{j>2(n-1)} \frac{1}{|z_j||z - z_j|} \right|$$

$$\le |z| \left| \sum_{j>2(n-1)} \frac{1}{|\text{Re } z_j|(|\text{Re } z_j| - |\text{Re } z|)} \right|$$

$$\le |z| \left| \sum_{j>2(n-1)} \frac{1}{|\text{Re } z_j|(|\text{Re } z_j| - 1/2)} \right|$$

$$\le 2|z| \sum_{j=1}^{\infty} \frac{1}{|\text{Re } z_{2(n-1)+j}|^2}$$

Revati Jadhav

$$\leq 2|z| \sum_{j=1}^{\infty} \frac{1}{|\operatorname{Re} z_{2(n-1)+j}|^2}$$

$$\leq 2|z| \sum_{j=1}^{\infty} \frac{1}{\left(\pi + \frac{\pi j}{n-1}\right)^2} \leq \frac{2(n-1)|z|}{\pi} \int_{\pi}^{\infty} \frac{dt}{t^2}$$

$$= \frac{2|z|}{\pi^2} (n-1)$$

We have proved

$$\left| \frac{d}{dz} \log R(z) \right| \le \frac{2|z|}{\pi^2} (n-1)$$

$$\Rightarrow \int_{-1/2}^{1/2} \left| \frac{d}{dz} \log R(z) \right| dz \le \frac{2(n-1)}{\pi^2} \int_{-1/2}^{1/2} |z| dz = \frac{n-1}{2\pi^2}$$

$$\Rightarrow \max_{z \in [-\frac{1}{2}, \frac{1}{2}]} |R(z)| \le \exp\left(\frac{n-1}{2\pi^2}\right) \min_{z \in [-\frac{1}{2}, \frac{1}{2}]} |R(z)|$$

Estimating e^{az}

$$\Delta_{[-i\omega,i\omega]} {\rm arg}~p = 2\omega {\rm Re}~a + \Delta_{[-i\omega,i\omega]} {\rm arg}~Q + \Delta_{[-i\omega,i\omega]} {\rm arg}~R$$

•

$$|\Delta_{[-i\omega,i\omega]}$$
arg $p| \leq \pi(n-1)$

•

$$\Delta_{[-i\omega,i\omega]}$$
arg $Q|\leq 2\pi(n-1)$

$$|\Delta_{[-i\omega,i\omega]}\arg\,R| \leq \int_{-\omega}^{\omega} \left|\frac{d}{dz}\log R(it)\right| dt \leq \frac{n-1}{\pi^2} \int_{-\omega}^{\omega} |t| dt = \frac{n-1}{\pi^2} \omega^2$$

•

$$\Delta_{[-i\omega,i\omega]} \operatorname{arg}(ce^{az}) = 2\omega \operatorname{Re} a$$

We conclude that

$$|\mathsf{Re}\; a| \leq \min_{\omega > 0} \left(rac{3\pi}{2\omega} + rac{\omega}{2\pi^2}
ight) (n-1) = \sqrt{rac{3}{\pi}} (n-1)$$

and so,

$$\max_{z \in [-\frac{1}{2}, \frac{1}{2}]} \left| \frac{p(z)}{Q(z)} \right| \le \exp\left(\left(\sqrt{\frac{3}{\pi}} + \frac{1}{2\pi^2} \right) (n-1) \right) \min_{z \in [-\frac{1}{2}, \frac{1}{2}]} \left| \frac{p(z)}{Q(z)} \right| \\
\le 3^{n-1} \min_{z \in [-\frac{1}{2}, \frac{1}{2}]} \left| \frac{p(z)}{Q(z)} \right|$$

12 / 19

Revati Jadhav Turan Nazarov inequality

Estimating Q(z)

Let 0 < h < 1/8.

Let n_1 be the largest natural number for which there exists a circle D_1 of radius $\frac{n_1}{n-1}h$ containing at least n_1 zeros of the polynomial Q.

 D_1 contains exactly n_1 zeros of Q, otherwise it can be increased.

Let n_2 be the largest number for which there exists a circle D_2 of radius $\frac{n_2}{n-1}h$ containing at least n_2 zeros Q from among those not included in D_1 etc. until we cover all the zeros.

Let us put $D'_k = 2D_k$ (a circle with the same center, but twice the radius).

We get a sequence of numbers $n_1 \ge \cdots \ge n_s$ with

$$n_1+\cdots+n_s=2(n-1)$$

and the corresponding circles D'_1, \ldots, D'_s with a sum of radii of 4h.

Let $z \in [-\frac{1}{2}, \frac{1}{2}] \setminus \bigcup_{i=1}^{s} D_i'$. Let us renumber the zeros of Q in the order of non-decreasing $|z - z_j|$.

$$|z-z_j| \geq \frac{j}{n-1}h$$

Otherwise, the circle D with center z and radius $\frac{j}{n-1}h$ contains at least j zeros of Q. Let us choose $m \in \{1,...,s\}$ so that $n_1 > \cdots > n_m > j > n_{m+1} \geq \cdots \geq n_s$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Because $z \notin \bigcup_{k=1}^{s} D'_{k}$, for $l \leq m$,

$$\operatorname{dist}(z,\operatorname{center}(D_k)) \geq \frac{2n_k}{n-1}h \geq \frac{n_k}{n-1}h + \frac{j}{n-1}h$$

D does not intersect with any of the disks D_1, \ldots, D_m and has j zeros.

But then at step m+1 we should have taken not D_{m+1} , but D (or a circle with an even larger number of zeros), a contradiction.

Langer's lemma gives the inequality

$$|z-z_j|\geq \pi\frac{j-(n-1)}{n-1}$$

Otherwise the zeros z_1, \ldots, z_j would lie in a circle of radius less $\pi^{\frac{j-(n-1)}{n-1}}$. And those moreover, in a band of width $\Delta < 2\pi^{\frac{j-(n-1)}{n-1}}$).

So, we have

for
$$z\in[-rac12,rac12]\setminus\cup_{i=1}^sD_i'$$

$$|z-z_j|\geq\pirac{j-(n-1)}{n-1}$$

$$|z-z_j|\geqrac{j}{n-1}h$$

Revati Jadhav Turan Nazarov inequality 16 / 19

$$\begin{split} \frac{|Q(z)|}{\max\{|Q(t):t\in[-\frac{1}{2},\frac{1}{2}]\}} &\geq \prod_{j=1}^{2(n-1)} \frac{|z-z_j|}{\max\{|t-z_j|:t\in[-\frac{1}{2},\frac{1}{2}]\}} \\ &\geq \prod_{j=1}^{2(n-1)} \frac{|z-z_j|}{1+|z-z_j|} \\ &= \prod_{j=1}^{n-1} \frac{|z-z_j|}{1+|z-z_j|} \prod_{j=1}^{n-1} \frac{|z-z_{n-1+j}|}{1+|z-z_{n-1+j}|} \\ &\geq \prod_{j=1}^{n-1} \frac{\frac{j}{n-1}h}{1+\frac{j}{n-1}h} \prod_{j=1}^{n-1} \frac{\frac{\pi j}{n-1}}{1+\frac{\pi j}{n-1}} \\ &> (8h)^{n-1} \times \prod_{j=1}^{n-1} \frac{\frac{j}{n-1}\frac{1}{8}}{1+\frac{j}{n-1}\frac{1}{8}} \prod_{j=1}^{n-1} \frac{\frac{3j}{n-1}}{1+\frac{3j}{n-1}} \end{split}$$

But for any $\theta > 0$,

$$\prod_{j=1}^{n-1} \frac{\frac{\theta j}{n-1}}{1+\frac{\theta j}{n-1}} \geq \exp\left((n-1)\int_0^1 \log\left(\frac{\theta t}{1+\theta t}\right) dt\right) = \left(\frac{\theta}{(1+\theta)^{1+1/\theta}}\right)^{n-1}$$

So,

$$\frac{|Q(z)|}{\max\{|Q(t): t \in [-\frac{1}{2}, \frac{1}{2}]\}} > (8h)^{n-1} \left(8 \times \left(\frac{9}{8}\right)^9 \times \frac{4\sqrt[3]{4}}{3}\right)^{-(n-1)}$$
$$\geq \left(\frac{8h}{32\sqrt[3]{4}}\right)^{n-1}$$

Revati Jadhav Turan Nazarov inequality 18 / 19

The measure of the exceptional set

$$\mu\left(\left[-\frac{1}{2},\frac{1}{2}\right]\cap\left(\cup_{k=1}^{s}D_{k}'\right)\right)<8h$$

If $h < \frac{\mu(E)}{8}$, then

$$\left[-\frac{1}{2},\frac{1}{2}\right]\cap\left(\cup_{k=1}^{s}D_{k}'\right)\cap E\neq\phi$$

Combining estimates so far,

$$\sup |p(t)|_{t \in I} \le \left(\frac{96\sqrt[3]{4}}{\mu(E)}\right)^{n-1} \sup_{t \in E} |p(t)| \le \left(\frac{154}{\mu(E)}\right)^{n-1} \sup_{t \in E} |p(t)|$$

19 / 19

Revati Jadhav Turan Nazarov inequality