
CHAPTER 6: APPLICATIONS OF THE INTEGRAL

SECTION 6.1: VOLUME

(6.1.1) Volume. Let D be a solid region and A(x) be the cross-sectional area of D at x. The volume
of D is defined to be the integral of A(x) that is

V =

∫ b

a

A(x) dx

(6.1.2) Disc Method. Let f be a nonnegative function on an interval [a, b].

• the solid region D generated by revolving the graph of f about the x-axis

• the cross section at x is a circle with radius f(x), so the cross-sectional area at x is given by

A(x) = π[f(x)]2

• the volume of D is

V (x) =

∫ b

a

π[f(x)]2 dx

(6.1.3) Washer Method. Let f and g be nonnegative functions on an interval [a, b] such that g(x) ≤
f(x) for a ≤ x ≤ b.

• the solid region D generated by revolving a region between the graph of f and the graph of
g.

• the cross section of D at x is an annulus with radii f(x) and g(x), so the cross-sectional area
at x is given by

A(x) = π[f(x)2 − g(x)2]

• the volume of D is

V (x) =

∫ b

a

π[f(x)2 − g(x)2] dx

(6.1.4) Shell Method. Let f and g be continuous functions on [a, b] with a ≥ 0 and g(x) ≤ f(x),

• the solid region D generated by revolving about the y-axis the region R between the graphs
of f and g on [a, b].

• the cylindrical shell at x has base 2πx and the height is f(x) − g(x), so the area of the
cylindrical shell is

A(x) = 2πx(f(x)− g(x))

• the volume of D is

∫ b

a

2πx(f(x)− g(x)) dx

SECTION 6.2: LENGTH OF A CURVE

Let f have a continuous derivative on [a, b]. Then the length L of the graph of f on [a, b] is defined
by
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L =

∫ b

a

√
1 + [f ′(x)]2 dx

SECTION 6.4: WORK

(6.4.1) Work. Let F be a work function that is continuous on [a, b]. Then the work W done by the
force F is defined by

W =

∫ b

a

F (x) dx

(6.4.2) Hooke’s Law. We want to figure out the force F (x) needed in order to hold a spring extended x
units beyond its natural length. This is the opposite of the elastic force G(x) exterted by a spring which
has been extended x units beyond its natural length. We have that F (x) = −G(x) = −(−kx) = kx
where k is the constant factor characteristic of the spring.

(6.4.3) Pumping water from a tank. We want to compute the work required to pump water from a
tank. Note that the weight density of water is approximately 62.5lb/ft3. Therefore the weight of water
is 62.5V where V is the volume of the water in cubic feet. Let l be the level to which the water is to
be pumped. The volume of the infinitesimal cylinder at x can be written as A(x) dx. In conclusion the
work done is given by

W =

∫ b

a

62.5(l − x)A(x) dx

(6.4.4) Recollection From Physics. F = ma. Pound is a unit of weight (a type of force). Density ρ
is mass divided by volume, or ρ = m/V . However, we can also consider weight density, i.e. D = ρg
where g is the gravity on the surface of the Earth (i.e. an acceleration). The weight w which is a force
is given by w = mg where m is the mass. There may be some confusions because lb is interchangeably
used to be mass or weight. However, in this course, pound is a unit of weight, namely 1lb ≈ 4.44N.
For mass, some people use lbm, so that 1lbm ≈ 0.453kg.

SECTION 6.5: MOMENTS AND CENTER OF GRAVITY

(6.5.1) Moments. Let f and g be continuous functions on [a, b] such that g(x) ≤ f(x) for a ≤ x ≤ b.
Let R be the region between the graphs of f and g on [a, b]. Then the moment Mx of R about the
x-axis is given by

Mx =

∫ b

a

1

2

(
f(x)2 − g(x)2

)
dx

and the moment My of R about the y-axis is given by

My =

∫ b

a

x(f(x)− g(x)) dx

(6.5.2) Moments: Background. Let us first consider an idealized situation. An object of positive mass
m is concentrated at a point (x, y) is called a point mass. Roughly, the moment My about the x-axis
measures the tendency of the point mass to rotate about the y-axis. Thinking of a seesaw, the moment
should be proportional to the distance of the point mass to the y-axis which is given by x and to the
mass m. Therefore, we define the moment about the y-axis to be My = mx.
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Now we generalize the situation to 2-dimensions. Let R be a region between the graph of f and
g. We assume that the mass is distributed uniformly throughout a plane region R and the mass of the
subregion of R is given by its area. Therefore, we have that the infinitesimal moment is

(distance to the y-axis) × (area of the infinitesimal area) = x · (f(x)− g(x)) dx

Here x can be thought of the distance between the y-axis and the center of the subregion, f(x)− g(x)
is the height, and dx is the width of the subregion. This defines the My.

Similarly, the moment Mx of a point mass about the x−axis is again given by Mx = my. If we have
infinitesimal subregion, then we have to pick a point. The y-coordinate of the center of the subregion
is f(x)−g(x)

2 , therefore, we have the infinitesimal moment is

(distance between the x-axis and the center) × (area of the infinitesimal area) =
1

2
(f(x) + g(x)) · (f(x)− g(x)) dx

=
1

2
(f(x)2 − g(x)2) dx

(6.5.3) Center of Gravity. If R has a positive area A, then the center of gravity (or center of mass, or
centroid) of R is the point (x, y) defined by

x =
My

A
and y =

Mx

A

SECTION 6.6: PARAMETRIZED CURVES

(6.6.1) Graph of a function. Let f be a continuous function on [a, b]. Then the graph C of f is a
parametrized curve. A parametrization of C is

x = t and y = f(t)

(6.6.2) Lines. Let f(x) = mx + b be a linear function. Then the graph C of f is a line. By (6.6.1), a
parametrization of C is

x = t and y = mt+ b

(6.6.3) Circles and Ellipses. Let r be the radius of a circle C with center (0, 0). Then a parametrization
of C is

x = r cos(t) and y = r sin(t)

More generally, let C be an ellipse with length 2a of horizontal axis and length 2b the vertical axis,
and center (0, 0). Then a parametrization of C is

x = a cos(t) and y = b sin(t)

(6.6.4) Translations and Dilations.

SECTION 6.7: LENGTH OF A CURVE GIVEN PARAMETRICALLY

(6.7.1) Arc Length. Let C be a curve parametrized by

x = f(t) and y = g(t)

Then the length L of the curve C is given by

L =

∫ b

a

√
f ′(t)2 + g′(t)2 dt
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CHAPTER 7: INVERSE FUNCTIONS, L’HÔPITAL’S RULE, AND DIFFERENTIAL EQUATIONS

SECTION 7.1: INVERSE FUNCTIONS

(7.1.1) Keywords. Inverse functions, Criteria of the existence of inverse functions, Derivative of in-
verse functions

(7.1.2) Inverse Function.
Let f be a function. A function g is an inverse function of f if

• the domain of g is the range of f ,

• f(x) = y if and only if g(y) = x for all x in the domain of f and all y in the range of f .
If f has an inverse function g, then we say that f is invertible. One can show that an inverse

function of f is unique, so we will denote by f−1.

(7.1.3) Properties of inverse functions.

(i) To find an inverse function g of f , one solves y = f(x) for x in terms of y. Then switch x and
y. Consider y = x5 for example. Solve for x to get x = y1/5. Then if we switch x and y, we
get y = x1/5. In other words, g(x) = x1/5.

(ii) An inverse function doesn’t always exist. The constant function y = 5 does not have an
inverse.

(iii) An inverse function may exist if we restrict the domain of a function. The usual y = sinx does
not have an inverse function on (−∞,∞). However, if we restrict our domain to [−π

2 ,
π
2 ],

then y = sinx has the inverse y = sin−1 x on [−1, 1].

(iv) The graph of the inverse function f−1 of f is the reflection of the graph of f with respect to
y = x.

Let I be an interval. We say that f has an inverse function on an interval I (or is invertible on I)
if function f restricted to I has an inverse function. By (iii) above, we see that f(x) = sinx is not
invertible, but invertible on [−π

2 ,
π
2 ].

(v) The domain of f is the range of f−1 and the range of f is the domain of f .

(vi) The inverse of f−1 is f , i.e. (f−1)−1 = f .

(vii) f−1(f(x)) = x for all x in the domain of f and f(f−1(y)) = y for all y in the range of f .

(7.1.4) Criteria of the existence of inverse functions.

A function f has an inverse if and only if two numbers x1 and x2 in the domain of f , x1 ̸=
x2 ⇒ f(x1) ̸= f(x2). If a function f satisfies such condition, we say that f is one-to-one.

Then we have the following special case.

Every increasing function and every decreasing fuction has an inverse.

Let f be a function with domain I. Then we can divide I into subintervals I1, . . . , In such that
f ′(x) > 0 or f ′(x) < 0 for all x ∈ Ii. Then f restricted to Ii is invertible. Therefore, first find critical
points of f .

(7.1.5) Derivative of Inverse Functions.

Assume f ′(a) exists, f ′(a) ̸= 0, and f(a) = c. Then (f−1)′(c) =
1

f ′(a)
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SECTION 7.2: THE NATURAL EXPONENTIAL FUNCTION

The natural logarithm function is defined by

lnx =

∫ x

1

1

t
dt

on (0,∞). The derivative of lnx is 1
x (by fundamental theorem of calculus), so it is always positive.

This shows that lnx is an increasing function, and has an inverse function. We denote by y = ex the
inverse function and call it the natural exponential function.

• ea+b = ea · eb

• (ex)′ = ex

•
∫

ex dx = ex + C

SECTION 7.3: GENERAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

For a > 0, we define

ar = er ln a

for any real number r.

• a0 = 1

• a1 = a

• ln ar = r ln a

• ab+c = abac

• a−b = 1/ab

• (ab)c = abc

d

dx
ax = (ln a)ax and

∫
ax dx =

1

ln a
ax + C

loga x =
lnx

ln a

For a, b, and c positive real numbers,

loga bc = loga b+ loga c

SECTION 7.5: THE INVERSE TRIGONOMETRIC FUNCTIONS

Function Domain Range

sin−1(x) [−1, 1] [−π/2, π/2]

cos−1(x) [−1, 1] [0, π]

tan−1(x) any x (−π/2, π/2)

cot−1(x) any x (0, π)

sec−1(x) (−∞, 1] ∪ [1,∞) [0, π/2) ∪ [π, 3π/2)

csc−1(x) (−∞, 1] ∪ [1,∞) (0, π/2] ∪ (π, 3π/2]
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d

dx
sin−1 x =

1√
1− x2

∫
1√

a2 − x2
dx = sin−1 x

a
+ C

d

dx
cos−1 x =

−1√
1− x2

∫
1√

a2 − x2
dx = − cos−1 x

a
+ C

d

dx
tan−1 x =

1

x2 + 1

∫
1

x2 + a2
dx =

1

a
tan−1 x

a
+ C

d

dx
cot−1 x =

−1

x2 + 1

∫
1

x2 + a2
dx = −1

a
cot−1 x

a
+ C

d

dx
sec−1 x =

1

x
√
x2 − 1

∫
1

x
√
x2 − a2

dx =
1

a
sec−1 x

a
+ C

d

dx
csc−1 x =

−1

x
√
x2 − 1

∫
1

x
√
x2 − a2

dx = −1

a
csc−1 x

a
+ C

SECTION 7.6: L’HÔPITAL’S RULE

Suppose that f(x)
g(x) has the indeterminate form 0

0 and ∞
∞ , and assume that g′(x) ̸= 0 for x near ∗.

Then

lim
x→∗

f(x)

g(x)
= lim

x→∗

f ′(x)

g′(x)

provided that the latter limit exists (as a number, or as ∞ or −∞).
There might be cases where we are in the following indeterminate form 0 · ∞, 00, 1∞,∞0 and

∞−∞. In this case, we try to change to the limit in a form where we can use l’Hôpital’s Rule.

CHAPTER 8: TECHNIQUES OF INTEGRATION

SECTION 8.1:

SECTION 8.2: TRIGONOMETRIC INTEGRALS

Type A:
∫
sinm(x) cosn(x) dx.

(A-1) n is odd:

(Ex)
∫

sin3(x) cos7(x) dx

(a) Factor out cos(x). ∫
sin3(x) cos6(x) cos(x) dx

(b) Write the rest of the integrand in terms of sinx using the identity cos2(x) = 1− sin2(x).∫
sin3(x)(cos2(x))3 cos(x) dx =

∫
sin3(x)(1− sin2(x))3 cos(x) dx

(c) do u-substitution with u = sin(x) and du = cos(x) dx.∫
u3(1− u2)3du

(A-2) m is odd:

The procedure is analogous to Type A-1, but you will factor out sin(x) and express the rest of
the integrand in terms of cos(x) using sin2(x) = 1− cos2(x). You have to be careful with the
sign because now we will have u = cos(x) and du = − sin(x) dx.
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(A-3) Both m and n are even:

Use the following identities to reduce the powers m and n,

sin(x) cos(x) =
1

2
sin(2x)

sin2(x) =
1− cos(2x)

2

cos2(x) =
1 + cos(2x)

2

Type B:
∫
tanm(x) secn(x) dx.

(B-1) n is even:

(Ex)
∫

tan5(x) sec6(x) dx

(a) Factor out sec2(x) ∫
tan5(x) sec4(x) sec2(x) dx

(b) Write the rest of the integrand in terms of tan(x) using the identity tan2(x)+1 = sec2(x).∫
tan5(x)(sec2(x))2 sec2(x) dx =

∫
tan5(x)(tan2(x) + 1)2 sec2(x) dx

(c) do u-substitution with u = tan(x) and du = sec2(x) dx∫
u5(u2 + 1) du

(B-2) m is odd:

(Ex)
∫

tan5(x) sec6(x) dx

(a) Factor out sec(x) tan(x)∫
tan4(x) sec5(x) sec(x) tan(x) dx

(b) Write the rest of the integrand in terms of sec(x) using the identity tan2(x) = sec2(x)−1∫
(tan2(x))2 sec5(x) sec(x) tan(x) dx =

∫
(sec2(x)− 1)2 sec5(x) sec(x) tan(x) dx

(c) do u-substitution with u = sec(x) and du = sec(x) tan(x) dx.∫
(u2 − 1)2u5 du

(B-3) m is even and n is odd:

Since m is even, we have tanm(x) = (tan2(x))m/2 = (sec2(x) − 1)m/2. So we can reduce
the problem to finding integrals of the form

∫
secn(x) dx where n is odd. When n = 1,∫

sec(x) dx = ln | sec(x) + tan(x)|+ C

and when n = 3,∫
sec3(x) dx =

1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|+ C

But for n ≥ 5, you have to use integration by parts.
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Type C:
∫
cotm(x) cscn(x) dx.

This is similar to Type B except you need to be careful with the signs are

(cot(x))′ = − csc2(x) and (csc(x))′ = − csc(x) cot(x)

Type D:
∫
sin(ax) cos(ax) dx,

∫
sin(ax) sin(bx) dx and

∫
cos(ax) cos(bx) dx. Use the following identi-

ties
sin(α) cos(β) =

1

2
sin(α− β) +

1

2
sin(α+ β)

sin(α) sin(β) =
1

2
cos(α− β)− 1

2
cos(α+ β)

cos(α) cos(β) =
1

2
cos(α− β) +

1

2
cos(α+ β)

Type E: Otherwise. We use trig identities to use u-substitution or to write the integrand in one of
Types A-D.
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