Calc I & II Review	Name:	
MATH 241 (Spring 2023)	Section:	0112 (8AM-9AM) / 0122 (9:30AM-10:20AM)
01/26/2023	TA:	Shin Eui Song

Instructions:

This is a review worksheet for Calc I and Calc II that will not be graded.

Problem 1. Use product rule, quotient rule, power rule, and chain rule to **find the derivative** of each of the following functions. Don't simplify your answers. Can you identify which rules you used?

(a)
$$f(x) = \left(\frac{3x+5}{x^2+7}\right)^2$$
 (b) $g(t) = t^{1/3}(e^{\sec t}) + \ln(4\pi)$

Problem 2. Find the integrals of the following functions. If you use substitution in your solution, indicate the substitution.

(a)
$$\int_{-1}^{0} t^2 \sqrt{1+t} dt$$
 (b) $\int 4x \cos(2-3x) dx$

(Hint: use integration by parts for (b).)

Problem 3. Find the Cartesian coordinates of the points having the given polar coordinates.

(a)
$$(-2, -\pi/6)$$
 (b) $(4, 3\pi/4)$

Problem 4. Find the polar coordinate (r, θ) with $r \ge 0$ and angles $0 \le \theta < 2\pi$ of the points having the given Cartesian coordinates.

(a) (4, -4) (b) $(3, 3\sqrt{3})$

Problem 5. Find the integrals of the following function.

$$\int \frac{x-11}{x^2+5x-14} \, dx$$

(Hint: use partial fractions.)

Problem 6.

(a) Find a parametrization for a circle of radius 4 with the center (2, -1). Don't forget to specify the domain.

(b) Any set of parametric equations of the form

x = a + bt and y = c + dt with $b \neq 0$ or $d \neq 0$

represents a straight line. Find a parametrization of a line that passes through the point (3, 4) with slope -2. Can you give more than one?

Problem 7. Find f(4) for the continuous function f satisfying

$$x\sin\pi x = \int_0^{x^2} f(t) \, dt$$

(Hint: use the fundamental theorem of calculus.)

Problem 1.

(a)

$$f'(x) = 2\left(\frac{3x+5}{x^2+7}\right)\frac{(x^2+7)\cdot 3 - (3x+5)\cdot(2x)}{(x^2+7)^2}$$

We used power rule, chain rule, and quotient rule.

(b)

$$g'(t) = \frac{1}{3}t^{-2/3}e^{\sec(t)} + t^{1/3}e^{\sec(t)}\sec(t)\tan(t)$$

We used product rule, power rule, and chain rule.

Problem 2.

(a) Let u = 1 + t, then du = dt, and t = u - 1. Then the bound $-1 \le t \le 0$ becomes $0 \le u \le 1$. After *u*-substitution, we have

$$\begin{aligned} \int_0^1 (u-1)^2 \sqrt{u} \, du &= \int_0^1 (u^2 - 2u + 1) \cdot u^{1/2} \, du &= \int_0^1 u^{5/2} - 2u^{3/2} + u^{1/2} \, du \\ &= \left. \frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2} \right|_0^1 &= \left(\frac{2}{7} - \frac{4}{5} + \frac{2}{3} \right) - 0 = \frac{16}{105} \end{aligned}$$

(b) We use integration by parts. Set

$$u = 4x$$
 $dv = \cos(2 - 3x)$
 $du = 4$ $v = -\frac{1}{3}\sin(2 - 3x)$

then

$$\int 4x \cos(2-3x) \, dx = 4x \left(-\frac{1}{3}\sin(2-3x)\right) - \int -\frac{4}{3}\sin(2-3x) \, dx$$
$$= -\frac{4}{3}x \sin(2-3x) + \frac{4}{9}\cos(2-3x) + C$$

Problem 3. We use the fact that a polar coordinate (r, θ) corresponds to the Cartesian coordinate $(r \cos \theta, r \sin \theta)$.

(a)

$$(x,y) = (-2\cos(-\pi/6), -2\sin(-\pi/6)) = \left(-2 \cdot \frac{\sqrt{3}}{2}, -2 \cdot -\frac{1}{2}\right) = (-\sqrt{3}, 1)$$

(b)

$$(x,y) = (4\cos(3\pi/4), 4\sin(3\pi/4)) = \left(4 \cdot -\frac{\sqrt{2}}{2}, 4 \cdot \frac{\sqrt{2}}{2}\right) = (-2\sqrt{2}, 2\sqrt{2})$$

Problem 4. Given a Cartesian coordinate (x, y), the *r*-coordinate of the polar coordinate is given by

$$r = \pm \sqrt{x^2 + y^2}$$

Since the problem said $r \ge 0$, we choose $r = \sqrt{x^2 + y^2}$. To figure out the angle θ , one needs to solve the inverse tangent problem

$$\tan \theta = \frac{y}{x}$$

so that θ is in the interval $[0, 2\pi)$.

- (a) First, $r = \sqrt{4^2 + (-4)^2} = 4\sqrt{2}$. We need to find $\theta \in [0, 2\pi)$ such that $\tan \theta = \frac{-4}{4} = -1$. Then $\theta = -\frac{\pi}{4} + \pi k$ for some integer k. The point (4, -4) is in the 4th quadrant, so $\theta = \frac{3\pi}{4}$ with k = 2. Hence the corresponding polar coordinate is $(4\sqrt{2}, \frac{3\pi}{4})$.
- (b) First, $r = \sqrt{3^2 + (3\sqrt{3})^2} = \sqrt{36} = 6$. We solve $\tan \theta = \frac{3\sqrt{3}}{3} = \sqrt{3}$. Then $\theta = \frac{\pi}{3} + \pi k$ for some integer k. The point $(3, 3\sqrt{3})$ is in the 1st quadrant, so $\theta = \frac{\pi}{3}$ with k = 0. Hence the corresponding polar coordinate is $(6, \frac{\pi}{3})$.

Problem 5. We use partial fractions. First, we must factor the denominator $x^2 + 5x - 14$. From

x^2	+	5x	_	14
1				7
1				-2

we see that $x^2 + 5x - 14 = (x + 7)(x - 2)$. Next, we want to find A and B such that

$$\frac{x-11}{x^2+5x-14} = \frac{A}{x+7} + \frac{B}{x-2}$$

By multiplying both sides by $x^2 + 5x - 14$, we get an equation

$$x - 11 = A(x - 2) + B(x + 7)$$

If x = 2, we get -9 = 9B, so B = -1. Similarly, if x = -7, then -18 = -9A, so A = 2. With all these being done, we have

$$\int \frac{x-11}{x^2+5x-14} \, dx = \int \frac{2}{x+7} - \frac{1}{x-2} \, dx = 2\ln|x+7| - \ln|x-2| + C$$

Problem 6.

(a)

$$\gamma(\theta) = (4\cos(\theta) + 2, 4\sin(\theta) - 1)$$

for $0 \le \theta \le 2\pi$.

(b) We can set a = 3 and c = 4 because the line will pass (3, 4) when t = 0. One can show that the slope of the parametrized line is $\frac{d}{b}$ assuming that the slope is not 0. Hence we can choose any *b* and *d* such that $\frac{d}{b} = -2$. For example,

$$x = 3 - t$$
 and $y = 4 + 2t$

for all real numbers t is a desired parametrization. We can choose any b and d with $\frac{d}{b} = -2$, so you have infinitely many parametrization, e.g. (b, d) = (-2, 4) or (b, d) = (-100, 200).

Extra Explanation: To see that $\frac{d}{h}$ is the slope of the line, we write the parametrization as

$$x - a = bt \text{ and } y - c = dt \tag{(†)}$$

Then we get

$$\frac{x-a}{b} = t = \frac{y-c}{d}$$

assuming that $b \neq 0$ and $d \neq 0$. Both cannot be 0 because then the parametrization is for a point. If one of them is 0, then the line is either a horizontal line or a vertical line. This means that the slope is either undefined or is 0. Since our slope is -2, we know that b and d are both nonzero.

After multiplying bd on both sides of (\dagger) and solving for y, we get

$$y = \frac{d}{b}x + \frac{bc - ad}{b}$$

Therefore, $\frac{d}{b}$ is the slope of the line.

Problem 7. We use the (application of) fundamental theorem of calculus which says that

$$\frac{d}{dx} \int_{h(x)}^{g(x)} f(t) \, dt = f(g(x))g'(x) - f(h(x))h'(x)$$

We first compute the derivative of the right-hand side.

$$\frac{d}{dx} \int_0^{x^2} f(t) \, dt = f(x^2) \cdot 2x - f(0) \cdot 0 = 2xf(x^2)$$

Next, we compute the derivative of the left-hand side.

$$\frac{d}{dx}(x\sin\pi x) = \sin\pi x + \pi x\cos\pi x$$

Since we want to compute f(4), let x = 2. Then we get

$$\begin{aligned} \sin(2\pi) + 2\pi\cos(2\pi) &= 4f(4) \\ \Rightarrow & 2\pi &= 4f(4) \\ \Rightarrow & f(4) &= \frac{\pi}{2} \end{aligned}$$

References

- Gulick D., Ellis R. (2006) Calculus with Analytic Geometry, Cengage Learning, 6th ed. (Exercise 10.1: Problems 1(b), 1(g), 2(b), 2(e))
- [2] Math Testbank, Final Examination Math 140 Fall 2014. (Problems 3, 9(b))
- [3] Paul's Online Notes, Integration By Parts, https://tutorial.math.lamar.edu/problems/calcii/integrationbyparts.aspx. (Problem 1)
- [4] MITOpenCourseware, 18.01SC Single Variable Calculus, https://ocw.mit.edu/courses/18-01sc-single-variable-calculus-fall-2010/ resources/mit18_01scf10_exam3/. (Problem 3(b))