1. BACKGROUND

Let f(x) be a real-valued function. We review what it means for a function to have a limit L as the x approaches to a. This is denoted by

$$\lim_{x \to a} f(x) = L.$$

Informally, L is the *y*-value that the function approaches as *x* approaches to *a*. How can we make this definition mathematically rigorous? Following the work of Bolzano (1817), Cauchy (1821), and Weierstrass (1861), mathematicians use the *epsilon-delta* definition to define limits.

2. Epsilon-Delta Definition

The variable epsilon ε will represent how close f(x) is to our limit *L*, and the variable delta δ will represent how close *x* is to *a*. Mathematically, we express via

$$|f(x) - L| < \varepsilon$$
 and $|x - a| < \delta$

We want to say that f(x) can be as close as we want to L if x is close enough to a. Therefore, for all small ε , we want to **conclude** that $|f(x) - L| < \varepsilon$. How do we say x is close enough to a? We say that there exists δ such that $|x - a| < \delta$ would conclude that $|f(x) - L| < \varepsilon$. To summarize, we obtain the following definition. **Definition 2.1.** Let f(x) be a function defined on an interval that contains x = a, except possibly at x = a. Then

$$\lim f(x) = L$$

if for all $\varepsilon > 0$, there exists some number $\delta > 0$ such that

$$\text{if } 0 < |x - a| < \delta \text{ then } |f(x) - L| < \varepsilon \tag{(†)}$$

Let us look at an example.

Example 2.2. Let f(x) = x. Then

$$\lim_{x \to 3} f(x) = 3$$

Proof. Let $\varepsilon > 0$ which is chosen arbitrarily. We need to find δ (which is usually in terms of ε) such that (\dagger) in the definition above would hold. In this case, we can simply choose $\delta = \varepsilon$ because if $0 < |x - 3| < \delta \Rightarrow$ $|f(x) - 3| < \delta = \varepsilon$.

Exercise 2.3. Let f(x) = 2x + 3. Show that

$$\lim_{x \to 2} f(x) = 7$$

Using this definition, one can prove some properties of limits.

Example 2.4. Let $f(x) = \sqrt{x}$ and let $g(x) = \sin(\pi x)$. Suppose that we know that $\lim_{x\to 4} f(x) = 2$ and $\lim_{x\to 4} g(x) = 0$. Then

$$\lim_{x \to 4} f(x) + g(x) = 2$$

Proof. Let $\varepsilon > 0$. Then there exists $\delta_1, \delta_2 > 0$ such that

if
$$0 < |x - 4| < \delta_1$$
 then $|f(x) - 2| < \frac{\varepsilon}{2}$
if $0 < |x - 4| < \delta_2$ then $|g(x) - 0| < \frac{\varepsilon}{2}$

Let $\delta = \min(\delta_1, \delta_2)$. If $0 < |x - 4| < \delta$,

$$|f(x) + g(x) - 2| = |(f(x) - 2) + (g(x) - 0)| \le |f(x) - 2| + |g(x) - 0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Exercise 2.5. Let $\lim_{x\to a} f(x) = L_1$ and $\lim_{x\to a} g(x) = L_2$. Following the example 2.4, Prove $\lim_{x\to a} f(x) + g(x) = L_1 + L_2$

3. Multivariable Epsilon-Delta

For a vector-valued function, the definition is the same except, we use vectors and magnitudes.

Definition 3.1. Let F be a vector-valued function defined at each point in some open interval containing a, except possibly at a itself. Then

$$\lim_{x \to a} \boldsymbol{F}(x) = \boldsymbol{L}$$

if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\text{if } 0 < |x - a| < \delta \text{ then } ||F(x) - L|| < \varepsilon \tag{\dagger\dagger}$$

A vector-valued function $F(x) = f_1(x)\hat{\imath} + f_2(x)\hat{\jmath} + f_3(x)\hat{k}$ can be thought as three real-valued functions f_1, f_2, f_3 . We like to see the relationship between the limits of f_1, f_2, f_3 , and F.

Exercise 3.2. Suppose

$$\lim_{x \to a} f_1(x) = L_1, \quad \lim_{x \to a} f_2(x) = L_2, \quad \lim_{x \to a} f_3(x) = L_3$$

Then prove that $\lim_{x\to a} \mathbf{F}(x) = (L_1, L_2, L_3)$.

(Hint: Find δ_i such that $|f_i(x) - a| < \frac{\varepsilon}{\sqrt{3}}$ for i = 1, 2, 3.)