Complex numbers are used to describe rotations in 2D. Recall that **complex numbers** are numbers of the form

a + bi

where *a* and *b* are real numbers and *i* is an imaginary unit such that $i^2 = -1$. The addition operation is defined as

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

and the multiplication operation is defined as

$$(a+bi)(c+di) = ac + adi + bci + bdi^{2} = (ac - bd) + (ad + bc)i^{2}$$

Then Euler's identity shows that

$$e^{i\theta} = \cos(\theta) + \sin(\theta)i$$

For this to make sense, we have explain what it means by raising to the *i*th power, but we ignore such technicalities in this handout. Now we are ready to see why complex numbers describe rotations in 2D. Let a + bi be a complex number. Let $r = \sqrt{a^2 + b^2}$.

Problem 1. Show that the point $(\frac{a}{r}, \frac{b}{r})$ is on a unit circle. In particular, there exists a real number $0 \le \theta \le 2\pi$ such that $\frac{a}{r} = \cos \theta$ and $\frac{b}{r} = \sin \theta$.

By Problem 1, complex number $a + bi = r \cos \theta + (r \sin \theta)i$ for some $0 \le \theta \le 2\pi$ and $r = \sqrt{a^2 + b^2}$.

In fact, θ is the angle between vector (a, b) and the *x*-axis.

Problem 2. Show that rotating a complex number a + bi by an angle θ' is same thing as multiplying $e^{i\theta'}$ on a + bi using the Euler's identity.

One can also use the Euler's identity to prove the following trig identities.

Problem 3. Show that $\sin(\theta + \theta') = \sin(\theta)\cos(\theta') + \cos(\theta)\sin(\theta')$ and $\cos(\theta + \theta') = \cos(\theta + \theta') = \cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta')$ using the Euler's identity. (**Hint:** $e^{i(\theta + \theta')} = e^{i\theta} \cdot e^{i\theta'}$)

We will see later that there is a generalization to this story. The generalization called the quaternions gave birth to dot products and corss products.