MATH 241 Calculus III Spring 2023 Groupwork 1: Sections 11.1-11.3

You should work on and discuss this worksheet with members of your group. Your TA will assist as needed. Turn in your solutions either on this sheet or a separate sheet of paper. Be sure to include your name!

- 1. Describe in words (and sketch if possible) the region of \mathbb{R}^3 represented by the inequality $(x 1)^2 + (y 1)^2 \leq 9$. [Hint: First sketch this inequality for points in \mathbb{R}^2 .]
- 2. Write an inequality describing the open region containing all points between (but not on) the spheres of radius r and R centered at the origin. (Suppose r < R.)
- 3. Of the following expressions, explain which are meaningful, and which are meaningless. (For example $\frac{1}{a}$ is meaningless because we do not define division of vectors.) For the ones that make sense, evaluate them using $\mathbf{a} = \hat{\imath}$, $\mathbf{b} = 2\hat{\imath}$, and $\mathbf{c} = \hat{k}$.
 - (a) $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$
 - (b) $\|\mathbf{a}\|(\mathbf{b}\cdot\mathbf{c})$
 - (c) $(a \cdot b) + c$
 - (d) $(\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
 - (e) $\|\mathbf{a}\| \cdot (\mathbf{b} + \mathbf{c})$
- 4. Suppose a quarterback throws a football with angle of elevation $\pi/6$ radians, and with speed 50 feet per second. Find the horizontal and vertical components of the football's velocity vector **v** at the time of release, and write **v** in the form $\mathbf{v} = v_x \hat{\imath} + v_y \hat{\jmath}$ (i.e. determine v_x and v_y). Note that *speed* is a scalar quantity. It is the magnitude or norm of the velocity vector.
- 5. Is the triangle defined by the vertices P(1, -3, -2), Q(2, 0, -4), and R(6, -2, -5) a right-triangle? (Hint: First find three vectors that define the sides of the triangle.)
- 6. Let $\mathbf{a} = (1, 1)$ and $\mathbf{b} = (-4, 0)$.
 - (a) Are these vectors perpendicular? If so, explain why. If they are not perpendicular, find the angle between them. Recall angles between two vectors are defined to take values in $0 \le \theta \le \pi$.
 - (b) Find the projection of **b** onto **a**, i.e. find the vector $\mathbf{p} = \text{proj}_{\mathbf{a}}\mathbf{b}$.
 - (c) Sketch the vectors **b** and **p** on the same graph. Label them. Then use the geometric version of vector addition/subtraction (i.e. use arrows), to find a formula for a vector **q** perpendicular to **a**.
 - (d) Use your formula to explicitly compute the value of **q**, and then verify it is perpendicular to **a**.