MATH 241 Calculus III Spring 2023 Groupwork 3: Section 12.1-12.4

You should work on and discuss this worksheet with members of your group. Your TA will assist as needed. Turn in your solutions either on this sheet or a separate sheet of paper. Be sure to include your name!

- 1. (a) Sketch the curve with position vector $\mathbf{r}(t) = t\mathbf{i} + \cos(\pi t)\mathbf{j} + \sin(\pi t)\mathbf{k}$, for $t \ge 0$.
 - (b) Find the velocity and acceleration functions for this curve.
- 2. Find the position function for a particle that starts at the origin with initial velocity $\mathbf{i} \mathbf{j} + 3\mathbf{k}$, and has acceleration given by $\mathbf{a}(t) = 6t\mathbf{i} + 12t^2\mathbf{j} 6t\mathbf{k}$.
- 3. The helix $\cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$ intersects the curve $(1+t)\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ at the point (1, 0, 0). Find the angle of intersection of these curves at the point of intersection.
- 4. Find the length of a circular helix with equation $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$ from the point (1, 0, 0) to the point $(1, 0, 2\pi)$. Is this curve closed? Is the given parametrization smooth?
- 5. At what point(s) (x_0, y_0, z_0) does the curve $\mathbf{r}(t) = t\mathbf{i} + (2t-t^2)\mathbf{k}$ intersect the paraboloid $z = x^2 + y^2$?
- 6. TRUE or FALSE?
 - (a) The curve with vector equation $\mathbf{r}(t) = t^3 \hat{\imath} + 2t^3 \hat{\jmath} + 3t^3 \hat{k}$ for $-\infty < t < \infty$ is a line.
 - (b) Different parametrizations of the same curve result in identical tangent vectors at a given point on the curve.
 - (c) If $\|\mathbf{r}(t)\| = 1$ for all *t*, then $\|\mathbf{r}'(t)\|$ is a constant.